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Abstract:

This study sheds light upon solving non-linear time fractional Fisher partial differential equations by adapting
analytical series solutions. What increase the accuracy of the result is that many authors in their formulas adapt the
caputo fractional derivation. Precise analytical and numerical solution for these equations is obtained as influential
tool which is known as LRPS. This is a novel method which is introduces by those authors. Precision, effectiveness,
and practical application are highly considered by LRPS, and this what makes it applicable and suitable for different
fields such as engineering, physics, and finance. Because of the approach's accuracy, effectiveness and application, it
is noted that if there is a pattern in the parts of the series, accurate solution will be achieved, while approximate
estimates are provided otherwise. Consequently, for solving non-linear time fractional Fisher partial differential
equations the LRPS method is made and produced as one of significant and technique.

This ensures the accuracy of the solutions obtained and allows for further modifications and improvements to
address this type of problem effectively. The obtained results demonstrate the suitability and efficiency of the
proposed LRPS method for solving non-linear time fractional Fisher partial differential equations.
Key word: fractional Fisher equations, LRPS method, Inverse of Laplace transform.

1. Introduction:

Economics, biochemistry, operational research and other scientific areas are the main reasons why they can
effectively get used to indicators and derivatives [1-5], that is due to the fact that this is due to the fact that moderate
modeling in the acceptable real world depends on the current time and the date of the previous age, which can be
completed with indicators [6-9].

As a result, many scientific and engineering scientists focus on the evaluation of differential equation (FDE), while
creating procedures for linear and non -linear problems and talking about dynamic systems. In addition, FDE
solutions have been studied using approximation and numerical methods [10-13]. Many academics are interested in
the topic of Fractional Initial Value Problems (FIVPs), which are extensions of standard initial value problems that
can capture certain real-life features more realistically than standard DE. A lot of attention has been paid to the
concepts of existence and existence of FIVP structural solutions [2, 14-16]. Indeed, analytical and numerical
methods have been developed to examine different types of FPDE responses. For example, pseudo spectral
strategy, transform homotopy evaluation method, wavelet transform variance method, iterative expansion method,
sharpened Adomian method and homotopy analysis method [17-22]. RPS extensions have been observed in several
PDEs, especially partial PDEs. The fractional time diffraction PDE, the KdV-Burger formula and the fractional
Boussinesq formula are some examples [1,23,24]. More recently, the LRPS approach has been adopted. It was first
proposed and demonstrated by [25]. The LRPS method combines the Laplace transform method and the RPS
method by transforming the central problem into the Laplace domain and generating a new algebraic solution
formula to provide accurate results in the form of a faster power set (FPS) approximation. The values   obtained by
the Laplacian inversion can then be used to solve the identification challenge. The unknown parameters of the
proposed Laplace expansion can be expressed using the concept of limits, in contrast to the concept of FRPS,
which, according to the derivative, requires the calculation of many fractional derivatives that are consumed step
by step to find the solution.

In this paper, we present a new unbiased method, namely LRPS, which is a powerful tool for the accurate analysis
and numerical solution of these problems. By leading by example, we emphasize accuracy, efficiency and style of
application. We can find exact answers if there is a pattern between the parts of the series, or we can only provide
approximate data.

2. Fundamentals of fractional arithmetic concepts

There are several ways to define partial integrals of sequences, and they are not all interchangeable. Riemann
defined the Liouville concept and the Caputo concept as the two most commonly used types.
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Definition 2.1 [26] The Mittag-Leffler formula defined bellow:

𝐸
β

𝑡( ): =
𝑘=0

∞

∑   𝑡𝑘

Γ β𝑘+1( ) ,  β > 0
(1)

Definition 2.2 [26] The integral of the Riemann-Liouville time-fractional operator with a positive , applied to theα
multivariable function with , is formulated as follows:Φ(𝑥,  𝑡) 𝑡 > 0

𝐽
𝑡
αΦ 𝑥, 𝑡( ) = 1

Γ(α)
0

𝑡

∫   (𝑡 − κ)α−1Φ 𝑥, 𝑡( )𝑑κ,   
(2)

Definition 2.3 [25] The derivative of the Caputo time-fractional operator with an value between ,α η − 1 < α < η
applied to the multivariable function , isΦ(𝑥,  𝑡)

𝐷αΦ 𝑥, 𝑡( ) = {𝐽
𝑡
η−α ∂η

∂𝑡η Φ 𝑥, 𝑡( ),  η − 1 < α < η ,  ∂η

∂𝑡η Φ 𝑥, 𝑡( ),  α = η.  (3)

Definition 2.4 [25] For the given improper integral:

Ω 𝑥, 𝑠( ) =
0

∞

∫  𝑒−𝑠𝑡Φ 𝑥, 𝑡( )𝑑𝑡,
(4)

If the improper integral exists for all s, then it represents the Laplace transform of the function . The LaplaceΦ 𝑥, 𝑡( )
transform of is denoted as .Φ(𝑥,  𝑡) 𝐿 Φ 𝑥, 𝑡( )[ ] 𝑥, 𝑠( )

Moreover, by utilizing the provided inverse Laplace transform, the original function can be retrieved fromΦ 𝑥, 𝑡( )
its Laplace transform .Ω 𝑥, 𝑠( )

Φ 𝑥, 𝑡( ) =
−∞

∞

∫  𝑒𝑠𝑡Ω 𝑥, 𝑠( )𝑑𝑠,
(5)

Theorem 2.5 [25] Given that represents the Laplace transform of , and represents the LaplaceΩ 𝑥, 𝑠( ) Φ 𝑥, 𝑡( ) Ω 𝑥, 𝑠( ) 
transform of , let us consider the following characteristics, where , and are constants:Φ 𝑥, 𝑡( ) ξ, ν, µ  ς

1. for𝐿[ξΦ(𝑥, 𝑡) + νφ(𝑥, 𝑡)] = ξ𝐿[Φ(𝑥, 𝑡)] + ν𝐿[φ(𝑥, 𝑡)] = ξΩ(𝑥, 𝑠) + νΡ(𝑥, 𝑠)  ξ 𝑎𝑛𝑑 ν ∈𝑅.

2. 𝐿−1[ξΩ(𝑥, 𝑠) + νΡ(𝑥, 𝑠)] = ξ𝐿−1[Ω(𝑥, 𝑠)] + ν𝐿−1[Ρ(𝑥, 𝑠)] = ξΦ(𝑥, 𝑡) + νφ(𝑥, 𝑡),  𝑓𝑜𝑟 ξ 𝑎𝑛𝑑 ν ∈𝑅.

3. 𝐿 𝑒 ς𝑡Φ 𝑥, 𝑡( )[ ] = Ω 𝑠 − λ( ).

4. .𝐿[ψ(µ𝑥, µ𝑡)] = 1
µ Ψ 𝑥

µ , 𝑠
µ( ), µ > 0

5. 𝑙𝑖𝑚
𝑠→∞

 𝑠Ω(𝑥, 𝑠) = Φ(𝑥, 0).

6. 𝐿 ∂
𝑡
𝑛Φ 𝑥, 𝑡( )⎡⎢⎣

⎤⎥⎦ = 𝑠𝑛Ω 𝑥, 𝑠( ) −
𝑗

𝑛−1

∑ 𝑠𝑛−𝑗−1∂
𝑡
𝑗Φ 𝑥, 0( ) .

Definition 2.6 [27] A fractional series defined as:

𝑛=0

∞

∑  ℎ
𝑛

𝑥( ) 𝑡 − 𝑡
0( )𝑛α = ζ

0
+ ζ

1
𝑡 − 𝑡

0( )α + ζ
2

𝑡 − 𝑡
0( )2α + …, (6)

The condition establishes fractional power series (FPS) with respect to , where t₀ serves as a reference point. 𝑡 ≥ 𝑡₀ 𝑡
0

Within this series, the coefficients are functions dependent on the variable .ℎ
𝑛

𝑥( ) 𝑥

Theorem 2.7 [25] The Laplace transform of the function can be expressed as the following manner:Ω 𝑥, 𝑠( ) Φ 𝑥, 𝑡( ) 

Ω(𝑥, 𝑠) =
𝑛=0

∞

∑  
ℎ

𝑛
𝑥( )

𝑠𝑛α+1 , 0 < α≤1, 𝑠 > 0.
(7)

Thus, .ℎ
𝑛

𝑥( ) = 𝐷
𝑡
𝑛αΦ( )(0)
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Lemma 2.8 [25] The inverse Laplace transform as described in Theorem 2.7, exhibits a specific form or type in
subsequent calculations.

Φ(𝑥,  𝑡) =
𝑛=0

∞

∑  
𝐷

𝑡
𝑛αΦ 𝑥,0( )

Γ 𝑛α+1( ) 𝑡𝑛α, 0 < α≤1, 𝑡≥0.
(8)

3. LRPS Technique to Construct Series Solution to Time Fractional Fisher Partial Differential Equations:

In this section, we will outline the procedure for solving non-linear time fractional Fisher partial differential
equations using the LRPS (Laplace-RPS) technique. The main objective of the LRPS technique is to analytically solve
non-linear equations by initially applying the Laplace transform to the time fractional Fisher partial differential
equations and subsequently utilizing the RPS technique. The findings presented in reference [30] demonstrate that
the obtained results are then converted back to the original domain.

To proceed, let us rephrase formula of Time Fractional Fisher as follows:

𝐷
𝑡
α𝑢 𝑥, 𝑡( ) = ρα𝑢

𝑥𝑥
𝑥, 𝑡( ) + 6𝑢 𝑥, 𝑡( ) − 6𝑢2 𝑥, 𝑡( ),    𝑡 > 0, ρ > 0, 0 < α≤1, (9)

where:

𝑢(𝑥, 0) =  ς(𝑥),
(10)

To begin, we utilize the Laplace transform (LT) on Eq. (9) to obtain:

𝐿 𝐷
𝑡
α𝑢 𝑥, 𝑡( )⎡⎢⎣

⎤⎥⎦ = ρα𝐿 𝑢
𝑥𝑥

𝑥, 𝑡( )[ ] + 6𝐿 𝑢 𝑥, 𝑡( )[ ] − 6𝐿 𝐿−1 𝑈 𝑥, 𝑠( )[ ]( )
2⎡

⎢
⎣

⎤
⎥
⎦
,

𝑡 > 0, 𝑠 > 0,  ρ > 0,  0 < α≤1,

(11)

By employing Lemma 2.8, we can establish Eq. (11) in the following manner:

(12)

By dividing Eq. (12) by and incorporating the initial condition from Eq. (10), we obtain the following form:𝑠α

𝑈 𝑥, 𝑠( ) =  ς(𝑥)
𝑠 + ρα

𝑠α 𝑈
𝑥𝑥

𝑥, 𝑠( ) + 6

𝑠α 𝑈 𝑥, 𝑠( ) − 6

𝑠α 𝐿 𝐿−1 𝑈 𝑥, 𝑠( )[ ]( )
2⎡

⎢
⎣

⎤
⎥
⎦
,       𝑠 > 0.

(13)

Now let's examine the subsequent outcome derived from Eq. (13):

𝑈(𝑥, 𝑠) =
𝑗=0

∞

∑
 ς

𝑗
(𝑥)

𝑠1+α𝑗  , 𝑠 > 0. (14)

The series that is truncated at the k-th term, as described in (14), can be expressed as follows:

𝑈
𝑘
(𝑥, 𝑠) =  ς(𝑥)

𝑠 +
𝑗=1

𝑘

∑
 ς

𝑗
(𝑥)

𝑠1+α𝑗  , 𝑠 > 0.
(15)

To determine the unknown value of the parameter for , , the major techniques of LRPS, such as the ς
𝑗
(𝑥) ) 𝑗 = 1, 2,...

LRF presented in (13), can be defined as follows:

The k-th of LRF can be defined as follows:

(16)
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(17)

Assuming that , Eq. (17) yields the results that follow:𝑈
1

𝑥, 𝑠( ) =  ς(𝑥)
𝑠 +

 ς
1
(𝑥)

𝑠1+α

(18)

By performing the operations in (18), we can derive the following simplified expression:

(19)

Then, multiplying by both sides of Eq. (19), we obtain:𝑠1+α

(20)

It is obvious that for and . , . As a result,𝑠 > 0 𝑘 = 0, 1, 2, 3, … 𝐿𝑖𝑚
𝑘→∞

𝐿𝑅𝑒𝑠
𝑘

𝑥, 𝑠( ) = 𝐿𝑅𝑒𝑠 𝑥, 𝑠( ) 𝐿𝑅𝑒𝑠 𝑥, 𝑠( ) = 0

Additionally, it was established [25] and 𝐿𝑖𝑚
𝑠→∞

𝑠𝑘𝐿𝑅𝑒𝑠 𝑥, 𝑠( )( ) = 0.

𝐿𝑖𝑚
𝑠→∞

𝑠𝑘+1𝐿𝑅𝑒𝑠 𝑥, 𝑠( )( ) = 𝐿𝑖𝑚
𝑠→∞

𝑠𝑘+1𝐿𝑅𝑒𝑠
𝑘

𝑥, 𝑠( )( ) = 0, 𝑘 = 1, 2, 3,..

By solving the provided formula for , we can quickly determine its value. ς
1
(𝑥)

0 =− ρα ς''(𝑥) + 6  ς (𝑥)( )2 + 6 ς (𝑥) +  ς
1
(𝑥). (21)

It is simple to get the following by calculating in the ensuing algebraic formula (21). ς
1
(𝑥)

 ς
1
(𝑥) = ρα ς''(𝑥) − 6  ς (𝑥)( )2 − 6 ς (𝑥). (22)

The 2nd-truncated series of Eq. (17), , 𝑈
2

𝑥, 𝑠( ) =  ς(𝑥)
𝑠 +

 ς
1
(𝑥)

𝑠1+α +
 ς

2
(𝑥)

𝑠1+2α

The obtained value of is then substituted into the 2nd-LRF to calculate the value of the next unknown ς
2
(𝑥)

parameter using the following procedure: ς
2
(𝑥)
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(23)

By manipulating the operators described in (23), we can simplify the expression and arrive at the following more
concise form:

(24)

The outcome obtained by performing the multiplication operation with both sides of (24), is:𝑠1+2α 

(25)

It is obvious that for and . , . As a result,𝑠 > 0 𝑘 = 0, 1, 2, 3, … 𝐿𝑖𝑚
𝑘→∞

𝐿𝑅𝑒𝑠
𝑘

𝑥, 𝑠( ) = 𝐿𝑅𝑒𝑠 𝑥, 𝑠( ) 𝐿𝑅𝑒𝑠 𝑥, 𝑠( ) = 0

Additionally, it was established [25] and 𝐿𝑖𝑚
𝑠→∞

𝑠𝑘𝐿𝑅𝑒𝑠 𝑥, 𝑠( )( ) = 0.

𝐿𝑖𝑚
𝑠→∞

𝑠𝑘+1𝐿𝑅𝑒𝑠 𝑥, 𝑠( )( ) = 𝐿𝑖𝑚
𝑠→∞

𝑠𝑘+1𝐿𝑅𝑒𝑠
𝑘

𝑥, 𝑠( )( ) = 0, 𝑘 = 1, 2, 3,..

To derive the subsequent formula, we can evaluate the limit as on both sides of (25), and then proceed with𝑠→∞
the following steps:

0 =− ρα ς''
1
(𝑥) + 12 ς (𝑥) ς

1
(𝑥) − 6 ς

1
(𝑥) +  ς

2
(𝑥). ς (26)

When we solve the algebraic equation that follows from , we get: ς
2
(𝑥)

 ς
2
(𝑥) = ρα ς''

1
(𝑥) + 6 ς

1
(𝑥) − 12 ς (𝑥) ς

1
(𝑥). (27)

Following the previous steps, we substitute the 3rd-truncated series from (17),

into the 3rd-LRF to calculate the value of the , using the following𝑈
3

𝑥, 𝑠( ) =  ς(𝑥)
𝑠 +

 ς
1
(𝑥)

𝑠1+α +
 ς

2
(𝑥)

𝑠1+2α +
 ς

3
(𝑥)

𝑠1+3α  ς
3
(𝑥)

procedure:
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By performing the operations specified in (28), we can simplify the expression and obtain the following simplified
form:

Multiplying by both sides of the Eq. (29), we get:𝑠1+3α

(30)

It is obvious that for and . , . As a result,𝑠 > 0 𝑘 = 0, 1, 2, 3, … 𝐿𝑖𝑚
𝑘→∞

𝐿𝑅𝑒𝑠
𝑘

𝑥, 𝑠( ) = 𝐿𝑅𝑒𝑠 𝑥, 𝑠( ) 𝐿𝑅𝑒𝑠 𝑥, 𝑠( ) = 0

Additionally, it was established [25] and 𝐿𝑖𝑚
𝑠→∞

𝑠𝑘𝐿𝑅𝑒𝑠 𝑥, 𝑠( )( ) = 0.

𝐿𝑖𝑚
𝑠→∞

𝑠𝑘+1𝐿𝑅𝑒𝑠 𝑥, 𝑠( )( ) = 𝐿𝑖𝑚
𝑠→∞

𝑠𝑘+1𝐿𝑅𝑒𝑠
𝑘

𝑥, 𝑠( )( ) = 0, 𝑘 = 1, 2, 3,..

Using the above fact and take for each side of Eq. (30), we obtain:𝐿𝑖𝑚
𝑠→∞
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0 =− ρα ς''
2
(𝑥) +

6Γ (2α+1)  ς
1
(𝑥)( )2

Γ (α+1)2 + 12 ς (𝑥) ς
1
(𝑥) − 6 ς

1
(𝑥) +  ς

3
(𝑥).

(31)

Solving formula (31) for , results in ς
3
(𝑥)

 ς
3
(𝑥) = ρα ς''

2
(𝑥) + 6 ς

1
(𝑥) −

6Γ (2α+1)  ς
1
(𝑥)2( )

Γ (α+1)2 − 12 ς (𝑥) ς
1
(𝑥).

(32)

Once again, we can represent the results of Eq. (14) as an infinite series, which can be expressed as follows:

(33)

Hence, the result of the LRPS for Eqs. (9) and (10) is obtained by employing the inverse LT of (33), which can be

(34)

represented in the following fundamental form:4- Application: Problem 4.1. Given the non-linear Time Fractional
Fisher shown below:

𝐷
𝑡
α𝑢 𝑥, 𝑡( ) = 𝑢

𝑥𝑥
𝑥, 𝑡( ) + 6𝑢 𝑥, 𝑡( ) 1 − 𝑢 𝑥, 𝑡( )( ),    𝑥 ∈ 𝑅,    𝑡 > 0, 0 < α≤   1, (35)

with initial value:

𝑢 𝑥, 0( ) = 1 

1+𝑒𝑥( )
2

(36)

The initial step in implementing the LT on (35) is to transfer it to the Laplace domain according to the following
transformation:

When Eqs. (35) and (36) are liken to Eqs. (9) and (10), We find out that  and  .ρα = 1  ς 𝑥( ) = 1 

1+𝑒𝑥( )
2  
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To shift Eq. (35) to Laplace space, an initial stage is to apply the Laplace transform, as indicated that follow:

𝐿[𝐷
𝑡
α𝑢(𝑥, 𝑡)] = 𝐿 𝑢

𝑥𝑥
𝑥, 𝑡( ) + 6𝑢 𝑥, 𝑡( ) 1 − 𝑢 𝑥, 𝑡( )( )[ ], (37)

Lemma (2.8) (Part 5) states that and applying the requirements of Eq. (37), Eq. (35) may be stated𝑈 𝑥, 𝑠( ) = 𝐿{𝑢 𝑥, 𝑡( )} 
in the following way:

𝑠α𝑈 𝑥, 𝑠( ) − 𝑠α−1 1 

1+𝑒𝑥( )
2 = 𝑈

𝑥𝑥
(𝑥, 𝑠) + 6𝑈 𝑥, 𝑠( ) − 6𝐿 𝐿−1 𝑈 𝑥, 𝑠( ){ }( )

2⎰
⎱

⎱
⎰,   𝑠 > 0.

(38)

By dividing both sides of Eq. (38) we obtain a new form, which is represented as follows:𝑠α ,  

𝑈 𝑥, 𝑠( ) =
1 

1+𝑒𝑥( )
2

𝑠 + 1

𝑠α 𝑈
𝑥𝑥

𝑥, 𝑠( ) + 6

𝑠α 𝑈 𝑥, 𝑠( ) − 6

𝑠α 𝐿 𝐿−1 𝑈 𝑥, 𝑠( ){ }( )
2⎰

⎱
⎱
⎰,

0 < α≤1, 𝑥 ∈ 𝐼,  𝑠 > 0.

(39)

In the subsequent stage, we assume that the solution of in (39) can be represented by FLS expansion, given𝑈 𝑥, 𝑠( ) 
by the following expressions:

Utilizing Lemma (2.9), we can rephrase the first coefficient of (40) as follows:

    𝑈 𝑥, 𝑠( ) =
1 

1+𝑒𝑥( )
2

𝑠 +
𝑗=1

∞

∑
 ς

𝑗
𝑥( )

𝑠1+𝑗α ,  0 < α≤1, 𝑥 ∈ 𝐼,  𝑠 > 0,
(41)

The subsequent definition of the mathematical formula LRF (41) is the third step in the construction of the LRPS appro
ach:

𝐿𝑅𝑒𝑠 𝑥, 𝑠( ) = 𝑈 𝑥, 𝑠( ) −
1 

1+𝑒𝑥( )
2

𝑠 − 1

𝑠α 𝑈
𝑥𝑥

(𝑥, 𝑠) − 6

𝑠α 𝑈 𝑥, 𝑠( ) + 6

𝑠α 𝐿 𝐿−1 𝑈 𝑥, 𝑠( ){ }( )
2⎰

⎱
⎱
⎰,

(42)

Currently, if we utilize the kth-truncated series from Eq (41), we obtain:

𝑈
𝑘

𝑥, 𝑠( ) =
1 

1+𝑒𝑥( )
2

𝑠 +
𝑗=1

𝑘

∑
 ς

𝑗
𝑥( )

𝑠1+𝑗α ,  0 < α≤1, 𝑥 ∈ 𝐼,  𝑠 > 0.
(43)

Consequently, the kth LRFs are

Thus, the following is a series approach to Eq. (40):

(45)
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       𝑈 𝑥, 𝑠( ) =
𝑗=0

∞

∑
 ς

𝑗
𝑥( )

𝑠1+𝑗α ,  0 < α≤1, 𝑥 ∈ 𝐼,  𝑠 > 0,
(40)

𝐿𝑅𝑒𝑠
𝑘

𝑥, 𝑠( ) = 𝑈
𝑘

𝑥, 𝑠( ) −
1 

1+𝑒𝑥( )
2

𝑠 − 1

𝑠α 𝑈
𝑘( )𝑥𝑥

𝑥, 𝑠( ) − 6

𝑠α 𝑈
𝑘

𝑥, 𝑠( )           + 6

𝑠α 𝐿 𝐿−1 𝑈 𝑥, 𝑠( ){ }( )
2⎰

⎱
⎱
⎰,  0 (44)
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We conclude the 4th approximate LRPS finding with Eqs. (35), (36)  in a series type by employing  the opposite  of  LT 
of  Eq. (45). This allows for us to derive:We conclude the 4th approximate LRPS finding with Eqs. (35), (36) in  a  series
typ  by employing the opposite of LT of Eq. (45). This allows for us to derive:

(46)

As a result, the precise answer found in Eq. (46) looks like this:

𝑢 𝑥, 𝑡( ) = 1 

1+𝑒𝑥−5𝑡( )
2

(47)

To evaluate the accuracy of the approximate solution obtained in Eq. (47) and assess the correctness of the
technique, we will examine the numerical results and utilize two error measures as follows:

𝐴𝑏𝑠.  𝐸𝑟𝑟. 𝑥, 𝑡( ) = ω 𝑥, 𝑡( ) − ω
𝑘

𝑥, 𝑡( )| |, (48)

and

where is accurate solution and is an approximation solution of order .ω 𝑥, 𝑡( ) ω
𝑘

𝑥, 𝑡( ) 𝑘

Tables 4.1, 4.2, and 4.3 contain a table with the numerical findings for   for  .𝑢
𝑗
(𝑥, 𝑡) 𝑗 = 4

It is contrasted between estimations of solutions that have known results.

The homotopy perturbation technique and the fractions variational iteration technique [30] were used to arrive at
these findings. [29] and RPSM [28].

The correspondence among the precise outcome of α=1 and the outcome of the fourthapproximation is depicted i
n Figure 4.1, and every graph helps illustrate the related actions of 4th results for various values of alpha.

The region of convergent to Eqs. (35) & (36) if  1 is as indicated in the tableα =
that follows, and the surface plots illustrating the 4th LRPS findings and precise solutions, 𝑢

4
𝑥, 𝑡( )

and the precise outcome, are displayed in Fig. 4.1. 
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𝑅𝑒.  𝐸𝑟𝑟. 𝑥, 𝑡( ) =
ω 𝑥,𝑡( )−ω

𝑘
𝑥,𝑡( )

ω 𝑥,𝑡( )
|||

|||,
(49)
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The graphs also illustrate that the outcomes operate whenever  and .α = 1, ∝ = 0. 75  α = 0. 50 α = 0. 25
Therefore, As α 1, the function exhibits convergence. Conversely, as α 0, the function diverges further.→ → 

Displayed in Figure 4.1 represents the LRPS approximating answer  for ∝𝑢
4

𝑥, 𝑡( ) = 0. 65, 1[ ]
 which approaches the true outcome as α increases.
This graph unequivocally shows that there is a rising precise inaccuracies and a diminishing convergence for
the approximate remedies to the accurate ones when the size of the result increases.

Table 4.1. Numerical comparisons between the exact value of and the 4th-𝑢(𝑥, 𝑡)

approximation of at𝑢
4
(𝑥, 𝑡) α = 1

𝑥 𝑡 𝑢
4

𝑥, 𝑡( ) 𝑢(𝑥, 𝑡) Re. Err. Abs. Err.

0. 5 0. 01 0.151602 0.151602 2. 28746×10−7 3. 46783×10−8

0. 05 0.191713 0.191689 1. 2251×10−4 2. 34838×10−5

0. 1 0.250483 0.25 1. 93108×10−3 4. 82771×10−4

0. 15 0.318677 0.316042 8. 33757×10−3 2. 63503×10−3

0. 2 0. 395971 0.387456 2. 19785×10−2 8. 51568×10−3

Employing the previously indicated recurring directions, we are able to illustrate certain graphics implications of Eqs. 
(35) & (36) in Figure 4.1 to give the following succinct overview of the subject in our job:

Table 4.3. Comparison among approximate solutions among , , at𝑢
𝐿𝑅𝑃𝑆

𝑢
𝑅𝑃𝑆

𝑢
𝐹𝑉𝐼𝑀

 𝑎𝑛𝑑 𝑢
𝐻𝑃𝑀

𝑥 = 0. 5
and α = 0. 5

𝑥 𝑡 𝑢
𝐿𝑅𝑃𝑆

[8]𝑢
𝑅𝑃𝑆

[64]𝑢
𝐹𝑉𝐼𝑀

[51]𝑢
𝐻𝑃𝑀

0. 5 0.01 0.280272 0.281524 0.125003 0.157224
0.05 0.531906 0.563205 0.316523 0.177994
0.1 0.7312 0.856396 0.450853 0.195594
0.15 0.848702 1.13039 0.528601 0.210357
0.2 0.894364 1.39515 0.567751 0.22369
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Table 4.2. Comparison among approximate solutions among , , at and𝑢
𝐿𝑅𝑃𝑆

𝑢
𝑅𝑃𝑆

𝑢
𝐹𝑉𝐼𝑀

 𝑎𝑛𝑑 𝑢
𝐻𝑃𝑀

𝑥 = 0. 5 α = 0. 75

𝑥 𝑡 𝑢
𝐿𝑅𝑃𝑆

[29]𝑢
𝑅𝑃𝑆

[30]𝑢
𝐹𝑉𝐼𝑀

[31]𝑢
𝐻𝑃𝑀

0. 5 0.01 0.175961 0.175966 0.0242651 0.146808

0.05 0.276696 0.277218 0.0818379 0.157343

0.1 0.402725 0.406898 0.139343 0.168312

0.15 0.532175 0.54626 0.186505 0.178529

0.2 0.662269 0.695654 0.224693 0.188419
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Figure 4.1. The 3D graphic for the exact solution  and the  approximate solution of𝑢(𝑥, 𝑡) 𝑢
4
(𝑥, 𝑡)

the time-fractional Fisher equation: (a)   when  (b) 𝑢
4

𝑥, 𝑡( ) ,  α = 1 𝑢 𝑥, 𝑡( ) 
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, (c)  when  (d)    ,when  .,                     𝑖𝑠 𝑒𝑥𝑎𝑐𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑢
4

𝑥, 𝑡( ) ,  α = 0. 75 , 𝑢
4
(𝑥, 𝑡) α = 0. 90

(e)   when  , (f)    when                       , 𝑢
4

𝑥, 𝑡( ), α = 0. 50 𝑢
4
(𝑥, 𝑡) α = 0. 50.

5- Conclusions

This research introduces LRPS, a novel analytical-numerical method that proves to be a valuable tool for solving
non-linear time fractional Fisher partial differential equations. By employing this approach, the non-linear time
fractional Fisher partial differential equations are numerically solved, leading to accurate results. Our proposed
approach successfully identifies approximate methods that exhibit fast series convergence, facilitated by easily
calculable components. The results demonstrate the high effectiveness of our proposed approach, which yields
estimated solutions that closely match the exact solutions with acceptable error rates.
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