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ABSTRACT 

The internal gravity wave tunnelling in presence of earth‟s rotation is studied for different density barriers. An exponential 
approximation used reveals the existence of evanescence in the barrier region which signifies the trapping of wave energy 
in the tunnelling region. The Transmission coefficients are computed for different density barriers and the comparative 
study shows that across the locally mixed region the transmission is enhanced. The asymptotic analysis of the 
transmission co-efficient using the rotational parameter reveals the convergence and the graphs shows that the 
transmission decreases continuously and leads to the non-rotating case. The results are compared with the non-rotational 
case and we observe that the evanescence caused by the rotation makes the waves travel more along the horizontal 
direction than in the vertical direction. 
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1. Introduction 

Gravity waves in the atmosphere provide significant and important dynamic coupling between horizontally and vertically 
separated atmospheric regions. Even under ideal (windless and inviscid) conditions, upward propagation through 
exponentially decreasing atmospheric density will result in exponential increase in wave velocity perturbations, conserving 
kinetic energy with altitude [1]. Understanding the local propagation characteristics of gravity waves is very important, 
because under certain conditions, gravity waves are able to transport energy and momentum vertically, and under other 
conditions they can be trapped (ducted), confining the major flow of wave energy and momentum to a limited range of 
altitude, and allowing long-range horizontal propagation [2]. Gravity waves propagate in the vertical direction when the 
vertical wavenumber is real and the magnitude of intrinsic frequency is less than the Brunt-väisälä frequency, N, and they 
become evanescent when the vertical wavenumber is imaginary and the intrinsic frequency exceeds the Brunt-väisälä 
frequency, N [3]. 

Earlier studies of gravity wave trapping was confined to three mechanisms namely variation in atmospheric 
structure [4], the variation in dissipation ([5], [6],[7]) and the variation in the background wind [8]. In this paper we provide 
an analytic prediction for the transmission co-efficient of internal gravity waves crossing a region in which is reduced 
(weakly stratified region). The results of this paper are of atmospheric, climatic and biophysical importance. An analytic 
theory for nonhydrostatic internal wave tunnelling through a weakly stratified fluid layer was derived by Sutherland and 
Yewchuk [9] and in this paper we study the effect of rotation. The transmission co-efficient of an internal gravity waves in 
the presence of rotation crossing over a barrier is computed and the effect of rotation on the transmission co-efficient is 
studied. We have also analysed at the large and small-time behavior associated with the rotational parameter which is 
inherent in the transmission of the internal gravity waves. 

2.  Mathematical Formulation 

We study the wave tunnelling in a non-conducting fluid in presence of earth‟s rotation  with vertical density stratification 
and the transient disturbance produced by temporary extraneous forces which is horizontally and temporally periodic in 
the form: 

                                     tylxkizftzyxf  expˆ,,,              (1) 

It may be shown that with these assumptions along with the well defined horizontal wave number  0k   and phase 

velocity k  , the vertical disturbance velocity, ŵ  satisfy the following linearized equation:    
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Here, the stratification of the mean flow is described in terms of a single parameter which may vary with z , the Brunt-

väisälä frequency N ,  defined by
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and the rotation of earth  is described by the parameter  . 

The solution of the equation (2.2) is given by 

      ˆ i z i zw Ae Be    ,                                                   (3)  
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2 2 2l k    ,  A and B  are arbitrary constants. The vertical wave number for 

2z L , it is defined to be negative so that the incident wave and transmitted wave propagate upward. We seek to 

interpret these solutions as upward or downward propagating waves [10]  in the following subsection which plays a 
significant role in understanding tunnelling, transmission and reflection of waves in the presence of weakly stratified 
regions. 

 3.  Transmission across a barrier of density stratification 

We study this for the following cases of  density stratification: 

(i) Uniform density fluid of finite depth 2 2L z L     sandwiched on either side by a stratified fluid extending 

to infinity, called 
2N -barrrier1.  
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(ii) Weakly stratified fluid of finite depth 2 2L z L     sandwiched on either side by a stratified fluid 

extending to infinity with density discontinuity at the two interfaces, called 
2N -barrrier2. 

(iii) Weakly stratified fluid of finite depth 2 2L z L     sandwiched on either side by a stratified fluid 

extending to infinity with density being continuous at the interfaces, called locally mixed region. 

Transmission across each of these barriers is described in the following subsections. 

 

FIGURE 1.  Schematic representation of the system (
2N -barrier1) 

3.1 Transmission across the 2N -barrier1  

In this case we have a fluid of uniform density of finite depth L bounded on either side by a stratified non-conducting fluid 
extending to infinity. We assume 
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This is called  „
2N -barrier1‟ of  depth L as shown in figure 1. Now the solution of (2) can be written as 
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,  is the well defined horizontal wave 

number,   N  is the wave frequency and we assume 2   . We determine the transmission coefficient  

2

3 1A A  by using the boundary conditions at the interface 2z L    requiring that the vertical velocity and pressure 
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are continuous [11] at each of the interfaces. For a fluid with zero mean flow this amounts to requiring pressure and 
velocity are continuous across each of the interfaces. Applying these boundary conditions to the solution (3) we get a 

system of four linear equations and solving for transmitted amplitude 3A , in terms of the incident amplitude 1A , gives a 

transmission coefficient 
2

3 1rT A A , which represents the fraction of energy transported across 
2N -barrrier1 and is 

given by 
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 .                                      (6) 

Equation(2) obtained coincides with the result obtained by [9] for a non-conducting fluid. We note that rT   given by (3.3) is 

a function of  .  The maximum value of rT   at  0  is given by 

We note that rT  decreases and becomes zero when 2   and from    we find that when 2   the vertical 

wave number  tends to    the system becomes evanescent. Thus the effect of rotational parameter is to make the 

wave  propagate horizontally rather than allow it to propagate upwards.  We have plotted the graph of rT  against   in 

figures 2 for various values of  0N  and    and we find that as    increases rT  decreases continuously and becomes 

0  when 2  .   
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FIGURE 2.  (a) Variation of transmission coefficient rT  with   for   02 N   for 2 390  , 5L  ,

2 15k   (b) Variation of Transmission coefficient rT  with    for   02 N   0 0.0005N  , 2 15k   

5L  (c) Asymptotic expansion of transmission coefficient rT for small  (d) Asymptotic expansion of 

transmission coefficient rT for large   
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The variation of the transmission coefficient 
rT   in terms of 

2  for 1   using asymptotic expansion is in 

the form 
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sT  corresponds to the transmission coefficient in the absence of magnetic field obtained by Sutherland and Yewchuk [9] 

with l  being zero.  In the above expansion the coefficient of 
2  is negative when 0N  . Thus when 0N   ,

 r small
T


 decreases continuously. In the limit 0 , the transmission coefficient   r ssmall

T T
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 .  The variation of 

the transmission coefficient rT  with    in terms of 
2  for 1   using asymptotic expansion is in the form.  
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In the limit  , the transmission coefficient   
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 .   

3.2 Transmission across the 2N  -barrier2 

In the second case we assume a weakly stratified fluid of finite depth L bounded on either side by a strongly stratified fluid 
extending to infinity on either side.  In this case we have  
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This is called  „
2N -barrier2‟ of depth L. With this the solution of (2) takes the form 
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boundary conditions are used at the interface 2z L  , since the vertical velocity and pressure being continuous 

across the interface.  The transmission coefficient is given by 
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rbT  in (12) reaches  the transmission obtained by Sutherland & Yewchuk [9] for 
2N -barrier2 for a  non-rotating case.   In 

the limit 
1 0N    (12) reduces to the transmission coefficient (6) obtained for  

2N -barrier1 in section 3.1. 

The variation of 
rbT  with   is discussed below based on the vertical wave numbers  (in the region 2z L ) 

and  ( in the region 2z L )  are real or imaginary. Here we discuss the case in which  and   are real. From the 

expressions for  and   we have shown that  for   to be  real  0N  and  2    and   to be real  1N    and 

2     for  we  have assumed that  01 NN  .  Since   and   are real we have vertically propagating waves in   

the region 2z L   and evanescent waves in the region 2z L .  This is similar to the waves that exist in these 

regions in 
2N -barrier1 considered in section 3.1. We have plotted the graph of rbT  against   in figures 3.   

 

FIGURE 3.  (a) Variation of transmission coefficient rT  with   for   2    and 2 390  , 2 15k  ,

5L  , (b) Variation of transmission coefficient rbT  with   for   02 N   0 0.0004N  , 2 15k  , 5L   (c) 

Asymptotic expansion of transmission coefficient rT for small  (d) Asymptotic expansion of transmission 

coefficient rT for large  . 

In figure3  we find that the variation rbT  with   is similar to that of 
2N -barrier1 in section 3.1. As   increases 

from 0 , rbT  decreases to zero.   The variation of the transmission coefficient rbT  in terms of 
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                                                                                                                                                     ( 13) 
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The variation of 
rbT  with small values of   depends on the coefficient of  

2  in (13).  If the coefficient is 

positive rbT  increases with   and if it is negative it decreases with  .  From the coefficient of 
2  we find that its sign 

depend on the sign of    2 2 2 2

0 1and N N    which are always positive since we have considered  

01 NN  . In the limit 0  its value coincides with that obtained in the case of  Sutherland  and Yewchuk [9].  

In figure 3 we find that as   increases from 0, rbT  increases and reaches maximum and becomes zero 

instantaneously. The variation of the transmission coefficient rbT  in terms of 
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In the limit  , the transmission coefficient   
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3.3 Transmission across locally mixed region 
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where ,01 NN   requiring velocity and pressure to be  continuous across the interface we compute the 

transmission coefficient in the  case  is given by: 
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In the  limit 0   rmixT  in (17) reduces to non-conducting fluid results of  Sutherland & Yewchuk [9]. From (17) we 

note that rbT  varies with  .  The variation of rbT  with   is discussed below based on the vertical wave numbers  (in 

the region 2z L ) and  ( in the region 2z L ) are real or imaginary and we consider the following case for    

aanndd       rreeaall from the expressions for   and  . We have shown that  for   to be  real  when 0N  and  2  and 

  to be real  when 1N    and 2      for  we  have assumed that  01 NN  .  Since   and   are  real we 

have vertically propagating waves in   the region 2z L   and evanescent waves in the region 2z L .  This is 

similar to the waves that exist in these regions  in 
2N -barrier1 considered in section  3.1. The transmission coefficient is 

given by (17). However we have plotted the graph of rmixT  against   in figure 3  when 2   .  

 

FIGURE 4.  (a) Variation of transmission coefficient rmixT  with  for   2    2 390  , 2 15k  , 

5L  (b) Variation of transmission coefficient rmixT  with   for   02 N   0 0.0004N  , 2 15k  , 5L 

.(c) Asymptotic expansion of transmission coefficient rmixT for small  (d) Asymptotic expansion of transmission 

coefficient rmixT for large  . 
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From the figure 5(a) we find that the variation rmixT  with   of 
2N -barrier1 in section 3.1. rmixT  reaches maximum at 

0  then decreases zero at 2  .    
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2  for 
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in the form 
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where,   
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, 

In the limit 0  the above equation reduces to the equation obtained in the case of Sutherland (2004). The variation 

of the transmission coefficient rmixT  in terms of 
2  for 

2 1    is in the form 
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       (19) 

where,  In the limit   transmits maximum without any reflection.   

To understand how the transmission coefficient changes from 
2N -barrier1 to 

2N -barrier2 we have plotted 

graphs of rT and rbT  against   and also to understand how the transmission coefficient changes from 
2N -barrier 2 to 

2N -barrier 3 we have plotted graphs of rmixT and rbT  against   in figure 5. 
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FIGURE 5. (a) Comparison of  transmission coefficients rT  and rbT  for 
2N -barrier1 and 

2N -barrier2 for  

1 0.00002N  , 2 15k  , 2 390   5L  . (b) Comparison of transmission coefficients rmixT  and rbT  for 

2N -barrier2 and 
2N -barrier3 for 1 0.00002N  , 2 15k  , 2 390  ,  5L  , 0 0.0004N  .  

From the figure 5(a) we find that the transmission coefficient rbT  is higher for 
2N -barrier2. This is because in region 

2z L  the waves propagate in 
2N -barrier2 and evanescent in 

2N -barrier1.  

From 5(b) we find that the transmission coefficient in 
2N -barrier 3 is higher when    is small and lower when 

  is large.  This is because as   increases gravity waves propagate more and more horizontally (i.e. along the 
direction of the fluid line) rather than vertically.  

  44..      RReessuullttss  aanndd  CCoonncclluussiioonnss  

As we have investigated the internal gravity wave tunnelling through an incompressible, inviscid, Boussinesq, 
non-conducting incompressible fluid for a rotating system.  We have derived the transmission co-efficients (which 

represents the fraction of incident energy transported) analytically for three different 
2N -barriers in sections 3.1, 3.2 and 

3.3.   

In section 3.1 we have obtained the transmission coefficient for 
2N -barrier1. We have shown that the 

transmission coefficient varies with   for various values of 
2
0N , 

2
1N  and 

2 . We have found that the maximum value 

of  rT   is a function of Brunt-väisälä frequency  0N , the wave frequency   but independent of the rotational parameter 

  and  when 0 ,  rT  has obtained the maximum which is evident from figures 2.  As   increases further to 2  

the transmission coefficient decreases to 0.  We also note from expression for   when 2   the vertical wave 

number  tends to   so that the waves become more and more horizontal. Thus the effect of rotational parameter is to 

make the wave to propagate along the fluid lines rather than allow it to propagate upwards.  

 In section 3.2 we have obtained the transmission coefficient for the effect of rotation on the transmission 

coefficient for four different cases have been identified based on the vertical wave numbers  (in the region 2z L ) 
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and  ( in the region 2z L ) defined below (11) are real or imaginary.   In case1, when   and   real we find that the 

variation 
rbT  with   is similar to that in case1 of 

2N -barrier1 in section 3.1. From the figure 5 we find that the 

transmission coefficient 
rbT  is higher for 

2N -barrier2. This is because in region 2z L  the waves propagate in 
2N -

barrier2 and evanescent in 
2N -barrier1. In case 3, when   and   imaginary we find that the variation rbT  attains 

maximum and becomes zero at 2  .  

 In section 3.3 we  find that, the effect of rotational parameter is to make the wave to propagate along the fluid 
lines rather than allow it to propagate upwards which is depicted in graphs. From the figure 5 we find that the transmission 

coefficient in 
2N -barrier 3 is higher when   is small and lower when   is large.  This is because as   increases 

gravity waves wave to propagate along the fluid lines rather than allow it to propagate upwards. The above results 
conclude that rotation accounts for the evancescence the barrier region. 
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