DOI: https://doi.org/10.24297/jam.v22i. 9552
Linear Preserves of BP-quasi invertible elements in JB*-algebras

Haifa M. Thalawi ${ }^{1}$

${ }^{1}$ Department of Mathematics, Faculty of Science, King Saud University, Saudi Arabia
(Received: Month / Year. Accepted: Month / Year)

Abstract

In this note, we study one of the main outcomes of the Russo-Dye Theorem of JB*-algebra: a linear operator that preserves Brown-Pedersen-quasi invertible elements between two JB*-algebras is characterized by a Jordan *-homomorphism. Earlier, in C*-setting of algebras, Russo and Dye gave a characterization of any linear operator that maps unitary elements into unitary elements; namely a Jordan *-homomorphism. Special sorts of linear preservers between C*-algebras and between JB*-triples were introduced by Burgos et al. As a result, if G is a linear operator between two JB*-algebras having non-empty sets of extreme points of the closed unit sphere that preserves extreme points, then there exists a Jordan $*$-homomorphism $\boldsymbol{\Phi}$ which also preserves extreme points and characterizes the linear operator G. We also explore the connection between linear operators that strongly preserve Brown-Pedersen-quasi invertible elements between two JB*-triples and the λ-property of both JB*-triples. Other geometric properties, such as extremally richness and the Bade property of two JB*-algebras or triples under linear preservers, are to be elaborated on in forthcoming research.

Keywords: Authors should include three to five keywords.

Introduction

In [4], Burgos et al. studied linear operators strongly preserving Brown-Pedersen quasi invertibility between C*-algebras considered as JB*-triples and they proved that it is a triple homomorphism. They discussed a consequence of this result that concerns only C^{*}-algebras; if G is a linear operator strongly preserving Brown-Pedersen-quasi invertible elements (BP-quasi invertible, for short) between two unital C^{*}-algebras A and B, authors proved that there is a Jordan *-homomorphism $\phi: A \rightarrow B$ that satisfies $G(a)=G(e) \phi(a)$ for every $a \in A$ where e is the unit of A. They also explored other types of linear operators between some Jordan algebra structures that preserve; Bergmann-zero pairs, BP -quasi invertible elements and extreme points [4].

In this note, we studied a linear operator between JB*-algebras mapping a fixed extreme point of the closed unit sphere of one JB*-triple onto a fixed extreme point of the other, and we deduced analogous of Burgos et al. conclusion.

The set, A_{q}^{-1} of all BP-quasi invertible elements in a unital C ${ }^{*}$-algebra A was originally initiated by L. G. Brown and G. K. Pedersen. Several equivalent conditions were given [2, Theorem 1.1] so that an element is BP-quasi invertible. In particular, they demonstrated that such elements are obtained using invertibility notion by the form $A_{q}^{-1}=A^{-1} \operatorname{ext}\left(A_{1}\right) A^{-1}$), where $\operatorname{ext}\left(A_{1}\right)$ is the class of extreme points of the closed unit sphere of A. Further, $a \in A$ is BP-quasi invertible if and only if, the binary operator $B(a, b)$ (defined in section 2) vanishes for some $b \in A$ [8, Theorem 11].

Authors in [15, Theorem 6] expanded this special invertibility notion to any JB*-triple. They implemented the known Bergmann operator so that an element a in a JB*-triple J is BP -quasi invertible if there is some element $b \in J$, such that $B(a, b)=0$. Note that, whenever $B(a, b)$ vanishes for some $a, b \in J, B(a, Q(b)(a))$ also vanishes. Therefore, for any BP- quasi inverse b of a is not the only one in general and, $Q(b)(a)$ is another BP-quasi inverse of a.

Another characterization of this notion stated in [15, Theorems 6 and 11], using the von Neumann regularity and the range tripotent $r(a)$ obtained from any element, a in a JB*-triple J so that a must be von Neumann regular element and $r(a)$ is in fact an extreme point of the closed unit sphere of J. Every von Neumann regular element a in J has a unique commuting normalized generalized inverse symbolized by a^{\wedge}. Among others, the set, J_{q}^{-1}, of all BP-quasi invertible elements in J properly includes the family of all regular (invertible and von Neumann regular) elements and the class of all extremes, $\operatorname{ext}\left(J_{1}\right)$.

In section 3, we established that a strongly preserving BP-quasi invertibility linear operator, $G: J \rightarrow H$ between two JB*-triples J and H with $\operatorname{ext}\left(J_{1}\right) \neq \emptyset$, and $u \in J$ is a unitary element (thus, J is a JB*-algebra), then there exists a Jordan *-homomorphism $\Phi: J \rightarrow H$ such that $G(a)=G(u) \Phi(a), \forall a \in J$.

Preliminaries

In this section, we scan the main concepts used in this note. To begin with, a commutative algebra J (which is in general not associative) with a binary product ${ }^{\circ}$, defined on a scalar field of characteristic other than 2 and satisfying the identity $a^{2} \circ(a \circ b)=\left(a^{2} \circ b\right) \circ a$ for all $a, b \in J$, where a^{2} means $a \circ a$, is called a Jordan algebra.
The binary product $a \circ b=1 / 2(a b+b a)$ induced from the associative product $a b$, between elements a and b in any algebra A, defines the special Jordan algebra A^{+}, with the same linear space structure A (cf. [5]). If (J, \circ) is any Jordan algebra, then we can define Jordan triple product $\{a, b, c\}=(a \circ b) \circ c+(c \circ b) \circ a-(a \circ c) \circ b$ on J so that it is linear symmetric in a, c and linear or anti-linear in the variable b. If one of the three variables is the unit e, this triple product reduces to the original binary Jordan product (see [5]).

On any Jordan algebra, we have the following fundamental operators: $V_{a, b}(x)=\{a, b, x\}$ and $U_{a, b}(x)=\{a, x, b\}=V_{a, x}(b)$. The short symbol U_{a} is used for the operator $U_{a, a}$. An element a in a Jordan algebra J (with unit e) is invertible if it satisfies that $a \circ a^{-1}=e$ and $a^{2} \circ a^{-1}=a$ for some element $a^{-1} \in J$. Equivalently, a is invertible $\Leftrightarrow U_{a}$ is invertible and $U_{a}^{-1} a=a^{-1}$ [6, Theorem 13].

The involution map ${ }^{*}: J \rightarrow J$ is defined on Jordan algebra J such that for any $a, b \in J$ and ever $\lambda, \mu \in C$, this map satisfies, $(\lambda a+\mu b)^{*}=\bar{\lambda} a^{*}+\bar{\mu} b^{*} ; a^{*^{*}}=a \quad$ and $(a \circ b)^{*}=b^{*} \circ a^{*} \quad$ where, $\quad a^{*}$ symbolizes the image of a under *. Moreover, we say that $a \in J$ is self-adjoint if $a^{*}=a$.
The Jordan algebra $J_{[x]}$ (the x-homotope of a Jordan algebra J) is formed from the same elements of J but with a special product ". ${ }_{x}$ " given by $a \cdot{ }_{x} b=\{a, x, b\}$ for every $a, b \in J$. If we take an invertible element x in J, then $J^{[x]}$ denotes the x-isotope of J which is nothing but the x^{-1}-homotope of J.
A Banach Jordan algebra is a Jordan algebra J over real or complex scalar field with a complete norm $\|$.$\| .$ and $\|a \circ b\| \leq\|a\|\|b\|$ for all $a, b \in J$. Moreover, if J has a unit element e with $\|e\|=1$, then we say that this Banach Jordan algebra is unital. A C^{*}-algebra A is an evolutive complex Banach algebra satisfying that || $a a^{*}\|=\| a \|^{2}$ for all $a \in A$ (cf. [16]).
The main literature for the algebraic structure known as a JB-algebra is stated in Hanche-Olsen and Størmer' book [5].

An evolutive complex Banach Jordan algebra $\left(J, \circ,{ }^{*}\right)$ is called a JB*-algebra if the norm defined on J satisfies $\left\|a^{*}\right\|=\|a\|$ and $\left\|\left\{a, a^{*}, a\right\}\right\|=\|a\|^{3}$ for all $a, b \in J$.

The condition $\left\|a^{*}\right\|=\|a\|$, was originally stated by J. D. M. Wright in the first article of the area [17], and he showed that this condition is redundant. If J has a unit e with $\|e\|=1$ then J is also unital.

In 1976, I. Kaplansky introduced a generalization of a C^{*}-algebras and he initially called it a Jordan C^{*}-algebra [18]. Later, it became a JB*-algebra, and it has been studied extensively after that (see for example [13]). The self-adjoint part of a JB*-algebra J, is in fact a JB-algebra, say A, so that $J=A+i A$. On the other hand, the complex analogs of JB-algebras are the JB*-algebras [18, p. 292].

Recall that [12, p. 339] an element p in a unital JB-algebra A, such that $p^{2}=p$ is called a projection. The class of all projections in A includes the set $\operatorname{ext}\left(A_{1}\right)$ [12, Lemma 1.2]. A central projection p in a JB-algebra A commutes with every element of A. Isidro and Rodrguez [12] showed that central projections are precisely the isolated projections, and those are preserved by any surjective isometry of A.
Authors in [18, Theorem 6], showed that any unital surjective linear isometry between two unital JB*-algebras is indeed a Jordan *-isomorphism. Later, in 1995, J. M. Isidro and A. Rodriguez [12, Theorem 1. 9] concluded that, if T is a surjective algebra isomorphism between two JB-algebras and ϕ is a surjective linear isometry, then $\phi(a)=b T(a)$, where b is a central projection in the algebra of multipliers of the range JB-algebra and a
in the domain JB-algebra. Moreover, if the above map ϕ is one-to-one, then it is an isometry if and only if ϕ is a triple-isomorphism [12, Theorem 1.9].
An element u in a unital $J B^{*}$-algebra J is unitary if $u \in J^{-1}$ and $u^{-1}={ }^{*}$. Let $U(J)$ be the set of all unitaries in J. As usual, a self-adjoint element $a \in J$ is called positive if its spectrum $\sigma(a)$ is non-negative, where $\sigma(a):=\{\lambda \in C: \lambda e-a$ is not invertible $\}$.
In a C^{*}-algebra A, every invertible element a has a unique polar decomposition in the form $a=u p$, where u is unitary and p is positive in A [13]. Using this fact, along with some other tools, A. A. Siddiqui proved that each invertible a in a $J B^{*}$-algebra J has a unique associated unitary, u in J such that the unitary isotope, $J^{[u]}$ contains a as a positive invertible element. [14, Theorem 4.12].
The system of Jordan triples is a more general notion of Jordan structures. If a Jordan algebra J with a triple product $\{\ldots, .\}:, J \times J \times J \rightarrow J$ that it is linear and symmetric in the outer variables and linear or anti-linear in the inner variable and satisfying the Jordan triple identity,

$$
\{a, u,\{b, v, c\}\}+\{\{a, v, b\}, u, c\}-\{b, v,\{a, u, c\}\}=\{a,\{u, b, v\}, c\}
$$

for all $u, v, a, b, c \in J$, then J is called a Jordan triple. further, if the triple product is continuous and J is Banach, then J becomes a Banach Jordan triple (cf. [13]).
An extensively studied subclass of Banach Jordan triples called the JB*-triples, is of main interest in this work and was originally initiated by W. Kaup [9]. A JB*-triple (cf. [9, p. 504] or [13, page 336]) is a complex Banach Jordan space J jointly with a continuous, sesquilinear operator defined by $L(a, b) c:=\{a, b, c\}$, on J making it a Banach Jordan triple system that satisfies:

1. $L(a, a) c$ consummates the Jordan triple identity.
2. $L(a, a)$ is a positive Hermitian operator on J.
3. $\left\|\left\{a, a^{*}, a\right\}\right\|=\|a\|^{3}$ for all $a \in J$.

A subtriple F is a linear subspace of J such that $\{F, F, F\} \subseteq F$. Moreover, if a subtriple is norm closed in J then this subtriple turn out to be a JB*-triple. For any elements a, b, c in a JB^{*}-triple J, we have the basic operators, $Q(a) c:=\{a, c, a\}$ and $L(a, b) c:=\{a, b, c\}$ which are the JB*-triple analogues of JB*-algebra operators, $U_{a} c^{*}=\left\{a, c^{*}, a\right\}=Q(a) c$ and $V{ }_{a, b^{*}} c=\left\{a, b^{*}, c\right\}=L(a, b)$ for all $c \in J$. For any two elements $a, b \in J$, there is another basic operator, called the Bergmann operator, defined on J by

$$
B(a, b):=I-2 L(a, b)+Q(a) Q(b),
$$

where I is the identity operator on J.
A Jordan homomorphism ψ is a linear operator $\psi: A \rightarrow B$ between two Jordan algebras such that $\psi(a \circ b)=\psi(a) \circ \psi(b) \forall a, b \in A$. If, in addition, ψ is one-to-one and onto B, then ψ is a Jordan isomorphism; in this case, A and B are isomorphic to each other. A Jordan homomorphism ψ between JB^{*}-algebras such that $\psi\left(a^{*}\right)=(\psi(a))^{*}$, for every $a \in A$, is called symmetric. In particular, Jordan *-homomorphisms are symmetric Jordan homomorphisms. Further, if ψ is injective and $\psi\{a, b, c\}=\left\{\psi(a), \psi(b)^{*}, \psi(c)\right\} \forall a, b, c \in A$, then ψ is $J \mathrm{~B}^{*}$-algebra isomorphism.
In a JB*-triple J, every von Neumann regular a has a unique commuting normalized generalized inverse $a^{\wedge} \in J$, satisfying $Q(a) a^{\wedge}=a, Q(a) a^{\wedge}=a, Q\left(a \hat{)} a=a^{\wedge}\right.$ and $Q(a) Q(a \hat{)}=Q(a \hat{)} Q(a)$. Observe that a tripotent v in J satisfies; $Q(v)(v)=\{v, v, v\}=v$, so it is von Neumann regular with self-generalized inverse. The class of von Neumann regular elements in JB*-algebras/triples symbolized by \hat{J}, has been intensely studied in [11] and [3]. If v is a tripotent in a JB*-triple J, the operator $L(v, v)$ has the eigenvalues $0, \frac{1}{2}, 1$ and J splits into a direct topological sum of the corresponding eigenspaces (the Peirce decomposition corresponding to v); $J=J_{0}(v) \oplus J_{\frac{1}{2}}(v) \oplus J_{1}(v)$, where each summand is a JB*-sub triples of J (cf. [13]). It is well known that the Peirce 1 -space, $J_{1}(v)$ is a JB*-algebra with Jordan product given by $a \cdot{ }_{v} b=:\left\{a, v^{*}, b\right\}$ and involution $a^{*}=\left\{v, a^{*}, v\right\}$; obviously, v is a unit in $J_{1}(v)$.

Burgos et al. in [4] studied some new linear preservers between JB*-triples. If $G: J \rightarrow H$ is a linear operator between JB*-triples and satisfies that $\operatorname{ext}\left(J_{1}\right) \subseteq \operatorname{ext}\left(H_{1}\right)$, then G preserves extreme points. [4, Definition 5.4]. If $G(u \hat{)})=G(u)^{\wedge} \forall u \in \hat{\jmath}$, then we say that the linear operator G strongly preserves regularity. Obviously, every triple homomorphism G : $J \rightarrow H$ between JB*-triples is strongly preserving regularity linear Operator.

Linear Preservers on JB*-triples

Let's recall that a non-zero von Neumann regular element u in a JB*-triple with range tripotent $r(u)$ satisfies,

$$
L(u, \hat{u})=L(\hat{u}, u)=L(r(u), r(u)), \quad(\mathrm{cf} .[3, \mathrm{p} .198])
$$

Proposition 3.1. Let J and H be two $J B^{*}$-algebras, such that J contains a unitary element u. If G : $J \rightarrow H$ is a bijective linear operator preserving extreme points, then there is a Jordan *-homomorphism $\Phi: J \rightarrow H$ such that,

$$
G(x)=G(u) \Phi(x), \forall x \in J
$$

Proof. First, recall that there is a natural bijective correspondence between JB*-algebras (unital) and nonzero JB*-triples, each with a distinguished unitary element (cf. [17]). The linear operator G in the theorem is a triple isomorphism, since G is a bijective linear operator preserving extreme points, where $u \in U(J) \subseteq \operatorname{ext}\left(J_{1}\right)$ [2,
Theorem 3.2]. Since G is also surjective, there corresponds $a \in J$ with every $b \in H$ such that $y=G(x)$. Also, $\forall b \in H, L(G(u), G(u)) b=G L(u, u)(a)=G I_{J}(a)=G(a)=b=I_{H}(b)$, hence $G(u)$ is unitary in H. Associated with u and $G(u)$, there correspond two JB*-algebra isotopes $J^{[u]}$ with unit u, and $H^{[G(u)]}$. Let G $(u)=v$ and let $\mathrm{G}: J^{[u]} \rightarrow H^{[v]}$ be defined on $J^{[u]}$ in the same way as on J. Hence, G is a bijective linear triple isomorphism between the two unital $J B^{*}$-algebras $J^{[u]}$ and $H^{[v]}$ and it maps unit onto unit. The Jordan triple product $\left\{x, y^{*}, z\right\}_{u}$ defined on the isotope $J^{[u]}$ relative to the Jordan product, ${ }_{u}$ coincides with the original triple product $\left\{x, y^{*}, z\right\}$, for all $x, y, z \in J$. Being units, u and v are self-adjoint in $J^{[u]}$ and $H^{[v]}$, respectively. By Lemma 5 in [18], $\mathrm{G}\left(x^{*}\right)=(G(x))^{*}$ for all $x \in J^{[u]}$, hence; G maps self-adjoint elements onto self-adjoint elements. Let $A=\left\{x \in J^{[u]}: x=x^{*}\right\}$ be the self-adjoint part of $J^{[u]}$. Since $\|x\|=\left\|x^{*}\right\|$ for any element x in a JB^{*}-algebra, then A is a closed (real) subspace of the unital JB*-algebra $J^{[u]}$, that is; A is a JB-algebra such that $J^{[u]}=A \oplus i A$ which is called the complexification of A [17, Theorem 2.8].
Similarly, for $B=\left\{x \in H^{[v]}: x=x^{*}\right\}$, we have $H^{[v]}=B \oplus i B$, hence both A and B are JB-algebras. Let $G_{1}: A \rightarrow B$ be the restriction of the bijective linear triple isomorphism G which maps self-adjoint elements onto self-adjoint elements, hence G_{1} is a bijective linear triple isomorphism. Using [12, Theorem 1.9] that G_{1} is also an isometry between A and B. By [12, Theorem 1.9] again, there is a bijective linear isomorphism $\phi: A \rightarrow B$ that characterizes G_{1} by the relation, $G_{1}(x)=G_{1}(u) \phi(x)$, for all $x \in A$. Note that $G_{1}(u)=G(u)=v$, by definition of the restriction operator G_{1}. Since any surjective linear isometric between JB-algebras extends to a surjective linear isometric of associated JB*-complexifications [12, Theorem 1.9 and Corollary 1.11], the linear operator $G: J^{[u]} \rightarrow H^{[v]}$ which is defined by $G(a+i b)=G_{1}(a)+i G_{1}(b)$ for all self-adjoint elements $a, b \in A$. Thus, G is a bijective linear isometry. Finally, define $\Phi: J^{[u]} \rightarrow H^{[v]}$ by $\Phi(c)=\Phi(a+i b)=\phi(a)+i \phi(b) \forall a, b \in A$ and $c \in J^{[u]}$, which is a bijective linear isomorphism. Thus, $G(c)=G(a+i b)=G(u)(\phi(a)+i \phi(b))=v \Phi(a+i b)=v \Phi(c), \forall c \in J^{[u]}$. Since ϕ is a linear isomorphism, the operator Φ defined above a Jordan homomorphism. Moreover, $\Phi\left(c^{*}\right)=\Phi(a-i b)=\phi(a)-i \phi(b)=(\phi(a)+i \phi(b))^{*}=(\Phi(c))^{*}$, hence Φ is a Jordan *-homomorphism.
By definition, a linear operator between JB*-triples that is strongly preserves BP^{*}-quasi invertible elements must also preserves extreme points [4, p. 557], hence we have the corollary.
Corollary 3.2. A bijective linear operator that strongly preserves BP-quasi invertible elements between two unital JB*(or C*)-algebras is characterized by some Jordan *-homomorphism.

If C*-algebras, A and B are considered as JB*-triples in Proposition 3.1, then [4, Proposition 5.5] follows as a corollary.
Next, we discuss the invariant of the geometric $\boldsymbol{\lambda}$ - property of JB*-triples under linear operators.
Let $\left(\lambda_{k}\right)$ be a sequence of real numbers with $\lambda_{k} \geq 0 \forall k \in N$ and $\sum_{k=1}^{\infty} \lambda_{k}=1$. If A is a normed space such that for every $a \in A_{1}$ there correspond two sequences, $\left(\lambda_{k}\right)$ as described above and $\left(e_{k}\right) \in \operatorname{ext}\left(A_{1}\right)$ such that a has convex series expansion given by $a=\sum_{k=1}^{\infty} \lambda_{k} e_{k^{\prime}}$, then A is said to have the convex series representation property,
The geometric λ-property of a normed space A (which is closely related to convex series representation property) was originally studied by Aron and Lohman [1] and they defined the uniform λ-property [1, Theorem 3.1 and Remark 3.2] when the sequences of partial sums of those series converge uniformly.

Recall that [8, Definition 2.1] if the set J_{q}^{-1}, of BP-quasi invertible elements in a $J B^{*}$-triple J, is dense in J, then we say that $/$ is extremally rich.

Proposition 3.3. Let J and H be $J B^{*}$-triples and let $G: J \rightarrow H$ be a non-zero bijective linear operator that strongly preserves BP-quasi invertible elements, then if J has (uniform) λ-property, then so does H.
Proof. If J has (uniform) λ - property, then as noted before the proposition, J has the convex series representation property. So, for each a in the closed unit sphere of J_{1} there is a sequence $\left(e_{k}\right) \in \operatorname{ext}\left(J_{1}\right)$ for which $a=\sum_{k=1}^{\infty} \lambda_{k} e_{k}$. It is clear that, any linear operator that strongly preserves von Neumann regular elements, obviously strongly preserves BP-quasi invertible elements. Moreover, it was shown in (Theorem 5.11 [4]) that this operator between JB*-triples with $\operatorname{ext}\left(J_{1}\right) \neq \emptyset$, is indeed a triple homomorphism which means that it preserves triple products. Since the class of extreme points of a JB*-triple is included in the class of BP-quasi invertible elements of JB*-triples. Thus, G also preserves extreme points (cf. [4]). Therefore, $G(a)=\sum_{k=1}^{\infty} \lambda_{k} G\left(e_{k}\right)$ is a convex series representation of $G(a)$, where $\left(G\left(e_{k}\right)\right)$ is a sequence in $\operatorname{ext}\left(H_{1}\right)$.
It follows from Kaup-Banach-Stone theorem [10, Proposition 5.5] that the triple isomorphism G between JB*-triples is a linear surjection isometry. Hence, $\|G(a)\|=\|a\| \leq 1$ for all $a \in H_{1}$, and therefore G maps J_{1} onto H_{1}. So, H has the convex series representation property and hence, it has the (uniform) λ - property.

Remark 3.4. From the proof of Proposition 3.3. above, if G as in the proposition, and if J is extremally rich, then H is also extremally rich.

Conclusions

To sum up, a linear mapping preserving Brown-Pedersen quasi invertible elements between two JB*-algebras, is characterized by a Jordan *-homomorphism. This result is a generalization of a similar result of C^{*}-algebars [7]. So, given two JB*-algebras J and H with a non-empty set of extreme points of the closed unit ball of J, if $G: J \rightarrow H$ is a linear map strongly preserving BP-quasi invertibility and u is a unitary element in J, then there exists a Jordan *-homorphism $\Phi: J \rightarrow H$ such that $G(x)=G(u) \Phi(x)$, for every $x \in J$. Other linear operators preservers between JB*-algebras, namely, Bergmann-zero pairs' preservers and extreme points preservers are more challenging cases to be considered. We also deduced that linear operators strongly preserving BP-Pedersen quasi invertible elements between two $J B^{*}$-triples also preserve the λ-property of both JB*-triples. Other geometric properties such as Bade property or MP-invertibility notion of two JB^{*}-algebras/triples under linear preservers are to be elaborated in forthcoming research.

Conflicts of Interest

The authors declare no conflict of interest.

Acknowledgments

This research project was supported by a grant from the Research Center of the Female Scientific and Medical Colleges, Deanship of Scientific Research, King Saud University.

References

[1] Aron, R. M. and Lohman, R. H.; A geometric function determined by extreme points of the unit ball of a normed space, Pacific Journal of Mathematics. 1987, 127, 209-231.
[2] Brown, L. G., Pedersen, G. K.; On the geometry of the unit ball of a C*-algebra, J. Reine Angew. Math. 1995, 469, 113-147.
[3] Burgos, M., Kaidi, A., Morales, A., Peralta, A. M. and Ramı́rez, M.; Von Neumann regularity and quadratic conorms in JB*-triples and C*-algebras, Acta Math. Sin. (Engl. Ser.). 2008, 24, 185-200.
[4] Burgos, M. J., M’arquez-Garćia, A. C., Morales-Campoy, A. and Peralta, A. M.; Linear maps between C*-algebras preserving extreme points and strongly linear preservers, Banach J. Math. Anal. 2016, 10, 547-565. DOI: 10.1215/17358787-3607288
[5] Hanche-Olsen, H. and Størmer, E.; Jordan operator algebras, Monographs and Studies in Mathematics; 21. Pitman (Advanced Publishing Program), Boston, MA. 1984.
[6] Jacobson, N.; Structure and representation of Jordan algebras; Amer. Math. Coll. Publ. 39. Providence, Rhode Island, 1968.
[7] Jamjoom, F. B., Peralta, A. M., Siddiqui, A. A. and Tahlawi, H. M.; Approximation and convex decomposition by extremals and the λ-function in JBW*-triples, Quart. J. Math. 2015, 66, 583-603. DOI:10.1093/qmath/hau036
[8] Jamjoom, F. B., Peralta, A. M., Siddiqui, A. A. and Tahlawi, H. M.; Extremally rich JB*-Triples. Annals of Functional Analysis. 2016, 74, 578-592. DOI: 10. 1215/20088752-3661557.
[9] Kaup, W. A.; Riemann Mapping Theorem for bounded symmetric domains in complex Banach spaces, Math. Z. 1983, 183, 503-529.
[10] Kaup, W.; Spectral and singular values in JB*-triples, Proc. Roy. Irish Acad. Sect. A. 1996, 96, 95-103.
[11] Kaup, W.; On Grassmannians associated with JB-triples, Math. Z. 2001, 236, 567-584.
[12] Isidro J. M. and Rodrguez-Palacios, A.; Isometries of JB-algebras, Manuscripta Math. 1995, 86, 337-348.
[13] Loos, O.; Jordan Pairs, Lecture Notes in Math.; vol.460, Springer-Verlag, Berlin, 1975.
[14] Siddiqui, A. A.; JB*-algebras of topological stable rank 1, Int. J. Math. Math. Sci. 1975, Article ID 37186, 24 pages, 2007. doi:10.1155/2007/37186
[15] Tahlawi, H. M. and Siddiqui, A. A. On non-degenerate Jordan triple systems, International Journal of Algebra. 2011, vol. 5, no. 21-24, 1099-1105.
[16] Upmeier, H.; Symmetric Banach Manifolds and Jordan C*-algebras, Elsevier Science Publishers B.V. 1985.
[17] Wright, J. D. M.; Jordan C*-algebras, Michigan Math. J. 1977, 24 291-302.
[18] Wright, J. D. M. and Youngson, M. A.; On isometries of Jordan algebras, J. London Math. Soc. 1978, 2 17, 339-344.

