
ISSN 2347-3487                                                           

2094 | P a g e                                                          A p r i l  0 6 ,  2 0 1 5  

SOLUTIONS OF THE SCHRӦDINGER EQUATION WITH INVERSELY 
QUADRATIC YUKAWA PLUS WOODS-SAXON POTENTIAL USING 

NIKIFOROV-UVAROV METHOD 

B. I. Ita*, A. I. Ikeuba, O. Obinna 

1
Physical/Theoretical Chemistry Unit, Department of Pure and Applied Chemistry, University of Calabar, 

Calabar, CRS, Nigeria 

*Corresponding Author: E-mail: iserom2001@yahoo.com 

ABSTRACT  

The solutions of the Schrӧdinger equation with inversely quadratic Yukawa plus Woods-Saxon potential (IQYWSP) have 
been presented using the parametric Nikiforov-Uvarov (NU) method. The bound state energy eigenvalues and the 
corresponding un-normalized eigen functions are obtained in terms of Jacobi polynomials. Also, a special case of the 
potential has been considered and its energy eigen values obtained. The result of the work could be applied to molecules 
moving under the influence of IQYWSP potential as negative energy eigenvalues obtained indicate a bound state system. 
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In non-relativistic quantum mechanics, one of the interesting problems is to obtain exact solutions of the Schrӧdinger 
equation. In order to do this, a real potential is normally chosen to derive the energy eigenvalues and the eigen functions 
of the Schrӧdinger equation. [1] These solutions describe the particle dynamics in non-relativistic quantum mechanics. 
Many authors have studied the bound states of the Schrӧdinger equation using different potentials and methods. [2-10] 
Some of these potentials play very important roles in many fields of Physics such as Molecular Physics, Solid State and 
Chemical Physics. [11] The Woods-Saxon potential, either in its spherical or deformed form, has been used more in 
nuclear numerical calculations. [12 – 16] Dudek et al [17] have also used the Woods-Saxon potential to study the 
behaviour of valence electrons in metallic systems. The details of the Woods-Saxon potential are described by free 
parameters such as depth, width and slope of the potential, which have been fitted to experimental observation.[1] The 
inversely quadratic Yukawa potential was first studied in 2012 by Hamzavi et al [18] when they obtained approximate spin 
and pseudospin solutions to the Dirac equation with the potential including a tensor interaction. Since, then several papers 
on the potential have appeared in the literature. [19-21].  

The purpose of the present paper is to solve the Schrӧdinger equation for the mixed potential IQYWSP using the 
parametric NU method. The paper is organized as follows: After a brief introduction in section 1, the NU method is 
reviewed in section 2. In section 3, we solve the radial Schrӧdinger equation using the NU method. Finally, we discuss our 
results in section 4 and a brief conclusion is then advanced in section 5.  

Nikiforov-Uvarov Method  

The Nikiforov-Uvarov (NU) method is based on the solutions of a generalized second-order linear differential equation with 
special orthogonal functions. [22] The Schrӧdinger equation and Schrӧdinger-like equations of the type as: 

ψ′′ r +  E − V r  ψ r = 0,         (1)  

can be solved by this method. This can be done by transforming equation (1) into an equation of hypergeometric type with 
appropriate coordinate transformation s = s(r) to get 

ψ′′ s +
τ (s)

σ(s)
ψ′ s +

σ  s 

σ2 s 
ψ s = 0,               (2) 

To solve equation (2) we can use the parametric NU method. The parametric generalization of the NU method is 
expressed by the generalized hypergeometric type equation [23] 

ψ′′ s +
 c1−c2s 

s 1−c3s 
ψ′ s +

1

s2 1−c3s 
2
 −ϵ1s

2 + ϵ2s − ϵ3 ψ s = 0,                               (3)                                                               

where σ(s) and σ (s) are polynomials atmost second degree, and τ (s) is a first degree polynomial. The eigen functions 

(equation 4) and corresponding eigenvalues (equation 5) to the equation become 

ψ s = Nns
c12  1 − c3s 

−c12−
c13
c3 Pn

 c10−1,
c11
c3

−c10−1  1 − 2c3s ,                                                       (4) 

 c2 − c3 n + c3n
2 −  2n + 1 c5 +  2n + 1   c9 + c3 c8 + c7 + 2c3c8 + 2 c8c9 = 0,      (5)                                        

Where 

c4 =
1

2
 1 − c1 , c5 =

1

2
 c2 − 2c3 , c6 = c5

2 + ϵ1, c7 = 2c4c5 − ϵ2, c8 = c4
2 + ϵ3, c9 = c3c7 + c2

2c8 + c6,  c10 = c1 + 2c4 +

2 c8, c11 = c2 − 2c5 + 2  c9 + c3 c8  ,c12 = c4 +  c8, 

c13 = c5 −   c9 + c3 c8 ,                    (6)                                                          

Nn  is the normalization constant and Pn
(α,β)are the Jacobi polynomials. 

Solutions of the Radial Schrӧdinger Equation 

 The radial Schrӧdinger equation is given as [23] 

d2Rnl  r 

dr2
+

2μ

ћ
2  E − V r −

λћ
2

2μr2
 Rnl  r ,         (7) 

Where λ = l(l + 1) and V(r) is the potential energy function. The inversely quadratic Yukawa potential (IQYP) is given as 

[18] 

V r = −
V0

′ e−2αr

r2
,          (8) 

The Woods-Saxon potential (WSP) is given as [1] 

V r = −
Vo

1+e2αr
,          (9) 

Where V0 and V0
′  are the potential depths of the WSP and IQYP respectively and α is an adjustable positive parameter. 

The sum of these potentials known as IQYWSP is given as 

V r = −
Vo

1+e2αr −
V0

′

r2e2αr ,         (10) 
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Making the transformation s = −e−2αrequation (10) becomes 

V s, r =
V0s

1−s
+

V0
′ s

r2
,          (11) 

Again, applying the transformation s = −e−2αr  to get the form that NU method is applicable, equation (7) gives a 
generalized hypergeometric-type equation as 

d2R(s)

ds 2
+

 1−s 

 1−s s

dR(s)

ds
+

1

 1−s 2s2
 −β

2
s2 +  2β

2
+ A s −  β

2
− B  R s = 0,   (12) 

Where 

λ = 0,−β
2
=

μE

2α2ћ
2 , A =

μV0

2α2ћ
2 −

2μV0
′

ћ
2 , B = −

μV0

2α2ћ
2 ,

1

r2
≈

4α2

 1+e−2αr 2
≈

4α2

 1−s 2
 ,      (13)

     

Comparing equation (12) with equation (3) yields the following parameters 

c1 = c2 = c3 = 1, c4 = 0, c5 = −
1

2
, c6 =

1

4
+ β

2
, c7 = −2β

2
− A, c8 = β

2
− B, c9 =

1

4
−  A + B , c10 = 1 + 2 β

2
− B, c11 = 2 +

2  
1

4
− A − B + β

2
− B , c12 =  β

2
− B, c13 = −

1

2
−   

1

4
− A − B +  β

2
− B , ϵ1 = β

2
, ϵ2 = 2β

2
+ A, ϵ3 = β

2
− B,  

     (14) 

Now using equations (5), (13) and (14) we obtain the energy eigen spectrum of the IQYWSP as 

β
2
=  

2B+A− n2+n+
1

2
 − 2n+1  

1

4
−A−B

 2n+1 +2 
1

4
−A−B

 

2

+ B,       (15) 

Equation (15) can be solved explicitly and the energy eigen spectrum of IQYWSP becomes 

 

E = −
2α2ћ

2

μ

 
 
 

 
 

 
 
 
 
 −2μV0

′

ћ
2 −

μV0

2α2ћ
2− n2+n+

1

2
  

1

4
−
2μV0

′

ћ
2

 2n+1 +2 
1

4
−
2μV0

′

ћ
2  

 
 
 
 
2

 
 
 

 
 

,       (16) 

We now calculate the radial wave function of the IQYWSP as follows 

The weight function ρ(s) is given as [23] 

ρ s = sc10−1 1 − c3s 
c11
c3

−c10−1,        (17) 

Using equation (14) we get the weight function as 

ρ s = sω 1 − s ϑ,          (18) 

Where ω = 2 β
2
− B and ϑ = 2 + 2 

1

4
− A − B 

Also we obtain the wave function χ(s) as [23] 

χ s = Pn
c10−1,

c11
c3

−c10−1
 1 − 2c3s ,        (19) 

Using equation (14) we get the function χ(s) as 

χ s = Pn
 ω,ϑ  1 − 2s ,          (20) 

Where Pn
 ω,ϑ 

 are Jacobi polynomials 

Lastly, 

υ s = sc12 1 − c3s 
−c12−

c13
c3 ,         (21) 

And using equation (14) we get 

υ s = s
ω
2  1 − s 

ϑ−1
2 ,         (22) 

We then obtain the radial wave function from the equation [23] 

Rn s = Nnυ s χn s ,          (23) 

As 
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Rn s = Nns
ω
2  1 − s 

ϑ−1
2 Pn

 ω,ϑ  1 − 2s ,       (24) 

Where n is a positive integer and Nn  is the normalization constant. 

DISCUSSION 

We have solved the radial Schrӧdinger equation and obtained the energy eigen values for the inversely quadratic Yukawa 

plus Woods-Saxon potential (IQYWSP) in equation (16). If V0
′ = 0 in equation (10), the potential turns back into the 

Woods-Saxon potential and equation (16) yields the energy eigen values of the Woods-Saxon potential as 

E = −
ћ
2

2a2μ
  

μa2V0

ћ
2 n+1 

 
2

+  
n+1

2
 
2
+

μa2V0

ћ
2  ,       (25) 

Where we have used 
1

a
= 2α 

Equation (25) is similar to equation (22) of the reference [1] obtained for the Woods-Saxon potential in the Schrӧdinger 

formalism. Table 1 reveals that bound state energy eigenvalues are obtained which increase in magnitude with increase in 
the principal quantum number, n as well as the increase in the screening parameter which is plausible. We suggest that 

our results can be applied to understanding molecules moving under the IQYWSP potential. Fig. 1 represents the plot of 
IQYWSP and its approximation. The fact that the plots overlap is indicative that our approximation is correct. 

CONCLUSION 

We have obtained the energy eigen values and the corresponding un-normalized wave function using the parametric NU 
method for the Schrӧdinger equation with IQYWSP. A special case of the potential has also been considered.  
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Table 1.  Energy spectrum for different values of α for IQYWSP 

n 

Energy Spectrum 

α = 0.5 α = 0.2 α = 0.4 

1 -0.01426 -0.00034 -0.005699765 

2 -0.08903 -0.00224 -0.036209583 

3 -0.23544 -0.00598 -0.096103554 

4 -0.45673 -0.01164 -0.186692537 

5 -0.75429 -0.01925 -0.30853781 

6 -1.12882 -0.02883 -0.461919373 

7 -1.58071 -0.0404 -0.646992419 

 

 

Fig. 1: Plot of IQYWS, V (r) and Approximated IQYWS, V(s) potential against r. The potentials overlap 
which shows the accuracy of the approximation 
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