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Evolution of unstable system. 
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Abstract 

Scenario of appearance and development of instability in problem of a flow around a solid sphere at rest is discussed. The 
scenario was created by solutions to the multimoment hydrodynamics equations, which were applied to investigate the 
unstable phenomena. These solutions allow interpreting Stokes flow, periodic pulsations of the recirculating zone in the 
wake behind the sphere, the phenomenon of vortex shedding observed experimentally. In accordance with the scenario, 
system loses its stability when entropy outflow through surface confining the system cannot be compensated by entropy 
produced within the system. The system does not find a new stable position after losing its stability, that is, the system 
remains further unstable. As Reynolds number grows, one unstable flow regime is replaced by another. The replacement is 
governed tendency of the system to discover fastest path to depart from the state of statistical equilibrium. This striving, 
however, does not lead the system to disintegration. Periodically, reverse solutions to the multimoment hydrodynamics 
equations change the nature of evolution and guide the unstable system in a highly unlikely direction. In case of unstable 
system, unlikely path meets the direction of approaching the state of statistical equilibrium. Such behavior of the system 
contradicts the scenario created by solutions to the classic hydrodynamics equations. Unstable solutions to the classic 
hydrodynamics equations are not fairly prolonged along time to interpret experiment. Stable solutions satisfactorily 
reproduce all observed stable medium states. As Reynolds number grows one stable solution is replaced by another. They 
are, however, incapable of reproducing any of unstable regimes recorded experimentally. In particular, stable solutions to the 
classic hydrodynamics equations cannot put anything in correspondence to any of observed vortex shedding modes. In 
accordance with our interpretation, the reason for this is the classic hydrodynamics equations themselves. 
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      1. Introduction 

Unstable processes are the fundamental manifestation of nature evolution. Vortex shedding behind a bluff bodies is the 
graphic example of an unstable process. A comparison of the results of direct numerical integration of the Navier–Stokes 
equations with the experimental data in unstable regime in problem on a flow around a solid sphere at rest revealed obvious 
discrepancies [1, 2].  

 Experiment records two stable stationary medium states represented by the 
0

( )
exp

U x and 
1

( )
exp

U x  velocity 

distributions, and a stable non-stationary state of the central type with the 
2

( , )
exp

tU x  velocity distribution. Each of these 

three stable flows begins to develop in its own direction qualitatively different from other flows when it loses stability. The 
development occurs through a sequence of regular non-stationary periodic states schematically shown in Figure 1. Figure 1 
was drawn on the basis of experimental data reviewed in [1]. Each of the three experimentally observed directions inevitably 
reaches periodic vortex shedding mode. Vortex shedding along each of the three directions is characterized by its own 
characteristic vortex shedding features intrinsic in it. However, irrespective of the direction selected experimentally, periodic 

vortex shedding is obligatory, well defined, and fairly prolonged along Reynolds numbers Re  mode of the development of a 

turbulent process. Experiment records six vortex shedding modes, 0 ( , )exp tW x , 0 ( , )exp tQ x , 1 ( , )exp tV x , 

2 ( , )exp tV x , 2 ( , )exp tW x  and 2 ( , )exp tQ x , and one pulsation mode 0 ( , )exp tV x . The recorded set of regular non-stationary 

periodic modes is most likely incomplete.  

The direct numerical integration of the Navier–Stokes equations in problem on a flow around a solid sphere at rest was 
performed by various numerical methods. Nevertheless, the results of all these numerical experiments were absolutely 

identical (see review [1]). Calculations find two stationary stable solutions, 0 ( )cal
U x and 1 ( )cal

U x  and a non-stationary 

stable solution of the central type, 2 ( , )cal tU x . Apart from these solutions, the Navier–Stokes equations only have a 

multiperiodic, that is, essentially chaotic, solution 3 ( , )cal tU x . According to calculations, the development of instability 

occurs in strict correspondence to the classic Landau–Hopf scenario [3]. After some critical Reynolds number value 
*Re  is 

reached, the ground axisymmetric stationary solution 0 ( )cal
U x  loses its stability. Nonstationary solution 

*

0,1 ( , ,Re )cal tU x  

ensures the transition from the 0 ( )cal
U x  solution that lost its stability to the stable stationary nonaxisymmetric solution 

1 ( )cal
U x  (regular bifurcation). The attainment of the second critical Reynolds number value 

** *Re Re  is accompanied 

by the loss of stability of the 1 ( )cal
U x  solution. Nonstationary solution 

**

1,2 ( , ,Re )cal tU x  ensures the transition from the 

1 ( )cal
U x  solution that lost its stability to the stable nonstationary limiting cycle 2 ( , )cal tU x  (the Hopf bifurcation). After 

attainment of the third critical Reynolds number value 
*** **Re Re , the 2 ( , )cal tU x  solution loses its stability. 

Nonstationary solution 
***

2,3( , ,Re )cal tU x  ensures the transition from the 2 ( , )cal tU x  limiting cycle that lost its stability to the 

new stable position about which  multiperiodic, that is, almost chaotic, 3 ( , )cal tU x  motion occurs. It follows that, according to 

the Landau–Hopf scenario, the system, after it loses stability, inevitably reaches a new stable position and exercises either 
periodic or chaotic motion about it. Calculations determine the direction of instability development, indicated by a dashed 
slant line in Figure 1.  

The 0 ( )cal
U x , 1 ( )cal

U x , and 2 ( , )cal tU x  stable solutions satisfactorily reproduce 0 ( )exp
U x , 1 ( )exp

U x , and 

2 ( , )exp tU x  stable flows. However, calculations can not put anything in correspondence to seven of ten experimentally 

observed modes schematically shown in Figure 1. 

An attempt at removing obvious discrepancies between calculations and experiment was made earlier (see review 

[1,2]). The 2 ( , )cal tU x  limiting cycle is likely the only possibility of establishing correlation between the observed vortex 

shedding from a sphere, 2 ( , )exp tV x , and calculations. Indeed, the solutions 0 ( )cal
U x and 1 ( )cal

U x are stationary. The 

3 ( , )cal tU x  mode following after the 2 ( , )cal tU x  monoperiodic mode is multiperiodic, that is, chaotic in essence. Correlation 

of 3 ( , )cal tU x  with the observed strictly periodic vortex shedding modes is hardly possible. Non-stationary solutions 

*

0,1 ( , ,Re )cal tU x , 
**

1,2 ( , ,Re )cal tU x , and 
***

2,3( , ,Re )cal tU x  are aperiodic,  and are limited in time. Non-stationary solutions 

exist only at a critical values of the Reynolds number. These solutions cannot be put in correspondence to observed periodic 
vortex shedding modes exceedingly prolonged along the Re scale. 
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The idea of attracting the stable central type mode 
2 ( , )cal tU x  for the interpretation of the vortex shedding encounters 

the following objections. First, according to calculations, the regular solution gives way to the chaotic mode already at Re  ~ 

500. Experiment, however, shows that the vortex shedding mode is exceedingly prolonged along the Re  scale. For 

instance, in an experiment in which a sphere was drawn at a constant rate through unperturbed medium, vortex shedding 

was recorded over the whole Re  range studied, up to 30000. That is, calculations predict the transition to chaos early on 

the Re  scale, which contradicts experiment. Secondly, at a moderately high Re , the 
2 ( , )cal tU x  solution should 

simultaneously correspond to several non-stationary modes. For instance, at some 
***

0Re Re  value, experiment records 

four different vortex shedding modes, 0 ( , )exp tQ x  on the lower branch, 1 ( , )exp tV x  on the middle branch, and 2 ( , )exp tW x , 

and 2 ( , )exp tQ x  on the upper branch (Figure 1). One solution, namely, 2 ( , )cal tU x , cannot however simultaneously (at 

some 
***

0Re Re ) correspond to four qualitatively different vortex shedding modes. Lastly, only three of six modes, 

0 ( , )exp tW x , 1 ( , )exp tV x , and 2 ( , )exp tV x  are monoperiodic, whereas the 0 ( , )exp tQ x , 2 ( , )exp tW x  and 2 ( , )exp tQ x  

modes are two-periodic. Clearly, the monoperiodic solution can by no means be put in correspondence to two-periodic 
modes. 

As expected, the idea did not give the desired result. The streamline flow pictures for every quarter of the period of 

oscillations in the 
2 ( , )cal tU x  recirculating zone in the near wake behind a sphere after the passage of some critical value 

*

2Re  are given in [4]. In accordance with calculation [4], after the appearance at a surface of the sphere, the vortex structure 

moves toward the periphery of the recirculating zone, which is accompanied by its continuous dissipation. Lastly, it fully 
disappears at the periphery of the recirculating zone. Because of the absence of the detachment of the recirculating zone 
periphery, there is no vortex street in the far wake behind a sphere. The streakline flow pictures don’t detect also the 
slightest indications of vortex shedding [4]. 

This picture is qualitatively different from the observed full period of oscillation of the recirculating zone at supercritical 

values 
*

2Re Re  (see review [1]). As in calculations, the experimental vortex structure engendered begins to expand and 

move downstream within the near wake. After reaching the periphery of the recirculating zone, this vortex structure, 
however, acquires a maximum size rather than dissipates as predicted by calculations. At the end of the period, the vortex 
localized at the periphery of the recirculating zone separates from the core of recirculating zone. The separated vortex 

structure rushes downstream and forms a vortex street 2 ( , )exp tV x . 

So, the 2 ( , )cal tU x  limiting cycle satisfactorily reproduced the 2 ( , )exp tU x  central type position at subcritical values 

*

2Re Re , but attempts to reproduce vortex shedding 2 ( , )exp tV x  at 
*

2Re Re  were a complete failure. In accordance 

with interpretation [1,2], stable solutions to Navier-Stokes equations successfully reach the boundary of instability field, 

indicated by a dashed slant line in Figure 1. As Re  grows, these solutions move along this boundary. However, classic 

solutions are unable to cross the boundary and enter the instability field.  

Most likely, the reason for this is Navier-Stokes equations themselves. Classic hydrodynamics equations exist for about 
two centuries. By definition, these equations are valid for the description of arbitrary continuous media corresponding to 
continuity and unlimited deformability principles [5]. Statistically grounded hydrodynamics equations are, however, far from 
being completely established. The greatest progress in this direction was made for one of continuous medium states, 

namely, for the rarefied gas state, where the characteristic free path λ  far exceeded the characteristic size of particles d . 

In a rarefied gas, that is, at d λ , the path from Newton equations written separately for each medium particle to classic 

hydrodynamics equations was passed without additional assumptions. The only exception was the Boltzmann hypothesis of 
molecular chaos “Stosszahlansatz” [6]. The Boltzmann hypothesis closes kinetic equation. An important result of statistical 
treatment was the conclusion that classic hydrodynamics equations derived heuristically were approximate. Indeed, classic 
hydrodynamics equations that directly follow from the Boltzmann equation inevitably contain the error involved in the 
derivation of classic kinetic equation. The physical meaning of this error, however, remains unclear. The physical meaning of 
the Boltzmann hypothesis was discovered in [7,2]. It was found that just the Boltzmann hypothesis, which closed Boltzmann 
kinetic equation, allowed us to construct hydrodynamics on only three lower principal hydrodynamic values. Binary collisions 
of particles tune the distributions of all the other hydrodynamic values to the distribution of three principal hydrodynamic 

values, ( , )n t x , ( , )tU x , and ( , )p t x . Here, ( , )n t x  denotes the densities of the number of particles, ( , )tU x  is the 

hydrodynamic velocity, ( , )p t x  is the pressure, ( , )T t x  is the temperature, p nkT , k  is the Boltzmann constant 

That is, all the higher hydrodynamic values become functions of only three principal hydrodynamic values. In particular, the 

viscous stress tensor ( , )ijp t x  becomes directly proportional to the deformation tensor of velocities (the Newton law), and 

the heat flux vector ( , )tq x  becomes directly proportional to the gradient of temperature (the Fourier law). Since the classic 
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three-moment hydrodynamics is constructed without the use of higher principal hydrodynamic values, its applicability range 
is limited to states that are only weakly removed from the statistical equilibrium state.  

Analysis [8] substantiates the suggestion that the applicability range of three-moment classic hydrodynamics equations 

is limited, in particular, by small Reynolds number values Re 1 . Nevertheless, the calculated stable solutions to Navier–

Stokes equations, namely, 0 ( )cal
U x , 1 ( )cal

U x , and 2 ( , )cal tU x , satisfactorily reproduced stable flows 0 ( )exp
U x , 1 ( )exp

U x , 

and 2 ( , )exp tU x  recorded experimentally at moderately high Reynolds number values, which reached several hundreds. 

This means that the error contained in solutions to the Navier–Stokes equations is not too large, that is, it does not introduce 
visually observable changes into the picture of stable flows. This error, however, begins to increase sharply after the critical 
Reynolds number value accompanied by stability loss is exceeded. An increase in error is caused by the ability of nonlinear 
equations to exponentially quickly separate initially close solutions even in a limited phase space region. This sensitivity to 
initial conditions was called the Lorentz butterfly effect [3]. Loss of the direction of instability development is a result of an 
increase in the error. That is, classic hydrodynamics equations are absolutely incapable of reproducing unstable periodic 
flows, which appear after the critical Reynolds number is exceeded. 

The present study is devoted to the discussion of the contribution of entropy in determining the direction of system 
evolution after stability loss. Section 1 presents the stability principle and the evolution criterion. Section 2 presents the 
results of numerical integration of the multimoment hydrodynamics equations in the problem of a flow around a solid sphere. 
The stability principle elucidates the cause of stability loss after attainment of the first critical Reynolds number. The 
evolution criterion elucidates the cause of appearance of the vortex shedding after attainment of the next critical Reynolds 
number. 

2. Stability principle and evolution criterion. 

The possibility of the improvement of classic hydrodynamics equations should be sought by increasing the number of 
principal hydrodynamic values. “The passage to hydrodynamics” from 12-dimensional space of two particles was found in 
[9,7]. The formalism of this method allows hydrodynamic equations to be derived with an arbitrary number of principal 
hydrodynamic values. Hydrodynamics formulated on the basis of pair distribution functions  moments can appropriately be 
called multimoment hydrodynamics. In [7], multimoment hydrodynamics equations were constructed using seven principal 
hydrodynamic values. Just these seven principal hydrodynamic values are measurable moments and determined by the 
one-particle distribution function. In conformity with continuity and unlimited deformability principles [5], multimoment 
hydrodynamics equations [7] are suggested for use for any continuous medium state rather than for the rarefied gas state 
only. 

Pair distribution functions ( , , , )app

pf t x G v  and ( , , , )div

pf t x G v  are specified in [9], where G  is velocity of the 

center of mass of pair of particles, and v  is relative velocity of pair of particles. Heuristic derivation of a set of equations for 

pair distribution functions ( , , , )app

pf t x G v  and ( , , , )div

pf t x G v  was given in [10]. In [9,11], equations for pair distribution 

functions were derived directly from the fundamental statistical mechanics concepts. Functions ( , , , )app

pf t x G v  and 

( , , , )div

pf t x G v  evolve with progressive direction of timing along the time axis pointing from the past to the future. 

 The lower moments of the pair distribution functions are the local density of the number of pairs ( , )Gn t x , the mean 

velocity of the centers of mass of pairs ( , )G tU x , the ( , )G

ijP t x  tensor of stresses created as a result of movement of the 

centers of mass of pairs of particles, the ( , )v

ijP t x  tensor of stresses created because of relative movement of pair particles, 

the ( , )G tq x  heat flux vector corresponding to the transfer of thermal energy because of movement of the centers of mass 

of pairs of particles, ( , )v tq x  and ( , )Gv tq x  the and heat flux vectors corresponding to thermal energy transfer because of 

relative movement of particles in pairs. Along with ( , )G

ijP t x  and ( , )v

ijP t x  let us determine small stress tensors ( , )G

ijp t x  

and ( , )v

ijp t x , and ( , )Gp t x  and ( , )vp t x  pressure, and ( , )GT t x  and ( , )vT t x  temperature, 

G G G
p n kT ,

v G v
p n kT . The lower moments of the pair distribution functions are determined in [7]. The set of seven 

hydrodynamic values, namely, ( , )Gn t x , ( , )G tU x , ( , )Gp t x , ( , )vp t x , ( , )G

ijp t x , ( , )G tq x , and ( , )v tq x , is a set of 

the principal hydrodynamic values. The lower moments ( , )v

ijp t x  and ( , )Gv tq x  are the non-principal hydrodynamic 

values. 

The relations between the one-particle distribution function and the pair distribution functions [7] can be used to find a 
relation between the one-particle distribution function and the pair distribution functions moments, 
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Gnn          

GU U                  
1 1 1 1

2 2 2 2

G v G v
p p p T T T                              (2.1) 

     

1 1

2 2

G v

ij ij ijP P P 
             

1 1

2 2

G v

ij ij ijp p p 
         

       
1 5

2 6

G v Gv  q q q q                                            

Derivation of conservation equations determining seven moments of the pair distribution functions is given in [7]. 
Expressions for non-principal hydrodynamic values are represented in [7] also. In [12,13], this set of multimoment 
hydrodynamics equations is reduced to a closed set of nonlinear differential equations of the nth order for dimensionless 

coefficients ˆ ( )iС t :  

                                         1

ˆ
ˆ ˆ= ( ,..., )i

i n

С
F С С

t




       1,...,i n                               (2.2)                                                                              

Let 
( )ˆ
iС 

 be a stationary  -solution to the set (2.2), 
( )ˆ ( )iС t  is a fluctuation of the solution 

( )ˆ
iС 

, and 

( ) ( ) ( )ˆˆ ˆ( ) ( )i i iС t С С t
   . The coefficients 

( )ˆ ( )iС t


make it possible to calculate the distributions of the hydrodynamic 

values (2.1).   

Superscript * marks the pair distribution functions 
* *( , , , )app

pf t x G v  and 
* *( , , , )div

pf t x G v , which evolve with 

progressive direction of timing along the time axis pointing from the future to the past. The set of reverse equations for pair 

distribution functions 
* *( , , , )app

pf t x G v  and 
* *( , , , )div

pf t x G v  was derived in [8,14].  

Reverse multimoment hydrodynamics equations can be derived from equations for pair distribution functions 
* *( , , , )app

pf t x G v  and 
* *( , , , )div

pf t x G v  within the formalism of [7]. It turned out that the form of the resulting equations 

of conservation is invariant with respect to the direction of the time axis. Principal hydrodynamic values, namely, 
* *( , )n t x ,

*( , )t*
U x ,

* *( , )Gp t x ,
* *( , )vp t x , 

* *( , )G

ijp t x ,
* *( , )G tq x , and 

* *( , )v tq x , are the moments of the reverse 

pair function 
* *( , , , )app

pf t x G v  and 
* *( , , , )div

pf t x G v . Expressions for the reverse moments are identical to expressions 

for the moments of the direct pair functions ( , , , )app

pf t x G v  and ( , , , )div

pf t x G v  presented in [7]. However, expressions 

for the non-principal hydrodynamic values from [7] undergo transformations. Namely, the reverse multimoment 

hydrodynamics equations give the expressions for the stress tensor 
* *( , )v

ijp t x  and heat flux vector 
* ( , )Gv t*

q x  differ from 

their counterparts stemming from the direct multimoment hydrodynamics equations by their sign [8,14].  

In [12], the reverse multimoment hydrodynamics equations are reduced to a closed set of nonlinear differential 

equations of the nth order for dimensionless coefficients 
*ˆ ( )iС t :  

                                         

*
* *

1

ˆ
ˆ ˆ= ( ,..., )i

i n*

С
F С С

t




       1,...,i n                               (2.3)                                                                              

Let 
*( ) * *( ) *( ) *ˆˆ ˆ( ) ( )i i iС t С С t
    be  -solution to the set (2.3).   

Superscript 


 marks the pair distribution functions ( , , , )app

pf t 
x G v  and ( , , , )div

pf t 
x G v , which evolve with 

regressive direction of timing along the time axis pointing from the past to the future. In [8,14], we failed to derive a set of 

equations for pair distribution functions ( , , , )app

pf t 
x G v  and ( , , , )app

pf t 
x G v . However, solutions to the reverse 

equations for pair distribution functions 
* *( , , , )app

pf t x G v  and 
* *( , , , )div

pf t x G v , and reverse multimoment 

hydrodynamics equations they yield are also applicable to interpret observed system evolution with regressive timing along 
the time axis pointing from the past to the future. 

Local pair entropy ( , )pS t x  is specified in [13]. The ( , )pS t x  entropy is defined in terms of pair distribution function 

labeled by app superscript: 
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      ( , ) ( , , , ) ln ( , , , )app app

p p pS t k f t f t d d  x x G v x G v G v     ( ) ( , )p pS t S t d  x x               (2.4) 

In [13], when deriving equations of entropy conservation, we reasoned from the concept of a Gibbs ensemble of 
systems. When modeling an individual system, each hydrodynamic value in the equations of conservation should be 
supplemented with its fluctuation component [15]: 

                

( )

( ) ( )

EX IN

( )
( ) = ( )

p

p p

S t
+ S t S t

t



 


 


      
( ) ( ) ( )( ) ( ) ( )p p pS t S t S t                     (2.5) 

The 
( ) ( )pS t

 function characterizes the ensemble of systems as a whole. The 
( ) ( )pS t  function is fluctuation of the  

( ) ( )pS t
 pair entropy. Here, superscript ( )α  corresponds to the α -solution to the multimoment hydrodynamics equations 

(2.2). In accordance with (2.5), evolution of the 
( ) ( )pS t

 pair entropy is defined by two factors, by the 
( )

IN ( )pS t  entropy 

production in the system and the 
( )

EX ( )pS t  entropy outflow through the surface confining the system. The 
( ) ( )pS t

 

entropy conveys the meaning of volume occupied by the system in the Г-space [13]. The study undertaken in [13] has 
revealed that the local pair entropy can only be produced in the system due to binary collisions at any space point x  and at 

any instant t , 
( )

IN ( , ) 0pS t x . Thus, at any instant binary collisions merely rise the pair entropy of the system, 

( )

IN ( ) 0pS t  . 

Let us restrict consideration exclusively to entropy fluctuations with 
( ) ( ) 0pS t  . The reason for this “asymmetry” is 

considered in [13]. The principle according to which an open system retains (or loses) its stability is formulated as follows.    

An open system with time-independent boundary conditions has a stable stationary  state with entropy 

( )

pS 
 while entropy production in it exceeds entropy outflow through the surface confining the system for 

( ) ( ) 0pδS t    

                    
( ) ( ) ( )

IN EX[ ( ) ( )] 0, 0, ( ) 0p p pS t S t t for S t                             (2.6) 

 

As soon as the parameters characterizing the system reach the values, at which inequality (2.6) fails, the 
stationary  state of the open system becomes unstable. 

The principle originally formulated for open system with time-independent boundary conditions can be expected to the 

case of open systems with time-dependent boundary conditions. Generally, entropy 
( )( )pS t

 corresponding to an ensemble 

of systems may not be reckoned as stationary value. That is why, generally, the stability principle is formulated in terms of 

excess of the entropy production 
( )

IN ( )pS t  and excess of the entropy outflow 
( )

EX ( )pS t  . 

The  state with entropy 
( ) ( )pS t

 of an open system remains stable while the excess of entropy production 

generated in the system exceeds its excess of outflow through the surface confining the system for 
( ) ( ) 0pδS t    

                    
( ) ( ) ( )

IN EX[ ( ) ( )] 0, 0, ( ) 0p p pS t S t t for S t                               (2.7) 

As soon as the parameters characterizing the system reach the values, at which inequality (2.7) fails, the 
 state of the open system becomes unstable. 

Inequality (2.6) for systems with time-independent boundary conditions is reduced to inequality (2.7). However, the 
stability principle for stationary states (2.6) seems to be more “transparent”.  

In accordance with the principle of retention and loss of stability (2.7), in an open unstable system, any entropy 

fluctuation 
( )

( = 0) < 0pδS t


 begins to grow. In particular, for a system with time-independent boundary conditions 
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( ) ( )

( )
( ) ( )

0 ( = 0) < 0
p p

p

δS t S t
for   δS t

t t

 


 


 

                 (2.8) 

Based on the expression (2.8), we formulated the criterion of evolution of an open system with lost stability [16,17]:  

An open unstable system with time-independent boundary conditions, takes a direction of evolution that 
provides the most rapid decrease in entropy.  

Namely, of the two directions of development of the instability, having the same values of the entropy at the time 

0=t t , fluctuations find such a direction that is characterized by lower value of the derivative of entropy: 

                                           
0 0

( ) ( )
( ) ( )

 
p p

t t t t

S t S t

t t

 

 

 

 
                              (2.9) 

wherein 

                                             0 0

( ) ( )
( ) = ( )   p t t p t t   S t S t

 

 
 

                                       

( ) ( )
( = 0) < 0 ( = 0) < 0p pfor   δS t δS t

 
 

That is, at the time 
0

0t t  , the system takes the α-direction, for which the derivative of the entropy with respect to 

time has a lower value compared to the respectively derivative for the β-direction. 

Let us consider the case of equality of derivatives. Then, of the two directions of development of the instability, having 

the same values of the entropy and entropy derivative at the time 0=t t , fluctuations find such a direction that is 

characterized by lower value of the second derivative of entropy: 

                                        
0 0

2 ( ) 2 ( )

2 2

( ) ( )p p

t t t t

S t S t

t t

 

 

 


 
                            (2.10) 

wherein 

                 
0 0 0 0

( ) ( )

( ) ( )
( ) ( )

( ) = ( )   ,    
p p

p t t p t t t t t t

S t S t
   S t S t

t t

 

 

   

 

 


 

                                       

( ) ( )
( = 0) < 0 ( = 0) < 0p pfor   δS t δS t

 
 

That is, at the time
0

0t t  , the system takes the α-direction, for which the second derivative of the entropy with 

respect to time has a lower value compared to the respectively derivative for the β-direction. 

Local pair entropy 
* *( , )pS t x  is defined in terms of pair distribution function labeled by div superscript: 

 
* * * * * *( , ) ( , , , ) ln ( , , , )div div

p p pS t k f t f t d d  x x G v x G v G v      
* * *( ) ( , )p pS t S t d 

*
x x          (2.11) 

The equation of entropy conservation assumes the form: 

       

*( ) *

*( ) *( )

EX IN*

( )
( ) = ( )

p * *

p p

S t
+ S t S t

t



 


 


      
*( ) * *( ) * *( ) *( ) ( ) ( )p p pS t S t S t                      (2.12) 
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The study undertaken in [13] has revealed that the local pair entropy can only be absorbed in the system due to binary 

collisions at any space point x  and at any instant 
*t , 

*( )

IN ( , ) 0*

pS t x . Thus, at any instant binary collisions absorb 

the pair entropy of the system, 
*( )

IN ( ) 0*

pS t  . 

    3. Entropy interpretation of appearance and development of instability. 

In [12,13,16,17], the multimoment hydrodynamics equations are used to study the phenomena of instability appearance 
and development in problem on flow around a solid sphere at a wide range of Reynolds number values. The study [12,16] 

demonstrated that at small Re  the simplest solution to the multimoment hydrodynamics equations coincides with the 

Stokes solution to the classic hydrodynamics equations. Further, in [12,16], the closed set of nonlinear differential equations 

(2.2) was reduced to a set of 20th order, S20. Numerical integration of this set has revealed stable root 
(0)ˆˆ

i iС С , i = 1, 

…, 20. According to the stationary solution 
(0)ˆ
iС , i = 1, …, 20, an axisymmetric recirculating zone is formed in the wake 

behind the sphere at Re ~20. It expands as Re  grows but its shape remains unchanged. The stationary solution 
(0)ˆ
iС , i = 

1, …, 20, remains stable up to a certain critical value of 
*

0Re 129.1 . 

 Values of the dimensionless pair entropy derivative calculated from the solution 
(0)ˆ
iС , i = 1, …, 20,  at Re  close to 

*

0Re  are plotted at Figure 2. The pair entropy is calculated in the dominant order, 
(0) 4 (0)

0 0( ) = ( )ˆMap pS t kn v S t , where 

3

0v (4 / 3) a , 
2 2

0 0Ma /mU kT , m  is the mass of the particle, 0T  and 0n  are the temperature and the density of 

the unperturbed medium, 0U  is the incoming flow velocity. The characteristic time scale of the problem is 0Re/ 2a U , 

whereas the characteristic spatial scale is the radius of the sphere a . The Reynolds number is calculated from the diameter 

of the sphere: 0 0 0Re 2 / ηmn U a , where 0 0η η( )T is the dynamic viscosity. The details of the calculation are 

represented in [13]. 

As revealed by calculations [13], 
(0)

0
( ) / 0p t

S t t


    at 
*

0Re Re . In this case, in accordance with (2.5), entropy 

production in the system exceeds the entropy outflow through the surface confining the system. Then, in accordance with 

the principle of retention and loss of the open system stability (2.6), the stationary 
(0)ˆ
iС , i = 1, …, 20, solution remains 

stable. Pair entropy derivative 
(0)

0
( ) / 0p t

S t t


    at 
*

0Re Re . That is, after the passage of 
*

0Re , in accordance with 

(2.5), entropy outflow through the surface confining the system begins to exceed the entropy production in the system. Then, 

in accordance with the principle of retention and loss of the open system stability (2.6), the stationary 
(0)ˆ
iС , i = 1, …, 20, 

solution becomes unstable.  

This means that, at 
*

0Re Re , starting from the time 0t  , small axisymmetric fluctuations 
(0)ˆ ( ) 0iС t   of the 

solutions 
(0)ˆ
iС , i = 1, …, 20,  begin to grow exponentially. The fluctuations grow up until a time * 0t t  . At the time 

*t t , the solution 
(0)ˆ ( )iС t  breaks down. Why the solution terminates at *t t  is explained in [12]. 

It turns out that, in the vicinity of the breakdown point, there exists a solution 
*(0) *ˆ ( )iС t , i = 1, …, 20, to the closed set 

(2.3) of 20th order, 
*S 20 . At the time *t t , the solutions 

(0)ˆ
iС  is replaced by the solution 

*(0)ˆ
iС . Further, it appears that, 

by the time *2t t , the solution 
*(0) *ˆ ( )iС t  reaches the neighborhood of the stationary solution 

(0)ˆ
iС , i = 1, …, 20. The 

solution 
(0)ˆ
iС  is unstable. Thus, starting from the time *2t t , small axisymmetric fluctuations 

(0)ˆ ( ) 0iС t   grow. This 

process is repeated periodically [12]. The solution 
(0)ˆ ( )iС t  exists within *0 t t  . The solution 

*(0) *ˆ ( )iС t  exists in the 

range * *2t t t  .  Time t  is reckoned in progressive direction along the time axis pointing from the past to the future. 
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Time 
*t  is reckoned in progressive direction along the time axis pointing from the future to the past. Let us agree upon the 

origin and put 
*

*t t  for the moment of time *t t . 

Designate the solution 
(0)ˆ ( )iС t ,

*(0) *ˆ ( )iС t , i = 1, …, 20, as 0Sol . According to the 0Sol  solution, after the attainment 

of 
*

0
Re Re , the periphery of the recirculating zone begins to pulsate periodically. Pulsating periphery demonstrates the 

absence of slightest indications of detachment from the core of the recirculating zone. As a consequence, there is no vortex 

street in the far wake behind a sphere. So, the 0Sol  solution does not describe a vortex shedding. 

The studies [16,17] are devoted to finding solutions to the multimoment hydrodynamics equations, which enable to 
interpret the phenomenon of vortex shedding. In [16,17], we obtain a closed set of nonlinear equations of the twenty-second 

order S22 for the coefficients ˆ ( )iC t , 1,..., 22i  .  It turned out that, in the investigated range of Re , of great many 

solutions to the set S22, only two solutions correspond to such an pair entropy value that allows these solutions to compete 

with the solution 0Sol . We denote the solution 
(1)ˆ ( )iС t , 1,..., 22i  , as 1Sol , and the solution 

(2)ˆ ( )iС t , 1,..., 22i  , 

as 2Sol . Both the 1Sol  solution and the 2Sol  solution describe a vortex ring behind the sphere moving downstream. 

Figure 3 shows the time dependence of the dimensionless pair entropy 
(0)

( )pS t  calculated from the 0Sol  solution at Re 

= 400. The details of the calculation are represented in [16,17]. Beginning from the time 0t =  up to the time t = t
*

, the 

entropy decreases permanently. This behavior of the entropy corresponds to the receding of the state of a system that lost 

stability from the state of statistical equilibrium. At the time t = t
*

, the 0Sol  solution to the multimoment hydrodynamics 

equations breaks down. The movement of the representative point over the curve (Figure 3) from t = t
*

 to 2t = t
*

 

corresponds to the return of the recirculating zone to its original position, i.e., the position corresponding to the time 0t = . 

Since the time t = t
*

, the movement of the representative point is described by the reverse multimoment hydrodynamics 

equations. The reverse set of equations (2.3) is solved with progressive timing along the time axis. The positive direction of 
this time axis runs from the future to the past. However, the solutions to the reverse set of equations (2.3) may be used to 
interpret evolution with regressive direction of timing along the time axis pointing from the past to the future (Figure 3): 

                                        
*(0) * (0)ˆ ˆ( ) ( )i iC t C t                                                   (3.1) 

The solution 
*(0) *ˆ ( )iС t  exists in the range 

*

* *2t t t  . The connection between times on the different time axes is 

* 2
*

t t t    . The distribution of the hydrodynamics values (2.1) involved in the expressions for 
(0)

( )pS t  and 
*(0)

( )
*

pS t  

are conjugated with the coefficients 
(0)ˆ ( )iC t  and 

*(0) *ˆ ( )iC t  1,...,20i   [16], then,  

                            
*(0) * (0)( ) ( )p pS t S t         

*(0) * (0)

*

( ) ( )p pS t S t

t t

 



 
 

 
                           (3.2) 

The regressive timing order along the time axis pointing from the past to the future is represented on the axis beneath 

the abscissa in Figure 3 ( 2
*

t t t     within 2
* *
t t t  ). The 

(0)
( )pS t  pair entropy exists in the range 0

*
t t  , 

whereas the 
+(0)

( )
+

pS t  pair entropy, within 0
*

t t  , or 2
* *
t t t  .  

In accordance with symmetry properties of solutions to sets (2.2) and (2.3) [12,16], at any moment of time 0t t  within 

00
*

t t  , there exist the relationships: 

                                       
*

0 * 0 0

(0) *(0) * (0)

2

ˆ ˆ ˆ( ) ( ) ( )i i i
t t t t t t t

C t C t C t


 

   
                             (3.3) 

 



ISSN 2347-3487                                                           

2496 | P a g e                                                            J u l y  2 1 ,  2 0 1 5  

Relationships (3.3) between the coefficients 
(0)ˆ ( )iC t 

, 
*(0) *ˆ ( )iC t , and 

(0)ˆ ( )iC t  for any moment of time 0t  within 

00
*

t t   give: 

                                     
(0) *(0) +(0)

*
0 * 0 0

( ) ( )
2

( )*

p p pt t t t t t t
S t S t S t  

   
  

                                                                                                                                    (3.4) 

                                     

(0) *(0) +(0)

*
0 * 0 0

( ) ( )

2

( )*

p p p

* +

t t t t t t t

S t S t S t

t t t





  

   

  

  
 

Function 
(0) (0)( )pS t t  is a portion of the pair entropy 

(0)
( )pS t , which specifies the behavior of the entropy in the 

neighborhood 
(0)

*
t t  of the point of solution breakdown, t = t

*
 : 

                                        
(0) (0) (0)( ) = ( )p pS t S t t                                                           (3.5)   

The curve 1 in Figure 4 specifies the time behavior of the pair entropy derivative calculated from the solution 0Sol , 

which describes recirculating zone in the wake behind a sphere. The details of the calculation are represented in [16,17]. 

The curve 2 in Figure 4 specifies the combination of the solutions 0Sol  and 1Sol . In this combination the 0Sol  solution 

describes the core of the recirculating zone in the near wake and the 1Sol  solution describes the periphery of the 

recirculating zone and the far wake.  Curves 1 and 2 intersect at a restructuring time of 
1

t = t . After the attainment of the 

time 
1

t = t , the 0Sol  solution is replaced by the combination of the solutions 0Sol  and 1Sol . The reason for the 

replacement is that the combination of the solutions 0Sol  and 1Sol  becomes more preferable in comparison with the 0Sol  

solution. The combination of the solutions 0Sol  and 1Sol  provides a sharper drop in the entropy in the course of evolution 

than the 0Sol  solution does. The criterion (2.10) dictates the choice of the direction of development that is given by 

combination of the solutions 0Sol  and 1Sol . The movement of the representative point over the curve 1 up to 
1

t = t  is not 

accompanied by rearrangement of the flow. The behavior of the flow at 
1

t < t  corresponds to the criterion (2.9). Starting 

from the restructuring time of 
1

t = t , the periphery of the recirculating zone separates from its core, moving downstream in 

the form of a vortex ring. This process is repeated periodically [16,17]. 

   4. Results and discussion. 

According to the experimental data, at Re ~  10–20, a steady toroidal recirculating zone arises in the near wake behind 

the sphere formed 0 ( )exp
U x , which increases in size with increasing Re . After reaching the first critical value of the 

Reynolds number 
*

0Re , the recirculating zone periphery begins to pulsate periodically. During pulsations, the front side of 

the recirculating zone is strictly attached to the surface of the sphere. The pulsing flow 0 ( , )exp tV x  remains axisymmetric. 

With the growth of Re , pulsations become more pronounced, and their amplitude increases. After passing the second 

critical value of 
**

0Re , the periphery of the recirculating zone begins periodically separate from its core, moving downstream 

in the form of a vortex ring. Vortex rings recede downstream from the sphere, keeping a noticeable distance from each other 

(the 0 ( , )exp tW x mode). Achieving the third critical value of 
***

0Re  is accompanied by an instantaneous change in the mode 

of vortex shedding from the sphere. The frequency of vortex shedding increases, while the gaps between the vortex rings 

disappear. Vortex rings penetrate one another, forming a continuous vortex sheet 0 ( , )exp tQ x  in the wake behind the 

sphere.  
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The stationary axisymmetric solution 0Sol  to the set of multimoment hydrodynamics equations satisfactorily 

reproduces the steady flow 0 ( )exp
U x  around the sphere. Upon reaching 

*

0Re , the solution 0Sol  loses stability. The first 

unstable flow 0 ( , )exp tV x  around the sphere is satisfactorily described by the unstable axisymmetric solution 0Sol . Upon 

reaching 
**

0Re , the solution 0Sol  for the periphery of the recirculating zone and in the far wake is replaced by the solution 

2Sol , which describes a vortex ring moving downstream. The reason for the replacement is that the combination of 

solutions 0Sol  and 2Sol  provides a sharper drop in the entropy in the course of evolution than the solution 0Sol  does 

[16,17]. The combination of the solutions 0Sol  and 2Sol  describes the vortex shedding mode 0 ( , )exp tW x . At 

***

0Re Re , the solution 2Sol  at the periphery of the recirculating zone and in the far wake behind the sphere is replaced 

by the solution 1Sol , which also describes a vortex ring moving downstream. The reason for the replacement is that the 

combination of solutions 0Sol  and 1Sol  provides a sharper decrease in the entropy in the course of evolution than the 

combination of the solutions 0Sol  and 2Sol  does [16,17]. The combination of the solutions 0Sol  and 1Sol  describes the 

vortex sheet 0 ( , )exp tQ x . 

The multimoment hydrodynamics confirms the ideas of experiment on unstable nature of the phenomenon of vortex 

shedding. The crossing of the first critical Reynolds number value 
*

0Re  is accompanied by the stability loss. The system 

loses its stability when entropy produced in the system can not compensate entropy outflow through the surface confining 
the system. Such interpretation follows directly from the principle of retention and loss of the open system stability formulated 
in Section 2. In accordance with solutions to the multimoment hydrodynamics equations, the system, when loses its stability, 
remains further unstable. One unstable flow is replaced by another unstable flow as Re grows. The replacement of one 
unstable regime by another is governed the tendency of the system to discover the fastest path to depart from the state of 
statistical equilibrium. This striving follows directly from the evolution criterion formulated in Section 2. 

Since the time of L.Boltzmann, the responsibility for directing the evolution of the system rests with the initial conditions 
realized in the system, namely the set of initial values of the coordinates and velocities of all particles. For a given mutual 
arrangement of the particles, the system evolves in the direction that we see everywhere and every second. However, there 
are such arrangements of particles that direct the system in an extremely unlikely, rarely realized direction. 

The pair entropy corresponding to the direct equations for pair distribution functions and the multimoment 
hydrodynamics equations they lead (2.2) can only be produced in the system due to binary collisions at each time point, 

IN ( ) 0pS t   [13]. Such behavior of the entropy is in full accordance with the second law of thermodynamics [6]. The 

solutions to the direct multimoment hydrodynamics equations describe the direction of evolution of the system that is 
everywhere and every second is found in nature. The pair entropy corresponding to the reverse equations for the pair 
distribution functions and the reverse multimoment hydrodynamics equations they yield (2.3) can only be absorbed in the 

system due to binary collisions at each time point, 
*( )

IN ( ) 0*

pS t  . The solutions to the reverse multimoment 

hydrodynamics equations describe the evolution of the system in the opposite direction, which, as is commonly believed, is 
extremely rare in nature. The direct multimoment hydrodynamics equations are valid for the progressive direction of timing 
on the time axis pointing from the past to the future. The reverse multimoment hydrodynamics equations are valid for the 
progressive direction of timing on the time axis pointing from the future to the past. [8,14].  

In [8,14], we failed to derive the reverse set of equations for pair distribution functions, which evolve with regressive 
direction of timing along the time axis pointing from the past to the future. As a consequence, we failed to rewrite the set of 
reverse multimoment hydrodynamics equations (2.3) and the reverse equation of entropy conservation (2.12) for regressive 
direction of timing along the time axis pointing from the past to the future. However, solutions to the reverse equations (2.3) 
and (2.12) are applicable to interpret observed system evolution with regressive timing along the time axis pointing from the 
past to the future. In [16,17] we used the same notation both for progressive timing on the time axis pointing from the future 
to the past and for regressive timing on the time axis pointing from the past to the future. This imprecision makes it difficult to 
understand the interpretation [16,17] of the calculation results. Relationships (3.1-3.4) help to resolve these difficulties. 

At one time, L.Boltzmann, defending his point of view in disputes with opponents, suggested that exclusive conditions 
that guide the system in a highly unlikely direction arise very rarely. Apparently, Boltzmann’s assumption is correct for a 
weak deviation of the system state from the state of statistical equilibrium. However, after crossing the border of the 
instability field, exclusive conditions arise with periodic regularity. This regularity manifests itself in each of the three unstable 

solutions that reproduce the flows 0 ( , )exp tV x , 0 ( , )exp tW x , and 0 ( , )exp tQ x . 

The tendency of an unstable physical system to find the fastest way to recede from the state of statistical equilibrium 

does not lead the system to disintegration. At the time 
*

t t , the entropy stops decreasing. The multimoment 
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hydrodynamics equations are unable to provide solutions that would continue to divert the system from the state of statistical 

equilibrium. At the time 
*

t t , solution to the multimoment hydrodynamics equations is replaced by solution to the reverse 

multimoment hydrodynamics equations. Reverse solution changes the direction of evolution and guides the system to the 
state of statistical equilibrium. Time intervals during which the system moves away from the state of statistical equilibrium are 
periodically followed by intervals within which the system tends to equilibrium. It is this periodicity that permits to interpret 
vortex shedding, a graphic example of periodic unstable phenomena. 
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Figure 1. Three stable medium states originating three turbulence development directions for flow past a sphere. 

The lower branch corresponds to the evolution of ground stationary axisymmetric flow 0 ( )exp
U x : 

*

0 0Re Re ( )exp U x ; 
* **

0 0Re Re Re  , periodic pulsations of the axisymmetric recirculating zone in the wake 

behind a sphere 0 ( , )exp tV x ; 
** ***

0 0Re Re Re  , vortex ring shedding along a spiral path 0 ( , )exp tW x ; and 

***

0Re Re , helicoidal vortex sheet 0 ( , )exp tQ x . The middle branch corresponds to the evolution of stable steady 

non-axisymmetric flow 1 ( )exp
U x : 

*

1 1 1Re Re Re ( )exp  U x ; 
*

1Re Re , periodic horseshoe-shaped vortex 

loop shedding along a rectilinear path 1 ( , )exp tV x . The upper branch corresponds to the evolution of a stable 

central-type state 2 ( , )exp tU x : 
*

2 2 2Re Re Re ( , )exp t  U x ; 
* **

2 2Re Re Re  , periodic horseshoe-shaped 

vortex loop shedding along one of the double undulated thread branches 2 ( , )exp tV x ; and 
**

2Re Re , periodic 

vortex loop shedding along both double undulated thread branches 2 ( , )exp tW x , or periodic vortex ring shedding 

2 ( , )exp tQ x . 
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Figure 2.  Pair entropy derivative 
(0) (0)ˆ ˆˆ ˆ/ /p pS t S t      as a function of Re, 0

*Re 129.1 . The curves 

correspond to 
(0) 4ˆ ˆ( ( ) / ) 10pS t t   .  
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Figure 3. Time behavior of the pair entropy 
(0)ˆ ( )pS t , 

+(0)ˆ ( )
+

pS t , Re = 400, t̂
*

= 6.99. 
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Figure 4. Time dependence of the entropy derivative 
( ) (0)ˆ ˆ( )/
i

pS t - t t  , 0,1i  . The 
(0) (0)ˆ ˆ( )/pS t - t t   

function is represented by curve 1. The 
(1) (0)ˆ ˆ( )/pS t - t t   function is represented by curve 2,  Re = 400, 

(0)
t̂  = 6.95.  The time of restructuring is 

(0)

1
ˆ ˆt t + 0.036.  

 


