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Abstract

In this paper, we take up a boundary value problem (BVP) from the area of engineering that is described in a
book by L. Collatz. Whereas there, the BVP is cast into a boundary eigenvalue problem (BEVP) having complex
eigenvalues, here the original BVP is transformed into a BEVP that has positive simple eigenvalues and real
eigenfunctions. Further, unlike there, we derive the inverse T = G of the differential operator L associated with the
BEVP, show that T = G is compact in an appropriate real Hilbert space H, expand Tu = Gu and u for all u ∈ H in
a respective series of eigenvectors, and obtain max-, min-, min-max, and max-min-Rayleigh-quotient representation
formulas of the eigenvalues. Specific examples for generalized Rayleigh quotients illustrate the theoretical findings.
The style of the paper is expository in order to address a large readership.
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1 Introduction

In the author’s opinion, it is most important to illustrate general results by applications. Therefore, in this paper, we
take up a boundary value problem described in a book of L. Collatz, namely the damped vibration of a string with
the following characteristic data: length l, string force S, density %, and cross-section area A. However, we make a
series of changes, precisions, and extensions such as follows:

• We introduce different notations

• Instead of l = 1, we admit a general length l

• We formulate the BEVP such that it can be treated by functional-analytic methods

• In the derivation of the solution to the BEVP, we first merely demand that the occurring partial derivatives be
continuous, but later we introduce appropriate function spaces, norms, and scalar products as well as operators
in these spaces.

• Thereby, it will be possible to determine the inverse T = G of the differential operator L pertinent to the BEVP.
And it can be shown that the operator T = G is compact having positive (and thus real) simple eigenvalues
converging to zero.

• This opens the way to obtain expansions of Tu = Gu and u = Pu in series of eigenvectors, where H is an
appropriate Hilbert space and where P is the projection operator onto the geometric eigenspace of T = G

• Additionally, one can derive expansions for (Tu, v) = (Gu, v) and (u, v) = (Pu, v) for u, v ∈ H
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• Based on this, generalized Rayleigh-quotient formulas are derived and tested on specific examples

• In the same way as damped vibrations of a string, also damped torsional vibrations of rods and shafts as well
as the telegraph equation can be treated

Next, we give a table of Contents that contains the sections and subsections handling the above items.
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Now, we make some comments on the individual sections.

For the readers convenience, Sections 2 and 3 recapitulate corresponding sections in [20] and [21], but without proofs.
Section 4 is devoted to the conditions (C1L) - (C5L) for the linear operator L replacing the conditions (C1d) - (C5d)
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in [21] that guarantee the conditions (C1) - (C4) for the inverse operator T = G of L. Sections 5 and 6 make up
the core of the present paper. Whereas in Section 5 the BEVP from the area of engineering is treated in an informal
way, Section 6 shows how the general results of the preceding sections can be applied by using precise conditions and
functional-analytic methods. Finally, Section 7 contains the conclusion. The non-cited references [ 1], [ 3], [ 5], [ 7] -
[15], [17], [19], [22], [23], [25], [27] - [29], [31], [32], [34], and [35] are taken from [21]. They are included here since the
author thinks that they could be of interest to the reader in the context of this paper.

2 Expansion of a Linear Compact Operator and of a Pertinent Projec-
tion Operator in Hilbert Space

Together with Section 3, this section forms a basis for what follows. The statements are taken over from [20], but
most of the proofs are omitted.

(i) The Conditions (C1) - (C4)

We assume the following conditions:

(C1) {0} 6= H is a Hilbert space over the field F = C with scalar product (·, ·)

(C2) 0 6= T ∈ B(H) is compact having countably many simple non-zero eigenvalues λ1, λ2, λ3, · · · with limk→∞ λk = 0
pertinent to the eigenvectors χ1, χ2, χ3, · · · . Further, 0 6∈ σ(T ).

(C3) The eigenvectors of the adjoint T ∗ of T with the eigenvalues λ1, λ2, λ3, · · · are ψ1, ψ2, ψ3, · · ·

(C4) λi 6= λj , i 6= j, i, j = 1, 2, 3 · · ·

One has the following theorem.

Theorem 2.1 (Biorthonormality relations for λj 6= λk, j 6= k)

Let the conditions (C1) - (C4) be fulfilled. Then, with appropriate normalization, the eigenvectors χ1, χ2, χ3, · · · and
ψ1, ψ2, ψ3, · · · are biorthonormal, that is,

(χj , ψk) = δjk, j, k ∈ J. (2.1)

Proof: See [20, Theorem 3.1]. �

Furthermore, we obtain the following theorem.

Theorem 2.2 (Expansion of Tu as well as of Pu in a series of eigenvectors)

Let the conditions (C1) - (C4) be fulfilled. Then,

Tu =
∑
j∈J

λj(u, ψj)χj , u ∈ H (2.2)

as well as
Pu =

∑
j∈J

(u, ψj)χj , u ∈ H, (2.3)

where P is the projection operator from H onto the geometric eigenspace of T .

Proof: See [20, Theorem 3.2]. �

Remark: From (2.2) we conclude that
[χ1, χ2, χ3, · · · ] = T (H) = R(T ).

where R(T ) means the range of T . Further, from (2.3),

P : H 7→ [χ1, χ2, χ3, · · · ].
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�

Moreover, in [20, Theorem 3.3], we have proven the following theorem.

Theorem 2.3

Let the conditions (C1) - (C4) be fulfilled. Then, we obtain

u = Pu =
∑
j∈J

(u, ψj)χj , u ∈ H (2.4)

and the projection operator
P0 = I − P : H 7→ N(T ) = {0} ⇐⇒ P0 = 0. (2.5)

�

If condition (C4) is not fulfilled, one can remedy this, e.g., by using a biorthogonalization pre-process, as the next
lemma shows.

Lemma 2.4

Let the conditions (C1) - (C3) be fulfilled, and let, for instance, λj1 , λj2 , · · · , λjp be eigenvalues of T with linearly
independent eigenvectors χj1 , χj2 , · · · , χjp ; further, let ψj1 , ψj2 , · · · , ψjp be linearly independent eigenvectors pertinent

to λj1 , λj2 , · · · , λjp of T ∗. Then, these eigenvectors can be biorthonormalized such that

(χjk , ψjl) = δkl, k, l = 1, 2, · · · , p. (2.6)

Proof: See [20, Lemma 3.4]. �

After appropriate application, for instance, of the biorthogonalization pre-process, condition (C4) is satisfied.

(iii) Special Case of a Selfadjoint Compact Operator T = A

If T = A is selfadjoint and compact and if there is a countable set of non-zero eigenvalues λj , j ∈ J , then it is known
that the relation

lim
j→∞

λj = 0 (2.7)

is fulfilled. Further, the eigenvalues are real and the pertinent eigenvectors ϕj can be chosen real so that one has

ϕj = χj = ψj , j ∈ J (2.8)

meaning that the biorthonormality relations (2.1) turn into the orthonormality relations

(ϕj , ϕk) = δjk, j, k ∈ J. (2.9)

Thus, if 0 6= σ(A), the relations (2.2) and (2.4) turn into the known results

Au =
∑
j∈J

λj (u, ϕj)ϕj , u ∈ H (2.10)

and
u = Pu =

∑
j∈J

(u, ϕj)ϕj , u ∈ H. (2.11)

For all this, see [30, Section 7].

For the next theorem, we define new subspaces of H. For every j = 1, 2, . . ., let

Nχ,j := {u ∈ H |u =

j∑
k=1

αkχk with αk ∈ C, k = 1, 2, . . . , j} =: [χ1, . . . , χj ], (2.12)

j = 1, 2, . . . and

Nχ,j,R := {u ∈ H |u =

j∑
k=1

βkχk with βk ∈ R, k = 1, 2, . . . , j} = [χ1, . . . , χj ]R, (2.13)
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j = 1, 2, . . . as well as

Nχ := Nχ,∞ := {u ∈ H |u =
∑∞
k=1 αkχk exists in H with αk ∈ C, k = 1, 2, . . .}

= [χ1, χ2, . . .]
(2.14)

and
Nχ,R := Nχ,∞,R := {u ∈ H |u =

∑∞
k=1 βkχk exists in H with βk ∈ R, k = 1, 2, . . .}

= [χ1, χ2, . . .]R.
(2.15)

Likewise, we define

Nψ,j := {u ∈ H |u =

j∑
k=1

αkψk with αk ∈ C, k = 1, 2, . . . , j} =: [ψ1, . . . , ψj ], (2.16)

j = 1, 2, . . . and

Nψ,j,R := {u ∈ H |u =

j∑
k=1

βkψk with βk ∈ R, k = 1, 2, . . . , j} = [ψ1, . . . , ψj ]R, (2.17)

j = 1, 2, . . . as well as

Nψ := Nψ,∞ := {u ∈ H |u =
∑∞
k=1 αkψk exists in H with αk ∈ C, k = 1, 2, . . .}

= [ψ1, ψ2, . . .]
(2.18)

and
Nψ,R := Nψ,∞,R := {u ∈ H |u =

∑∞
k=1 βkψk exists in H with βk ∈ R, k = 1, 2, . . .}

= [ψ1, ψ2, . . .]R.
(2.19)

After these preparations, we are able to prove the following theorem.

Theorem 2.5 Let the conditions (C1) - (C4) be fulfilled. Then,

(Tu, v) =
∑
j∈J

λj(u, ψj)(χj , v), u, v ∈ H (2.20)

and
(u, v) = (Pu, v) =

∑
j∈J

(u, ψj)(χj , v), u, v ∈ H (2.21)

where
(u, ψj), (χj , v) ∈ R, u ∈ Nχ,R, v ∈ Nψ,R, j ∈ J (2.22)

leading to

Re (Tu, v) =
∑
j∈J

Reλj(u, ψj)(χj , v), u ∈ Nχ,R, v ∈ Nψ,R, j ∈ J. (2.23)

Proof: See [21, Theorem 3.4]. �

In order to set up the formulas for the generalized Rayleigh quotients, we have to define the following subspaces of
Nχ and Nψ.

Mχ,1,R := Nχ,R = [χ1, χ2, . . .]R, (2.24)

Mχ,j,R := {u ∈ Nχ,R | (u, ψk) = 0, k = 1, 2, . . . , j − 1}

= [ψ1, . . . , ψj−1]⊥Nχ,R , j = 2, 3, . . .
(2.25)

where Mχ,j,R is called an orthogonal complement in Nχ,R and

Mψ,1,R := Nψ,R = [ψ1, ψ2, . . .]R, (2.26)

15



Journal of Advances in Mathematics Vol 23 (2024) ISSN: 2347-1921 https://rajpub.com/index.php/jam

Mψ,j,R := {u ∈ Nψ,R | (u, χk) = 0, k = 1, 2, . . . , j − 1}

= [χ1, . . . , χj−1]⊥Nψ,R , j = 2, 3, . . .
(2.27)

where Mψ,j,R is called an orthogonal complement in Nψ,R. The next lemma characterizes these spaces.

Lemma 2.6 Let the conditions (C1) - (C4) be fulfilled as well as {χ1, χ2, . . .} and {ψ1, ψ2, . . .} be sets of biorthogonal
eigenvectors of T and T ∗ respectively, i.e., such that

(χi, ψj) = δij , i, j = 1, 2, . . . . (2.28)

Then,
Mχ,j,R = [χj , χj+1, . . .]R, j = 1, 2, . . . (2.29)

and
Mψ,j,R = [ψj , ψj+1, . . .]R, j = 1, 2, . . . (2.30)

Proof: See proof of [21, Lemma 3.5]. �

Now, let u ∈ Nχ,R with u =
∑∞
k=1 αkχk and αk ∈ R as well as v ∈ Nψ,R with v =

∑∞
k=1 βkψk and βk ∈ R. Then, due

to Theorem 2.1,

(u, v) =

∞∑
k=1

αkβk. (2.31)

In order to facilitate the manner of speaking, we say that the scalar product (u, v) of u ∈ Nχ,R and v ∈ Nψ,R is strongly
positive iff αkβk ≥ 0, k = 1, 2, . . . and

∑∞
k=1 αkβk > 0. For short, we write

(u, v)� 0.

Remark: One has αk = (u, ψk), u ∈ Nχ,R and βk = (χk, v), v ∈ Nψ,R for k = 1, 2, . . .. Therefore, (u, v) � 0 means
(u, ψk)(χk, v) ≥ 0, k = 1, 2, . . . and (u, v) =

∑∞
k=1(u, ψk)(χk, v) > 0. �

Remark: For (u, v) � 0, one can admit linear combinations u =
∑∞
k=1 αkχk and v =

∑∞
k=1 βkψk with αk, βk ∈

C, k = 1, 2, . . . such that αkβk = |αkβk|, k = 1, 2, . . . and
∑∞
k=1 |αkβk| > 0. For example, all elements αk, βk ∈ C

with αk = |αk|eiϕk and βk = |βk|eiϕk where ϕk is in 0 ≤ ϕk < 2π, k = 1, 2, . . . are acceptable. �

3 Generalized Rayleigh-Quotient Formulas for the Real Parts of the
Eigenvalues

Again, for the readers’ convenience, [21, Section 4] is recapitulated without proof, but we restrict ourselves to the
formulas for the real parts of the eigenvalues.

In the sequel, we suppose that the non-zero eigenvalues are arranged according to

Reλ1 ≥ Reλ2 ≥ Reλ3 ≥ . . . . (3.1)

Such an arrangement is possible, for instance, if the real parts of all eigenvalues are positive. An arrangement that is
always possible will be dealt with in Section 11.

One has the following generalized max-representation.

Theorem 3.1

Let the conditions (C1) - (C4) be fulfilled. Further, let the eigenvalues of T be arranged according to (3.1). Moreover,
let the vector spaces Mχ,j,R resp. Mψ,j,R for j ∈ J be defined by (2.24), (2.25) resp. (2.26), (2.27) or (2.29) resp.
(2.30). Then,

Reλj = max
(u,v)�0

u∈Mχ,j,R,v∈Mψ,j,R

Re (Tu, v)

(u, v)
, j ∈ J. (3.2)
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The maximum is attained for u = χj , v = ψj.

Proof: See proof of [21, Theorem 4.1]. �

For the next theorem, we need the following denotation of codimension. A subspace M ⊂ H has codimension j for
j ∈ J denoted by codim M = j if there exist linearly independent vectors v1, . . . , vj ∈ H such that

M = [v1, . . . , vj ]
⊥ := [v1, . . . , vj ]

⊥
H = {u ∈ H | (u, vk) = 0, k = 1, . . . , j}.

Further, we set
codim M = 0

if M = H. Next, we prove a generalized min-max-representation.

Theorem 3.2

Let the conditions (C1) - (C4) be fulfilled. Further, let the eigenvalues of T be arranged according to (3.1).

Then, for every j ∈ J and every subspace Mχ ⊂ Nχ,R and Mψ ⊂ Nψ,R with codim Mχ = codim Mψ = j − 1, the
following inequalities are valid:

Reλj ≤ max
(u,v)�0

u∈Mχ,v∈Mψ

Re (Tu, v)

(u, v)
≤ Reλ1, (3.3)

and the following min-max-representation formulas hold:

Reλj = min
codim Mχ=j−1

codim Mψ=j−1

max
(u,v)�0

u∈Mχ,v∈Mψ

Re (Tu, v)

(u, v)
, j ∈ J. (3.4)

The minimum is attained for
Mχ = Mχ,j,R, Mψ = Mψ,j,R.

Proof: See proof of [21, Theorem 4.2]. �

The next theorem contains a generalized min-representation.

Theorem 3.3

Let the conditions (C1) - (C4) be fulfilled. Further, let the eigenvalues of T be arranged according to (3.1). Moreover,
let the vector spaces Nχ,j,R resp. Nψ,j,R for j ∈ J be defined by (2.13) resp. (2.17). Then,

Reλj = min
(u,v)�0

u∈Nχ,j,R,v∈Nψ,j,R

Re (Tu, v)

(u, v)
, j ∈ J. (3.5)

The minimum is attained for u = χj , v = ψj.

Proof: See proof of [21, Theorem 4.3]. �

Next, we state the following generalized max-min-representation of Reλj .

Theorem 3.4

Let the conditions (C1) - (C4) be fulfilled. Further, let the eigenvalues of T be arranged according to (3.1). Moreover,
let the vector spaces Nχ,j,R resp. Nψ,j,R for j ∈ J be defined by (2.13) resp. (2.17).

Then, for every j ∈ J and every subspace Nχ ⊂ Nχ,R and Nψ ⊂ Nψ,R with dim Nχ = dim Nψ = j, the following
inequalities are valid:

min
(u,v)�0

u∈Nχ,v∈Nψ

Re (Tu, v)

(u, v)
≤ Reλj , (3.6)

and the following max-min-representation formulas hold:

Reλj = max
dimNχ=j

dimNψ=j

min
(u,v)�0

u∈Nχ,v∈Nψ

Re (Tu, v)

(u, v)
, j ∈ J. (3.7)
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The maximum is attained for
Nχ = Nχ,j,R, Nψ = Nψ,j,R.

Proof: See proof of [21, Theorem 4.4]. �

4 Series Expansions and Generalized Rayleigh Quotients for Compact
Inverse of Differential Operator

In this section, we include the findings of [20, Sections 3 and 4]. However, we need a slight modification of the conditions.
Namely, there, a differential operator L : HD → HR ⊂ H := L2(0, l) was considered with HD = HR = L2(0, l) in
the pertinent conditions (C1d) - (C5d) where d stands for densely defined. As opposed to this, in this paper, we have
only HR = L2(0, l), and the corresponding conditions without HD = L2(0, l) are called (C1L) - (C5L) where L stands
for the differential operator associated with the BEVP. Since in [20], we used only HR = L2(0, l), the results derived
there are thus also valid under the new conditions (C1L) - (C5L).

This section is structured as follows. We begin with the conditions (C1L) - (C5L) on the differential operator L, its
formally adjoint operator L+ and their pertinent compact inverses G and G+. Then, it is stated that G+ = G∗ is the
adjoint operator of G. Next, expansions of Gu and u for u ∈ L2(0, l) in series’ of eigenvectors stated in [20, Section
4] resp. [21, Section 3] are given followed by generalized Rayleigh quotients for the real parts of the eigenvalues of G
stated in [21, Section 4].

4.1 Series Expansions

In this subsection, in the case of simple eigenvalues, expansions in series’ of eigenvectors are stated.

(i) The Conditions (C1L) - (C5L)

We assume the following conditions:

(C1L) {0} 6= H is a Hilbert space over the field F = C with scalar product (·, ·)

(C2L) {0} 6= HD and HR are pre-Hilbert spaces with

HD ⊂ HR ⊂ H, HR = H

and where
L : D(L) := HD 7→ HR

is a linear operator with the countably many simple non-zero eigenvalues
µ1, µ2, µ3, · · · and the property limj→∞ µj = ∞ as well as pertinent eigenvectors χ1, χ2, χ3, · · · ∈ HD. Further,
L possesses a compact inverse

G := L−1 ∈ B(H)

(C3L) {0} 6= HD,+ and HR are pre-Hilbert spaces with

HD,+ ⊂ HR ⊂ H, HR = H

and where
L+ : D(L+) := HD,+ 7→ HR

is a linear operator with the countably many simple non-zero eigenvalues
µ1,+, µ2,+, µ3,+, · · · and the property limj→∞ µj,+ =∞ as well as pertinent eigenvectors ψ1, ψ2, ψ3, · · · ∈ HD,+.
Further, L+ possesses a compact inverse

G+ := L−1+ ∈ B(H)

(C4L) (Lu, v) = (u, L+v), u ∈ HD, v ∈ HD,+

18
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(C5L) µj 6= µk, j 6= k, j, k ∈ J

Remark: We mention that due to the above conditions, 0 6∈ σ(G). Further, that we also have G ∈ L(HR, HD).
Moreover, if µj0 = µk0 for two indices j0 6= k0, then χj0 , χk0 and ψj0 , ψk0 can be biorthonormalized such that we
obtain (χj , ψk) = δjk for j, k ∈ {j0, k0}. �

(ii) Series Expansions of Gu and Pu

The first theorem reads as follows.

Theorem 4.1

Let the conditions (C1L) - (C5L) be fulfilled. Then,

µj,+ = µj , j ∈ J (4.1)

and
G+ = G∗ (4.2)

where G∗ ∈ B(H) is the adjoint operator of G defined by

(Gu, v) = (u,G∗u), u, v ∈ H. (4.3)

Further, the operator G has the eigenvalues λj = 1/µj as well as the eigenvectors χj, and G+ = G∗ has the eigenvalues
λj,+ = λj = 1/µj,+ = 1/µj as well as the eigenvectors ψj for j ∈ J . In addition, limj→∞ λj = 0.

Proof: See proof of [20, Theorem 4.1] with (C1d) - (C5d) replaced by (C1L) - (C5L). �

From Theorem 3.1 and the results of Section 2, we obtain the following corollary.

Corollary 4.2

Let the conditions (C1d) - (C5d) be fulfilled. Then,

Gu =
∑
j∈J

λj(u, ψj)χj , u ∈ H, (4.4)

u = Pu =
∑
j∈J

(u, ψj)χj , u ∈ H. (4.5)

Proof: See proof of [20, Corollary 4.2] with (C1d) - (C5d) replaced by (C1L) - (C5L). �

Remark: In the case G = G+ = G∗, then - as already mentioned in Section 2 (iii) - the eigenvalues λj are real and
ϕj = χj = ψj , j ∈ J as well as limj→∞ λj = 0. �

4.2 Generalized Rayleigh Quotients

Since the conditions (C1L) - (C5L) entail the conditions (C1) - (C4) for T = G ∈ B(H), we obtain the following
corollaries.

One has the following generalized max-representation.

Corollary 4.3

Let the conditions (C1L) - (C5L) be fulfilled. Further, let the eigenvalues of T = G be arranged according to (3.1).
Moreover, let the vector spaces Mχ,j,R = Mψ,j,R = Mϕ,j,R for j ∈ J be defined by (2.25), (2.26) resp. (2.27), (2.28)
or (2.29) resp. (2.30) with χj = ψj = ϕj , j ∈ J . Then,

Reλj = max
(u,v)�0

u, v∈Mϕ,j,R

Re (Gu, v)

(u, v)
, j ∈ J. (4.6)
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The maximum is attained for u = v = ϕj.

Proof: This follows from Therorem 3.1. �

Next, we prove a generalized min-max-representation.

Corollary 4.4

Let the conditions (C1L) - (C5L) be fulfilled. Further, let the eigenvalues of T = G be arranged according to (3.1).

Then, for every j ∈ J and every subspace Mϕ ⊂ Nϕ,R with codim Mϕ = j − 1, the following inequalities are valid:

Reλj ≤ max
(u,v)�0
u, v∈Mϕ

Re (Gu, v)

(u, v)
≤ Reλ1, (4.7)

and the following min-max-representation formulas hold:

Reλj = min
codim Mϕ=j−1

max
(u,v)�0
u, v∈Mϕ

Re (Gu, v)

(u, v)
, j ∈ J. (4.8)

The minimum is attained for
Mϕ = Mϕ,j,R.

Proof: See proof of [21, Theorem 4.2]. �

The next theorem contains a generalized min-representation.

Corollary 4.5

Let the conditions (C1L) - (C5L) be fulfilled. Further, let the eigenvalues of T = G be arranged according to (3.1).
Moreover, let the vector spaces Nϕ,j,R for j ∈ J be defined by (2.13) with χj = ϕj resp. (2.17) with ψj = ϕj. Then,

Reλj = min
(u,v)�0

u, v∈Nϕ,j,R

Re (Gu, v)

(u, v)
, j ∈ J. (4.9)

The minimum is attained for u = v = ϕj.

Proof: This follows from Theorem 3.3. �

Next, we state the following generalized max-min-representation of Reλj .

Corollary 4.6

Let the conditions (C1L) - (C5L) be fulfilled. Further, let the eigenvalues of T be arranged according to (3.1). Moreover,
let the vector space Nϕj ,R for j ∈ J be defined by (2.13) with χj = ϕj resp. by (2.17) with ψj = ϕj.

Then, for every j ∈ J and every subspace Nϕ ⊂ Nϕ,R with dim Nϕ = j, the following inequalities are valid:

min
(u,v)�0
u, v∈Nϕ

Re (Gu, v)

(u, v)
≤ Reλj , (4.10)

and the following max-min-representation formulas hold:

Reλj = max
dimNϕ=j

min
(u,v)�0
u, v∈Nϕ

Re (Gu, v)

(u, v)
, j ∈ J. (4.11)

The maximum is attained for
Nϕ = Nϕ,j,R.

Proof: This follows from Theorem 3.4. �

It is clear that the Re sign can be omitted when the eigenvalues are real.
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5 A BEVP from Area of Engineering

In this section, a damped vibration model of a string is investigated whose mathematical formulation as a boundary
value problem (BVP) reads −u′′(x, t) = −mü(x, t)−b u̇(x, t), u(0, t) = u(l, t) = 0. For its solution, it is transformed by
the ansatz −u′′(x, t) = k u(x, t) into the boundary eigenvalue problem (BEVP) −u′′(x, t) = k u(x, t), u(0, t) = u(l, t) =
0 with the constraint mü(x, t) + b u̇(x, t) +k u(x, t) = 0. Then, with the separation of variables u(x, t) = w(x) y(t), the
constraint - after division by w(x) - has the formmÿ(t)+b ẏ(t)+k y(t) = 0 whose solution is stated for various cases. The
separation of variables - this time after division by y(t) - transforms the BEVP −u′′(x, t) = k u(x, t), u(0, t) = u(l, t) =
0 into the BEVP −w′′(x) = k w(x), w(0) = w(l) = 0 whose eigenvalues k = kj and eigenfunctions w(x) = wj(x) for
j = 1, 2, . . . are presented. Then, for the eigenvalues k = kj , the solutions yj,1(t), yj,2(t) of mÿ(t) + b ẏ(t) + k y(t) = 0
for a selected case representing small damping are found. Finally, the solutions wj(x) and yj,1(t), yj,2(t) are combined
to yield the eigenfunctions χj,1(x, t) = wj(x) yj,1(t), χj,2(x, t) = wj(x) yj,2(t), j = 1, 2, . . . of the BEVP −u′′(x, t) =
k u(x, t), u(0, t) = u(l, t) = 0 with the constraint mü(x, t) + b u̇(x, t) + k u(x, t) = 0 which is equivalent to the original
BVP −u′′(x, t) = −mü(x, t)− b u̇(x, t), u(0, t) = u(l, t) = 0.

5.1 Damped Vibration Model of a String

The problem is described in [ 6, p.42]. The author’s translation from German into English reads as follows, where
y′ = ∂y

∂x and ẏ = ∂y
∂t :

There are also physical problems leading to complex eigenvalues, e.g., damped vibrations of a string [with S=const: see
Eqn. (2.2), K as damping constant]:

(4.3) Sy′′ = %F ÿ +K ẏ.

The same differential equation occurs also with other damped vibrations such as torsional vibrations of rods and shafts,
telegraph equation, and so on.

With the ansatz
y(x, t) = eλ t Y (x),

(4.3) turns into
S y′′ = (%F λ2 +K λ) y,

or, with different notations (k1, k2 positive constants):

y′′ = (k1 λ
2 + k2 λ) y.

For the boundary conditions (length of string l = 1)

y(0) = y(1) = 0,

one has the solutions
y = sinnπ x

with
k1λ

2 + k2λ = −n2π2.

The eigenvalues determined from this are, in general, complex, e.g., when the values of k2 are not too large.

We stress that the above equation numbers (2.2) and (4.3) are those of the book [ 6].

5.2 Boundary Eigenvalue Problem

Using the new function u instead of y, the partial differential equation of subsection 5.1 reads

S u′′(x, t) = %F ü(x, t) +K u̇(x, t).
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Next, we multiply this by −1/S yielding

−u′′(x, t) = −%F
S

ü(x, t)− K

S
u̇(x, t).

Introducing the new variables

m :=
%F

S
> 0, b :=

K

S
> 0,

we obtain the partial differential equation (PDE)

−u′′(x, t) = −mü(x, t)− b u̇(x, t) . (5.1)

In a further step, we make the solution ansatz

−u′′(x, t) = k u(x, t) . (5.2)

Equating the right-hand sides of (5.1) and (5.2) leads to

mü(x, t) + b u̇(x, t) + k u(x, t) = 0 . (5.3)

This is interpreted as a constraint on the solution to the differential equation (5.2). The boundary conditions read

u(0, t) = u(l, t) = 0 . (5.4)

Thus, the original BVP (5.1), (5.4) with the new notations is equivalent to the BEVP (5.2), (5.4), where the solutions
to this BEVP have to satisfy the constraint (5.3).

Equation (5.2) can also be written in the form
L[u] = k u (5.5)

with the ordinary differential operator
L[u] = −u′′. (5.6)

5.3 Separation of Variables

The usual way to solve the BEVP in Subsection 5.2 is to separate the variables x and t by setting

u(x, t) = w(x) y(t). (5.7)

Then, (5.2), (5.4) turn - after division by y(t) - into

− w′′(x) = k w(x), 0 < x < l (5.8)

w(0) = w(l) = 0, (5.9)

and (5.3) becomes - after division by w(x) -

mÿ(t) + bẏ(t) + ky(t) = 0, 0 ≤ t <∞. (5.10)

5.4 Solution of mÿ(t) + bẏ(t) + ky(t) = 0 for Various Cases

The differential equation
mÿ(t) + bẏ(t) + ky(t) = 0

is known in the Theory of Vibrations where it describes a one-mass vibratory model with displacement y, mass m,
damping constant b and stiffness constant k, see, for instance, [33, Section 2.6]. In what follows we recapitulate the
solution of the above differential equation whereby we use verbatim passages from the cited textbook.
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For the solution, as usual, the differential equation is divided by m giving

ÿ(t) +
b

m
ẏ(t) +

k

m
y(t) = 0.

Set

δ := − b

2m
(5.11)

and

ω :=

√
k

m
. (5.12)

This yields
ÿ(t)− 2 δ ẏ(t) + ω2y(t) = 0. (5.13)

The solution ansatz
y(t) = ŷ eλ t (5.14)

delivers the quadratic equation
λ2 − 2 δ λ+ ω2 = 0 (5.15)

with the two roots
λ1,2 = δ ±

√
δ2 − ω2 . (5.16)

Case 1: δ = 0

For δ = 0, (5.16) reduces to
λ1,2 = ±iω (5.17)

so that the roots lie on the imaginary axis and correspond to the undamped case, ω is called (natural) circular
eigenfrequency. The pertinent complex basis is given by

y1(t) = ŷ1e
iωt, y2(t) = ŷ2e

−iωt . (5.18)

A corresponding real basis of the above ordinary differential equation (ODE) is given by

y1(t) = ŷ1 sinωt, y2(t) = ŷ2 cosωt . (5.19)

Case 2 a: 0 < δ < ω2

For 0 < δ < ω2, (5.16) shows that the roots λ1 and λ2 are conjugate-complex:

λ1,2 = δ ± i
√
ω2 − δ2 = δ ± iωd (5.20)

with
ωd =

√
ω2 − δ2 (5.21)

where

Reλ1,2 = − b

2m
= δ < 0 (5.22)

and
Imλ1,2 = ±

√
ω2 − δ2 = ±ωd (5.23)

where ωd > 0. This is the so-called underdamped case. Here, δ is known as logarithmic decrement and ωd as damped
circular eigenfrequency. The pertinent complex basis is given by

y1(t) = ŷ1e
(δ+iωd)t, y2(t) = ŷ2e

(δ−iωd)t . (5.24)

A corresponding real basis reads

y1(t) = ŷ1e
δt sinωdt, y2(t) = ŷ2e

δt cosωdt . (5.25)

Remark: We avoid to call λ an eigenvalue since in our formulation of the BEVP, it is no eigenvalue. As a consequence,
the functions y1(t), y2(t) are called merely basis functions and not eigenfunctions. �
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Case 2 b: 0 < δ2 = ω2

In this case,
ωd = 0 . (5.26)

Further, here we have the double root
λ1 = δ (5.27)

with only one pertinent real basis function

y1(t) = ŷ1e
δt . (5.28)

This is the critically damped case. It is known that a second basis function is given by

y2(t) = ŷ2 t e
δt . (5.29)

Thus, (5.28) and (5.29) is a real basis of the ODE (5.10).

Case 3: δ2 > ω2

In this case, (5.16) shows that the roots λ1 and λ2 are real and negative since

λ1,2 = δ ±
√
δ2 − ω2 < 0 . (5.30)

This is the overdamped case leading to a nonoscillatory motion.

5.5 Solution of the BEVP −w′′(x) = k w(x), w(0) = w(l) = 0

The solution of the BEVP
−w′′(x) = k w(x), 0 < x < l

w(0) = w(l) = 0,

i.e., of (5.8), (5.9), is obtained by the ansatz

w(x) = ŵ sin
√
kx . (5.31)

Apparently, the function (5.31) satisfies (5.8), and the boundary condition (BC) w(0) = 0 is also fulfilled. Further,
the BC w(l) = 0 leads to

sin
√
k l = 0 (5.32)

yielding √
k l = j π, j ∈ J := (1, 2, 3, . . . ) (5.33)

or

k = kj = j2 π
2

l2 = j2k1, j ∈ J (5.34)

so that
w(x) = wj(x) = ŵj sin jπ xl , j ∈ J (5.35)

are the pertinent (real) eigenfunctions.

5.6 Solutions of mÿ(t) + bẏ(t) + ky(t) = 0 with k = kj, j ∈ J for Selected Case

The solutions of (5.10), i.e., of
mÿ(t) + bẏ(t) + ky(t) = 0

with
k = kj (5.36)

for all possible cases can be found in subsection 5.4 by the replacements

ω2 =
k

m
=

1

m
12
π2

l2
=
k1
m

= ω2
1 = ω2 → ω2

j =
kj
m

=
1

m
j2
π2

l2
, j ∈ J (5.37)
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and
y1(t), y2(t) → yj,1(t), yj,2(t), j ∈ J . (5.38)

In the sequel, we restrict ourselves to the real basis in the case 2 a with k = π2

l2 replaced by kj = j2 π
2

l2 = j2ω2
1 = j2ω2.

Then, case 2 a takes on the form

Case 2 a (j): 0 < δ < ω2
j , j ∈ J

Here,

ω2
j =

kj
m
, j ∈ J (5.39)

and

kj = j2
π2

l2
, j ∈ J . (5.40)

The pertinent real basis functions read

yj,1(t) = ŷj,1e
δt sinωd,jt, yj,2(t) = ŷj,2e

δt cosωd,jt, j ∈ J (5.41)

with

ωd,j =
√
ω2
j − δ2, j ∈ J . (5.42)

5.7 Solutions of BEVP −u′′(x, t) = k u(x, t), u(0, t) = u(l, t) = 0 with constraint mü(x, t) +
b u̇(x, t) + k u(x, t) = 0

It has been shown that the original BVP −u′′(x, t) = −mü(x, t) − b u̇(x, t), u(0, t) = u(l, t) = 0 can be transformed
into the BEVP −u′′(x, t) = k u(x, t), u(0, t) = u(l, t) = 0 with constraint mü(x, t)+ b u̇(x, t)+k u(x, t) = 0. According
to (5.34), the eigenvalues of the last one are given by

k = kj = j2
π2

l2
, j ∈ J

and, according to (5.35) and (5.41), the pertinent eigenfunctions by

χj,1(x, t) = wj(x) yj,1(t) = ŵj sin jπ
x

l
ŷj,1 e

δt sinωd,jt, j ∈ J , (5.43)

χj,2(x, t) = wj(x) yj,2(t) = ŵj sin jπ
x

l
ŷj,2 e

δt cosωd,jt j ∈ J . (5.44)

6 The Example in a Functional-Analysis Setting

In this section, we

• introduce the function spaces and operators allowing us to treat the BEVP by employing functional-analytic
methods

• determine the eigenvalues and eigenfunctions of the differential operator L and of its inverse T = G

• give expansions of Gu and u = Pu for all u in an appropriate Hilbert space H as well as of (Gu, v) and
(u, v) = (Pu, v) for all u, v ∈ H

• and present illustrative specific examples with generalized Rayleigh quotients for the positive eigenvalues of
T = G
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6.1 The Function Spaces and Operators

The operators (5.6), i.e.,
L[u] = Lu = −u′′ (6.1)

is here defined in the vector space HD over the field F = R as

HD := D(L)
:= {u ∈ C2 [0, l]× [0,∞) |u(0, t) = u(l, t) = 0, mü(x, t) + b u̇(x, t) + k u(x, t) = 0,∫ l
0

∫∞
0
u2(x, t) dt dx <∞}.

(6.2)

Further, we define the vector space HR over the field F = R as

HR := {u ∈ C [0, l]× [0,∞) |
∫ l

0

∫ ∞
0

u2(x, t) dt dx <∞} (6.3)

as well as
H := L2 (0, l)× (0,∞) (6.4)

where L2 (0, l)× (0,∞) is the space of real measurable functions defined almost everywhere on (0, l)× (0,∞) such that
the following Lebesgue integral satisfies ∫ l

0

∫ ∞
0

u2(x, t) dt dx <∞.

We mention that the norm in H is given by

‖u‖ = ‖u‖H =

(∫ l

0

∫ ∞
0

u2(x, t) dt dx

) 1
2

, u ∈ H, (6.5)

and the pertinent scalar product by

(u, v) = (u, v)H =

∫ l

0

∫ ∞
0

u(x, t) v(x, t) dt dx, u, v ∈ HD (6.6)

that is well-defined by the Cauchy-Schwarz inequality. Further, due to the BCs u(0, t) = u(l, t) = 0 and v(0, t) =
v(l, t) = 0 for u, v ∈ H, employing partial integration, we have

(Lu, v) = (u, Lv), u, v ∈ HD = HD,+ (6.7)

so that the formally adjoint L+ of L is equal to L in HD = HD,+ := D(L+). One has

C∞0 (0, l)× (0,∞) ⊂ HR ⊂ H = L2 (0, l)× (0,∞). (6.8)

From [ 2, Section 1], we conclude that

C∞0 (0, l)× (0,∞) = HR = H = L2 (0, l)× (0,∞). (6.9)

Further,
HD ⊂ HR ⊂ HR = H = L2 (0, l)× (0,∞).

We mention that L ∈ L(HD, HR) where L(HD, HR) is the set of linear operators mapping HD into HR. The Green’s
function associated with

Lu = 0, u ∈ HD

is given by

G(x, s) =


G1(x, s) =

x (l − s)
l

, 0 ≤ x ≤ s ≤ l,

G2(x, s) =
s (l − x)

l
, 0 ≤ s ≤ x ≤ l,

(6.10)
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see [21, Section 10.5], and the pertinent inverse operator G = L−1 = G+ = L−1+ ∈ L(HR, HD) is given by

(Gu)(x, t) =

∫ l

0

G(x, s)u(s, t) ds, x ∈ [0, l], t ∈ (0,∞). (6.11)

Before we continue to show that G ∈ B(H,H) = B(H) and that G is compact, we make some remarks on the above
norm ‖ · ‖H and further norms.

First, from [26, Fubini’s theorem in Sections 66 and 67],

‖u‖2H =

∫ l

0

∫ ∞
0

u2(x, t) dt dx =

∫ ∞
0

∫ l

0

u2(x, t) dx dt. (6.12)

Next, we define

‖u(x, ·)‖2L2(0,l)
:= n2L2(0,l)

(u(x, ·)) :=

∫ ∞
0

u2(x, t) dt, x ∈ [0, l], u ∈ C [0, l]× [0,∞) (6.13)

and

‖u(·, t)‖2L2(0,∞) := n2L2(0,∞)(u(·, t)) :=

∫ l

0

u2(x, t) dx, t ∈ [0,∞), u ∈ C [0, l]× [0,∞). (6.14)

Then,

‖u‖2H = ‖u‖2L2 (0,l)×(0,∞)

=

∫ l

0

∫ ∞
0

u2(x, t) dt dx =

∫ l

0

‖u(x, ·)‖2L2(0,∞) dx

= ‖ ‖u(·, ·)‖2L2(0,∞) ‖
2
L2(0,l)

= (n2L2(0,l)
◦ n2L2(0,∞))(u)

=

∫ ∞
0

∫ l

0

u2(x, t) dx dt =

∫ l

0

‖u(·, t)‖2L2(0,l)
dt

= ‖ ‖u(·, ·)‖2L2(0,l)
‖2L2(0,∞) = (n2L2(0,∞) ◦ n

2
L2(0,l)

)(u)

. (6.15)

We note that nL2(0,l) acts on the first argument of u and nL2(0,∞) on the second argument.

(i) Boundedness of the Operator T = G ∈ L(H)

We have
T = G ∈ L(HR, HD) ⊂ L(HR, HR) ⊂ L(H,H) = L(H)

with

Tu(x, t) = Gu(x, t) = (Gu)(x, t) =

∫ l

0

G(x, s)u(s, t) ds, x ∈ [0, l], t ∈ [0,∞), u ∈ HR, (6.16)

and we will show that T = G ∈ B(H) with ‖T‖ = ‖T‖H ≤ (
∫ l
0

∫ l
0
G2(x, s) ds dx)

1
2 .

This is obtained as follows. From (6.16), we have

|Tu(x, t)| = |
∫ l

0

G(x, s)u(s, t) ds| ≤
∫ l

0

|G(x, s)| |u(s, t)| ds

≤

(∫ l

0

G2(x, s) ds

) 1
2
(∫ l

0

u2(s, t) ds

) 1
2

, u ∈ HR

(6.17)

This entails

[Tu(x, t)]2 ≤
∫ l

0

G2(x, s) ds

∫ l

0

u2(s, t) ds, u ∈ HR (6.18)
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yielding ∫ ∞
0

[Tu(x, t)]2dt ≤
∫ l

0

G2(x, s) ds

∫ ∞
0

∫ l

0

u2(s, t) ds dt︸ ︷︷ ︸
=‖u‖2H

, u ∈ HR (6.19)

and thus to ∫ l

0

∫ ∞
0

[Tu(x, t)]2dt dx ≤
∫ l

0

∫ l

0

G2(x, s) ds dx ‖u‖2H , u ∈ HR = H (6.20)

or

‖Tu‖2H ≤
∫ l

0

∫ l

0

G2(x, s) ds dx ‖u‖2H , u ∈ H.

Thus, T ∈ L(H) is bounded, that is,
T ∈ B(H) (6.21)

and

‖T‖ = ‖T‖H = sup
06=u∈H

‖Tu‖H
‖u‖H

≤

(∫ l

0

∫ l

0

G2(x, s) ds dx

) 1
2

(6.22)

(ii) Compactness of T ∈ B(H)

Starting point is the inequality ∫ ∞
0

[Tu(x, t)]2dt ≤
∫ l

0

G2(x, s) ds ‖u‖2H , u ∈ HR = H, (6.23)

see (6.19), leading to

max
0≤x≤l

∫ ∞
0

[Tu(x, t)]2dt ≤ max
0≤x≤l

∫ l

0

G2(x, s) ds ‖u‖2H , u ∈ H. (6.24)

or (
max
0≤x≤l

∫ ∞
0

[Tu(x, t)]2dt

) 1
2

≤

(
max
0≤x≤l

∫ l

0

G2(x, s) ds

) 1
2

‖u‖H , u ∈ H

so that also

max
0≤x≤l

(∫ ∞
0

[Tu(x, t)]2dt

) 1
2

≤ max
0≤x≤l

(∫ l

0

G2(x, s) ds

) 1
2

‖u‖H , u ∈ H. (6.25)

Let f ∈ C[0, l] and
‖f‖C∞[0,l] := max

0≤x≤l
|f(x)|. (6.26)

Then,

‖ ‖Tu‖L2(0,∞) ‖C∞[0,l] ≤ max
0≤x≤l

(∫ l

0

G2(x, s) ds

) 1
2

‖u‖H , u ∈ H. (6.27)

Further,

‖Tu‖2H ≤
∫ l

0

∫ ∞
0

[Tu(x, t)]2dt dx

≤ l max
0≤x≤l

∫ l

0

[Tu(x, t)]2dt

= l max
0≤x≤l

‖Tu(x, ·)‖2L2(0,∞) = l ‖ ‖Tu‖2L2(0,∞) ‖
2
C∞[0,l], u ∈ H.

(6.28)

Define
‖Tu‖H1

:= ‖ ‖Tu‖L2(0,∞)‖C∞[0,l], u ∈ H. (6.29)

Then, due to (6.28), T ∈ B(H,H1) and

‖Tu‖H ≤
√
l ‖Tu‖H1 , u ∈ H

28



Journal of Advances in Mathematics Vol 23 (2024) ISSN: 2347-1921 https://rajpub.com/index.php/jam

entailing

‖Tu‖H ≤
√
l ‖Tu‖H1

≤ max
0≤x≤l

(∫ l

0

G2(x, s) ds

) 1
2

‖u‖H . (6.30)

Next, we show that T ∈ B(H,H1) is compact. We mention that, due to the inequality (6.30), we then have also that
T ∈ B(H,H) = B(H) is compact.

For the proof of the compactness of T ∈ B(H,H1), we show that g defined by

g(x) := ‖Tu(x, ·)‖L2(0,∞), u ∈ H, x ∈ [0, l] (6.31)

is equicontinuous. We have, for all x, y ∈ [0, l],

|Tu(x, t)− Tu(y, t)| ≤
∫ l

0

|G(x, s)−G(y, s)| |u(s, t)| ds

≤

(∫ l

0

|G(x, s)−G(y, s)|2 ds

) 1
2
(∫ l

0

|u(s, t)|2 ds

) 1
2

, u ∈ H

(6.32)

implying

|Tu(x, t)− Tu(y, t)|2 ≤
∫ l

0

|G(x, s)−G(y, s)|2 ds
∫ l

0

|u(s, t)|2 ds, u ∈ H

and thus ∫ ∞
0

|Tu(x, t)− Tu(y, t)|2dt ≤
∫ l

0

|G(x, s)−G(y, s)|2 ds
∫ ∞
0

∫ l

0

|u(s, t)|2 ds dt, u ∈ H

or ∫ ∞
0

|Tu(x, t)− Tu(y, t)|2dt ≤
∫ l

0

|G(x, s)−G(y, s)|2 ds ‖u‖2H , u ∈ H, x ∈ [0, l]. (6.33)

Now,

G(x, s)−G(y, s) =
∂G

∂x
(x+ ϑ (y − x), s) (x− y)

with 0 < ϑ = ϑ(x, y, s) < 1 and, due to (6.10),

∂G(x, s)

∂x
=


(l − s)
l

, 0 ≤ x ≤ s ≤ l,

−s
l
, 0 ≤ s ≤ x ≤ l,

so that

max
0≤x≤l

∣∣∣∣∂G(x, s)

∂x

∣∣∣∣ = 1.

Thus,
|G(x, s)−G(y, s)| ≤ |x− y|, 0 ≤ x, s ≤ l. (6.34)

From (6.33), (6.34), we obtain ∫ ∞
0

|Tu(x, t)− Tu(y, t)|2dt ≤ l |x− y|2‖u‖2H , u ∈ H

or
‖Tu(x, ·)− Tu(y, ·)‖2L2(0,∞) ≤ l |x− y|

2‖u‖2H , u ∈ H

and therefore,
|g(x)− g(y)| = | ‖Tu(x, ·)‖L2(0,∞) − ‖Tu(y, ·)‖L2(0,∞) |

≤ ‖Tu(x, ·)− Tu(y, ·)‖L2(0,∞) ≤
√
l |x− y|‖u‖H , u ∈ H .

(6.35)

This means that g is equicontinuous in ‖ · ‖C∞[0,l]. Thereby, with the Arzelà-Ascoli theorem, it follows that T = G ∈
B(H,H1) is compact implying that, due to (6.30), also T = G ∈ B(H,H) = B(H) is compact.
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6.2 The Eigenvalues and Eigenfunctions of L and T = G

(i) The Eigenvalues

The eigenvalues of
Lϕ = µϕ (6.36)

are given by

µ = µj = kj =
π2

l2
j2, j ∈ J. (6.37)

The inverse operator T = G has the eigenvalues

λ = λj =
1

µj
=

1

kj
=

l2

π2

1

j2
, j ∈ J (6.38)

so that
lim
j→∞

λj = 0, (6.39)

as it must be.

(ii) The Eigenfunctions

The eigenfunctions of L and T = G are the same. According to the Subsections 5.5, 5.6, and 5.7, the eigenfunctions
are given by

ϕj,1(x, t) = χj,1(x, t) = ψj,1(x, t) = wj(x) yj,1(t) = ŵj sin jπ
x

l
ŷj,1 e

δt sinωd,jt, j ∈ J , (6.40)

ϕj,2(x, t) = χj,2(x, t) = ψj,2(x, t) = wj(x) yj,2(t) = ŵj sin jπ
x

l
ŷj,2 e

δt cosωd,jt j ∈ J . (6.41)

Next, we determine ŵj , ŷj,1, ŷj,2, j ∈ J such that

(ϕj,1, ϕk,1) = (ϕj,2, ϕk,2) = δjk, j, k ∈ J.

Herewith, we further calculate
(ϕj,1, ϕj,2), j ∈ J.

This is done in several steps. We mention that, for functions ϕ(x, t) = w(x) y(t) and ψ(x, t) = v(x) z(t) with ϕ, ψ ∈
HD ⊂ HR ⊂ H, one has

(ϕ,ψ) = (ϕ,ψ)H =

∫ l

0

w(x) v(x) dx

∫ ∞
0

y(t) z(t) dt = (u, v)L2(0,l) (y, z)L2(0,∞), u, v ∈ H.

Remark: The following points (iii) - (x) essentially state the results without derivations; the omitted details use [ 4,
p. 327, No. 459, No. 461, and No.362]. �

(iii) Determination of ŵj , j ∈ J

We determine ŵj , j ∈ J such that (wj , wj)L2(0,l)
!
= 1, j ∈ J yielding

ŵj = ŵ :=
√

2
l , j ∈ J . (6.42)

(iv) Orthonormality of wj , wk, j, k ∈ J

One obtains
(wj , wk) = 0, j 6= k, j, k ∈ J . (6.43)

(v) Determination of ŷj,1, j ∈ J
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The condition (yj,1, yj,1)L2(0,l)
!
= 1 entails

ŷj,1 = 2
√
−δ ωj

ωd,j
, j ∈ J (6.44)

resp.

ŷj,1 = 2
√
−δ ωj√

ω2
j − δ2

, j ∈ J . (6.45)

Thus, for (6.44) resp. (6.45), we have

(yj,1, yj,1)L2(0,∞) = 1, j ∈ J . (6.46)

(vi) Determination of ŷj,2, j ∈ J

The condition (yj,1, yj,1)L2(0,l)
!
= 1 gives

ŷj,2 =
2
√
−δ ωj

√
ωd,j√

ω2
j + δ2

, j ∈ J . (6.47)

As a consequence, for (6.47), we have

(yj,2, yj,2)L2(0,∞) = 1, j ∈ J .

(vii) Determination of (yj,1, yj,2), j ∈ J

The condition (yj,1, yj,2)
!
= 0 entails

(yj,1, yj,2) =
yj,1, yj,2

2

√
ω2
j − δ2

2ω2
j

=
1

2

2
√
−δ ωj√
ω2
j − δ2

2
√
−δ ωj

√
ωd,j√

ω2
j + δ2

√
ω2
j − δ2

2ω2
j

=
(−δ)√ωd,j√
ω2
j + δ2

> 0

so that
(yj,1, yj,2) > 0, j ∈ J (6.48)

or
yj,1 6⊥ yj,2, j ∈ J (6.49)

and thus also
ϕj,1 6⊥ ϕj,2, j ∈ J . (6.50)

More precisely, one has

ŷj,1 =
2
√
−δ ωj√
ω2
j − δ2

, ŷj,2 =
2
√
−δ ωj

√
ωd,j√

ω2
j + δ2

, (yj,1, yj,2) =
(−δ)√ωd,j√
ω2
j + δ2

> 0, j ∈ J . (6.51)

In order to remedy this, one could orthogonalize the two functions yj,1 and yj,2 for j ∈ J , for instance, by using
Schmidt’s method leading to

ỹj,2 =
yj,2 − (yj,1, yj,2) yj,1
‖yj,2 − (yj,1, yj,2) yj,1‖

, j ∈ J (6.52)

with

yj,1(t) = ŷj,1 e
δ t sinωd,j t ,

yj,2(t) = ŷj,2 e
δ t cosωd,j t .
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But then, the similar shape of yj,1 and yj,2 is lost.

An alternative method is to replace these functions by the following ones:

zj,1(t) = ẑj,1 e
δ t sin(ωd,j t+ αj) , (6.53)

zj,2(t) = ẑj,2 e
δ t cos(ωd,j t+ αj) , (6.54)

j ∈ J . Due to

sin(ωd,j t+ αj) = sinωd,j t cosαj + cosωd,j t sinαj ,

cos(ωd,j t+ αj) = cosωd,j t cosαj − sinωd,j t sinαj ,

j ∈ J , one has
[zj,1, zj,2] = [yj,1, yj,2], j ∈ J , (6.55)

i.e., the subspace spanned by zj,1 and zj,2 is the same as the subspace spanned by yj,1 and yj,2 for j ∈ J . We shall
see that αj can be determined such that

(zj,1, zj,2) = (zj,1, zj,2)L2(0,∞) = 0, j ∈ J . (6.56)

(viii) Determination of αj such that (zj,1, zj,2) = 0

The condition (zj,1, zj,2)
!
= 0 yields

(zj,1, zj,2) =
ẑj,1 ẑj,2

2

e
−2 δ αj
ωd,j

2ωd,j

 e
δ

ωd,j
2αj(

δ
ωd,j

)2
+ 12

(
−δ
ωd,j

sin 2αj + cos 2αj

) . (6.57)

Thus,

(zj,1, zj,2) = 0

is equivalent to
−δ
ωd,j

sin 2αj + cos 2αj = 0 (6.58)

or
tan 2αj =

ωd,j
δ

< 0 (6.59)

so that

αj =
1

2
arctan

(ωd,j
δ

)
< 0 . (6.60)

(6.59) is equivalent to

tan 2 (−αj) =
ωd,j
−δ

> 0 (6.61)

(ix) Determination of ẑj,1 such that (zj,1, zj,1) = 1

The condition (zj,1, zj,1)
!
= 1 gives

(zj,1, zj,1) = ẑ2j,1
e

2 (−δ)αj
ωd,j

ωd,j

e
2 δ αj
ωd,j ω2

d,j

4ω2
j

[
2 sinαj

(
(−δ)
ωd,j

sinαj + cosαj

)
+
ωd,j
(−δ)

]

= ẑ2j,1 fj,1
!
= 1

with

fj,1 :=
e

2 (−δ)αj
ωd,j

ωd,j

e
2 δ αj
ωd,j ω2

d,j

4ω2
j

[
2 sinαj

(
(−δ)
ωd,j

sinαj + cosαj

)
+
ωd,j
(−δ)

]

=
ωd,j
4ω2

j

[
2 sinαj

(
(−δ)
ωd,j

sinαj + cosαj

)
+
ωd,j
(−δ)

]
> 0 .
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Result: With the values ẑj,1 = 1/
√
fj,1,

(zj,1, zj,1) = (zj,1, zj,1)L2(0,∞) = 1 .

(x) Determination of ẑj,2 such that (zj,2, zj,2) = 1

The condition (zj,2, zj,2)
!
= 1 leads to

(zj,2, zj,2) = ẑ2j,2
e

2 (−δ)αj
ωd,j

ωd,j

e
2 δ αj
ωd,j ω2

d,j

4ω2
j

[
2 cosαj

(
(−δ)
ωd,j

cosαj + sin(−αj)
)

+
ωd,j
(−δ)

]

= ẑ2j,2 fj,2
!
= 1

with

fj,2 :=
e

2 (−δ)αj
ωd,j

ωd,j

e
2 δ αj
ωd,j ω2

d,j

4ω2
j

[
2 cosαj

(
(−δ)
ωd,j

cosαj + sin(−αj)
)

+
ωd,j
(−δ)

]

=
ωd,j
4ω2

j

[
2 cosαj

(
(−δ)
ωd,j

cosαj + sin(−αj)
)

+
ωd,j
(−δ)

]
> 0 .

Result: With the values ẑj,2 = 1/
√
fj,2,

(zj,2, zj,2) = (zj,2, zj,2)L2(0,∞) = 1 .

6.3 Expansions of Gu and u = Pu for u ∈ H as well as of (Gu, v) and (u, v) = (Pu, v) for
u, v ∈ H

The expansions in series of eigenvectors for Tu and u = Pu with u ∈ H as well as of (Tu, v) and (u, v) = (Pu, v) with
u, v ∈ H can be found in Subsection 4.1. The pertinent expressions are applied to T = G.

For the differential operator L defined by Lu = −u′′, the conditions (C1L) - (C5L) are fulfilled, and for the pertinent
compact inverse T = G ∈ B(H), the conditions (C1) - (C4) of Theorems 2.2 and 2.3 and Lemma 2.4 are satisfied.
Thus, under the conditions (C1L) - (C5L), according to Theorem 2.2,

Tu = Gu =
∑
j∈J

2∑
k=1

λj,k(u, ϕj,k)ϕj,k, u ∈ H

and

u = Pu =
∑
j∈J

2∑
k=1

(u, ϕj,k)ϕj,k, u ∈ H

as well as, according to Theorem 2.5,

(Tu, v) = (Gu, v) =
∑
j∈J

2∑
k=1

λj,k(u, ϕj,k) (ϕj,k, v), u, v ∈ H

and

(u, v) = (Pu, v) =
∑
j∈J

2∑
k=1

(u, ϕj,k) (ϕj,k, v), u ∈ H .
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6.4 Generalized Rayleigh-Quotient Formulas for T = G

The generalized Rayleigh quotients for the real parts of the eigenvalues of a compact operator T ∈ B(H) are found
in Subsection 4.2. For T = G, we only have to replace Reλj by Reλj,k = λj,k as well as χj and ψj by ϕj,k, k = 1, 2.
The details are left to the reader.

6.5 Illustrative Examples with Generalized Rayleigh Quotients for the Eigenvalues

From Theorem 3.1 for j = 1 and (3.2), we obtain

Reλ1 = max
(u,v)�0

u∈Mχ,1,R,v∈Mψ,1,R

Re (Tu, v)

(u, v)
= max

(u,v)�0
u∈Nχ,R,v∈Nψ,R

Re (Tu, v)

(u, v)
.

Now, we apply this to T = G and take into account that the eigenvalues of T = G are positive. Thus, Reλ1(T ) = λ1(G),
and we obtain

0 <
(Tu, v)

(u, v)
=

(Gu, v)

(u, v)
< λ1(G), u ∈ Nχ,R, v ∈ Nψ,R .

The following examples are similar to those in [18, Subsection 8.4] in the case of a diagonalizable matrix T = G = A.

More precisely,

λj = λj(T ) = λj(G) =
1

kj
=

l2

π2

1

j2
, j ∈ J,

and
ϕj,1(x, t) = ŵ sin jπ xl · ŷj,1 e

δ t sinωd,jt ,

ϕj,2(x, t) = ŵ sin jπ xl · ŷj,2 e
δ t cosωd,jt ,

x ∈ [0, l], t ∈ [0,∞) with

ωd,j =
√
ω2
j − δ2, ω2

j = ω2j2

and

ŵ =

√
2

l
, ŷj,1 =

2
√
−δ ωj√
ω2
j − δ2

, ŷj,2 =
2
√
−δ ωj√
ω2
j + δ2

, j ∈ J .

Remark: At this point, it becomes clear that the basis functions yj,1(t) = ŷj,1 e
δ t sinωd,jt and yj,2(t) = ŷj,1 e

δ t cosωd,jt
cannot be called eigenfunctions in our setting: they are just multiples depending on T = G of the eigenfunctions
wj(x) = ŵ sin jπ xl . �

As to the spaces Nχ,R and Nψ,R, they both are equal to

Nϕ,R := [ϕ1,1, ϕ1,2; ϕ2,1, ϕ2,2; ϕ3,1; ϕ3,2; . . . ]R .

Now, let
u1 = −5ϕ1,1 + 3ϕ3,2,
v1 = −4ϕ1,1 + 2ϕ3,2.

Then u1, v1 ∈ Nϕ,R as well as (u1, v1)� 0, and one obtains

(Tu1, v1) = (−5λ1 ϕ1,1 + 3λ3 ϕ3,2,−4ϕ1,1 + 2ϕ3,2)

= 20λ1 ‖ϕ1,1‖2 − 10λ1 (ϕ1,1, ϕ3,2)− 12λ3 (ϕ3,2, ϕ1,1) + 6λ3 ‖ϕ3,2‖2

= 20λ1 + 6λ3

since ‖ϕ1,1‖ = ‖ϕ3,2‖ = 1 and (ϕ1,1, ϕ3,2) = (ϕ3,2, ϕ1,1) = 0. Therefore,

0 <
(Tu1, v1)

(u1, v1)
=

20λ1 + 6λ3
20 + 6

≤ 20λ1 + 6λ1
20 + 6

= λ1 =
l2

π2
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so that

(Tu1, v1)

(u1, v1)
∈
[
0;
l2

π2

]
.

Let
u2 = 3ϕ2,1,
v2 = −4ϕ4,1 + 2ϕ2,1.

Then u2, v2 ∈ Nϕ,R as well as (u2, v2)� 0, and one obtains

(Tu2, v2) = (3λ2 ϕ2,1,−4ϕ4,2 + 2ϕ2,1)

= −12λ2 (ϕ2,1, ϕ4,2) + 6λ2 ‖ϕ2,1‖2

= 6λ2

since ‖ϕ2,1‖ = 1 and (ϕ2,1, ϕ4,2) = 0. Therefore,

0 <
(Tu2, v2)

(u2, v2)
=

6λ2
6

<
6λ1

6
= λ1 =

l2

π2

so that

(Tu2, v2)

(u2, v2)
∈
[
0;
l2

π2

]
.

Let
u3 = −5ϕ1,1 + 3ϕ2,1 − 4ϕ3,2,
v3 = −4ϕ1,1 + 2ϕ2,1 − 2ϕ3,2.

Then u3, v3 ∈ Nϕ,R as well as (u3, v3)� 0, and one obtains

(Tu3, v3) = (−5λ1 ϕ1,1 + 3λ2 ϕ2,1 − 4λ3 ϕ3,2,−4ϕ1,1 + 2ϕ2,1 − 2ϕ3,2)

= 20λ1 + 6λ2 + 8λ3

since ‖ϕ1,1‖ = ‖ϕ3,2‖ = 1 and (ϕ1,1, ϕ2,1) = (ϕ1,1, ϕ3,2) = (ϕ2,1, ϕ3,2) = 0. Therefore,

0 <
(Tu3, v3)

(u3, v3)
=

20λ1 + 6λ2 + 8λ3
20 + 6 + 8

<
20λ1 + 6λ1 + 8λ1

20 + 6 + 8
= λ1 =

l2

π2

so that

(Tu3, v3)

(u3, v3)
∈
[
0;
l2

π2

]
.

Let
u4 = −5ϕ1,1 + 3ϕ2,2,
v4 = −2ϕ2,1.

Then u4, v4 ∈ Nϕ,R, but (u4, v4) 6� 0, and one obtains

(Tu4, v4) = (−5λ1 ϕ1,1 + 3λ2 ϕ2,2,−2ϕ2,2)

= −6λ2

since ‖ϕ2,2‖ = 1 and (ϕ1,1, ϕ2,2) = 0. Therefore,

0 <
(Tu4, v4)

(u4, v4)
=
−6λ2
−6

= λ2 < λ1 =
l2

π2
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so that

(Tu4, v4)

(u4, v4)
∈
[
0;
l2

π2

]
even though (u4, v4) 6� 0.

Let
u5(x, t) = w2(x) z2,1(t) = ŵ sin 2 π

l x · ẑ2,1 e
δ t sin(ωd,2 t+ α2) ,

v5(x, t) = w2(x) z2,2(t) = ŵ sin 2 π
l x · ẑ2,2 e

δ t cos(ωd,2 t+ α2) ,

x ∈ [0, l], t ∈ [0,∞) with

α2 =
1

2
arctan

(ωd,2
δ

)
< 0

so that, due to Subsection 6.2, (viii),
(z2,1, z2,2)L2(0,∞) = 0 .

One has

sin(ωd,j t+ αj) = sinωd,j t cosαj + cosωd,j t sinαj ,

cos(ωd,j t+ αj) = cosωd,j t cosαj − sinωd,j t sinαj ;

set j = 2 and
s2 = sinα2, c2 = cosα2 .

Then,
u5(x, t) = w2(x) z2,1(t) = ŵ sin 2 π

l x · ẑ2,1 e
δ t [c2 sinωd,2 t+ s2 cosωd,2 t] ,

= w2(x)
ẑ2,2 c2
ŷ2,1

y2,1(t) + w2(x)
ẑ2,1 s2
ŷ2,2

y2,2(t)

=
ẑ2,1 c2
ŷ2,1

ϕ2,1(t) +
ẑ2,1 s2
ŷ2,2

ϕ2,2(t)

v5(x, t) = w2(x) z2,2(t) = ŵ sin 2 π
l x · ẑ2,2 e

δ t , [−s2 sinωd,2 t+ c2 cosωd,2 t] ,

= w2(x)
ẑ2,2 (−s2)

ŷ2,1
y2,1(t) + w2(x)

ẑ2,1 c2
ŷ2,2

y2,2(t)

=
ẑ2,1 (−s2)

ŷ2,1
ϕ2,1(t) +

ẑ2,1 c2
ŷ2,2

ϕ2,2(t)

so that
u5 = β2,1 ϕ2,1 + β2,2 ϕ2,2 ,
v5 = γ2,1 ϕ2,1 + γ2,2 ϕ2,2

with

β2,1 =
ẑ2,1 c2
ŷ2,1

> 0, β2,2 =
ẑ2,2 s2
ŷ2,2

< 0,

γ2,1 =
ẑ2,1 (−s2)

ŷ2,1
> 0, γ2,2 =

ẑ2,2 c2
ŷ2,2

> 0,

since s2 = sinα2 < 0 and c2 = cosα2 > 0. Thus, u5, v5 ∈ Nϕ,R, but (u5, v5) 6� 0. Here,

(u5, v5) = ‖w‖2L2(0,l)
(z2,1, z2,2)L2(0,∞) = 1 · 0 = 0

so that
(Tu5, v5)

(u5, v5)
is not defined ,

which is not surprising since (u5, v5) 6� 0.
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7 Conclusion

In this paper, the boundary value problem (BVP) −u′′(x, t) = −mü(x, t)−b u̇(x, t), u(0, t) = u(l, t) = 0 presented in a
book by L. Collatz is taken up describing the damped vibration of a string. Whereas there, this problem is transformed
into a quadratic eigenvalue problem (BEVP) with complex eigenvalues, here it is cast into a symmetric boundary
eigenvalue problem with positive eigenvalues and real eigenfunctions. The main reason for this difference is that, in the
book by Collatz - after separation of the variable u(x, t) = w(x) y(t) -, the differential expression mÿ(t)+b ẏ(t)+k y(t)
with the time derivatives are at the center of the consideration leading with the ansatz y(t) = ŷ eλ t to the quadratic
eigenvalue problem (mλ2 + b λ + k)ŷ = 0, whereas in this paper, the differential expression −u′′(x, t) with space
derivative is concentrated on leading - after separation of variables - to the BEVP −w′′(x) = k w(x), w(0) = w(l) = 0.
We have seen that the eigenvalues in Collatz[ 6] are complex-conjugate and the pertinent eigenfunctions are complex,
but allow to construct real eigenfunctions yj,1(t), yj,2(t). In our approach, however, these real functions yj,1(t), yj,2(t)
are used only as multiples to the eigenfunctions wj(x) yielding the eigenfunctions χj,1(x, t) = yj,1(t)wj(x), χj,2(x, t) =
yj,2(t)wj(x). Therefore, we called yj,1(t), yj,2(t) merely basis functions, but not eigenfunctions because they are not
eigenfunctions in our setting. A further difference is that, there, no expansion theorems occur, whereas, in our paper,
the inverse T = G of the considered differential operator L is determined, and a BEVP is formulated such that it can
be investigated by using functional-analytic methods. This leads to expansion theorems for the inverse operator T = G
in series of eigenvectors as well as max-, min-max-, min-, and max-min-formulas for generalized Rayleigh quotients.
Another important point is that we illustrate the results on the generalized Rayleigh quotients by specific examples
that underpin the theoretical findings. Finally, we point out that the results can also be applied to other damped
vibrations such as torsional vibrations of rods and shafts as well as to the telegraph equation.
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