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Abstract:

The purpose of this research is to employ a new method to solve nonlinear differential equations to obtain precise
analytical solutions and overcome computation challenges without the need to discretize the domain or assume the
presence of a small parameter, where the method demonstrated a quick and highly accurate solving nonlinear partial
differential equations with initial conditions, in compared to existing methods. The phases of the proposed method are
straightforward to implement, highly precise, and quickly converge to the correct result.
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Introduction

A large number of significant ones were described using partial differential equations. Real-world patterns such as
pollution, heat, waves, contamination, and response pattern. [1-5]. That is why coming up with a solution is crucial.
Differential equations can be solved using a variety of techniques. Many writers have concentrated on solving
non-linear PDEs using various techniques during the past few years, including HAM [5], VIM [6,7], DTM [8], ADM
[9-10] and coupled method [11]. Recently,

modifications of effective techniques are now more widely employed to solve various partial differential equation
types. In order to solve linear PDEs with variable coefficients in 2001, ADM was utilized by Wazwaz [14] to provide
analytical answers to the nonlinear parabolic problem with time-varying and space-varying physical variables. ADM
was utilized by Soufyane and Boulmaf [15]. The numerical answer to the regularized long-wave equation with
non-constant coefficients was achieved by Achouri and Omrani [16] by the utilization of ADM. Additionally, a variety of
numerical techniques are employed to discover the numerical solution of nonlinear PDEs like [17-18]. In this article,
we'll introduce a new approach to solve nonlinear PDEs and obtain the exact analytical solution by ease steps.

Description of proposed approach

In this section, a suggested method for resolving equations using partial differentials are described. Take into account
the following form of the non-linear partial differential equation:

(1).𝐿
𝑡
𝑢 𝑋, 𝑡( ) + 𝐿

𝑋
𝑢 𝑋, 𝑡( ) + 𝐿

𝑋𝑡
𝑢 𝑋, 𝑡( ) + 𝑅 𝑢(𝑋, 𝑡)( ) + 𝑁 𝑢(𝑋, 𝑡( )) = 𝑔 𝑋, 𝑡( ),  𝑋 = (𝑥

1
, 𝑥

2
, …)

where represents the differential of with the highest order., represents The differential of with the highest𝐿
𝑡

𝑡 𝐿
𝑋

𝑥
𝑖

possible order , where can be any number from 1 to , and so on. is an inhomogeneous or forcing term, and𝑖 𝑛 𝑔(𝑋, 𝑡)
is the highest order mix differential between and . R represents the linear terms of less derivatives that remain,𝐿

𝑋𝑡
𝑥

𝑖
𝑡

is an analytic nonlinear term. Partial solutions are solutions for u(X,t) that are acquired from the equations of the𝑁
operators , and . These are the solutions that are referred to as "partial." It has been established in the past𝐿

𝑋
𝑢 𝐿

𝑡
𝑢 𝐿

𝑋𝑡
𝑢

that these several partial answers are interchangeable, and that all of them eventually lead to the same correct answer.
However, the choice of the operators , and that should be utilized in order to solve the problem is mostly𝐿

𝑋
𝑢 𝐿

𝑡
𝑢 𝐿

𝑋𝑡
𝑢

dependent on two grounds:

(i) In order to reduce the amount of effort required for computation, the operator with the lowest order should be
used.

(ii) In order to quicken the process of evaluating the many components of the solution, the operator with the lowest
order that is chosen should have the most well-known conditions.

Assuming that the operator satisfies the requirements of both of the selection bases, we will now set𝐿
𝑡

(X,t) (X,t) (2)𝐿
𝑡

𝑋, 𝑡( ) = 𝑔 − 𝐿
𝑋

𝑢 − 𝐿
𝑋𝑡

𝑢 𝑋, 𝑡( ) − 𝑅 𝑢 𝑋, 𝑡( )( ) − 𝑁 𝑢(𝑋, 𝑡( ))

Applying , so (2) gives𝐿
𝑡
−1
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𝑢 𝑥, 𝑦( ) = ∅
0

+ 𝐿
𝑡
−1𝑔 𝑋, 𝑡( ) − 𝐿

𝑡
−1𝐿

𝑋
𝑢 𝑋, 𝑡( ) − 𝐿

𝑡
−1𝐿

𝑦
𝑢 𝑋, 𝑡( ) − 𝐿

𝑡
−1𝑅 𝑢 𝑋, 𝑡( )( ) − 𝐿

𝑡
−1𝑁 𝑢 𝑋, 𝑡( )( )

(3)

where and so on∅
0

= 𝑢 𝑋, 0( ),  𝑖𝑓 𝐿 = ∂
∂𝑡  ,  ∅

0
= 𝑢 𝑋, 0( ) + 𝑡𝑢

𝑡
𝑋, 0( ),  𝑖𝑓 𝐿 = ∂2

∂𝑡2  ,

The solution u is given through an endless succession with the form:

(4), such that𝑢 𝑋, 𝑡( ) =
𝑛=0

∞

∑ 𝑢
𝑛

𝑋, 𝑡( )

𝑢
0

= ∅
0

+ 𝐿
𝑡
−1𝑔 𝑋, 𝑡( )

𝑢
𝑛+1

=− 𝐿
𝑡
−1𝐿

𝑋
𝑢

𝑛
𝑋, 𝑡( ) − 𝐿

𝑡
−1𝐿

𝑦
𝑢

𝑛
𝑋, 𝑡( ) − 𝐿

𝑡
−1𝑅 𝑢

𝑛
𝑋, 𝑡( )( ) − 𝐿

𝑡
−1𝑁

𝑛

Regarding the phrase "nonlinear," is𝑁 𝑢( )

(5)𝑁 𝑢( ) =
𝑘=0

∞

∑ 𝑁
𝑘
   

Where can be calculated by𝑁
𝑘

𝑁
𝑘

= 1
𝑘!

∂𝑘𝑁(𝑢)

∂𝑡𝑘
⎡⎢⎣

⎤⎥⎦𝑡=0
   ,  𝑤ℎ𝑒𝑟𝑒  ∂𝑘

∂𝑡𝑘 𝑢 = 𝑘! 𝑢
𝑘
,   𝑘 = 0, 1, 2, …                                     (6)    

This method is very easy particularly if compare with Adomain decomposition method precisely in finding the
nonlinear part the following section clears that . we will named this approach Fatema method.

Application

Example 1: Take into consideration the nonlinear differential equation of the second order, which is:

, (7)𝑢
𝑡

+ 𝑢2𝑢
𝑥

= 0

With IC: , rewrite the eq.(7) as follow𝑢 𝑥, 0( ) = 2𝑥 ,   𝑡 > 0 𝑢
𝑡

= − 𝑢2𝑢
𝑥

It’s clear that , , and𝑋 = 𝑥 𝑅(𝑢) = 0 𝑁(𝑢) = − 𝑢2𝑢
𝑥

𝑔 𝑥, 𝑡( ) = 0

(8) , such that𝐿
𝑡

𝑢( ) =− 𝑁(𝑢) 𝐿
𝑡

= ∂
∂𝑡

We take the in both directions of eq.(8)𝐿
𝑡
−1( )

𝑢 𝑥, 𝑡( ) = 𝑢 𝑥, 0( ) − 𝐿
𝑡
−1 𝑁(𝑢)( )

𝑢
0

= 2𝑥,  𝑢
𝑛+1( )

𝑥, 𝑡( ) =− 𝐿
𝑡
−1 𝑁

𝑛( ) ⇒

𝑢
1

=− 𝐿
𝑡
−1 𝑁

0( )
Now, calculate the nonlinear part as follow:

𝑁
0

= 𝑁 𝑢( ) = 𝑢
0

2𝑢
0𝑥

= 8𝑥2

𝑢
1

=− 𝐿
𝑡
−1 𝑁

0[ ] =− 𝐿
𝑡
−1 8𝑥2[ ]

,𝑢
1

=− 8𝑥2𝑡

𝑢
2

=− 𝐿
𝑡
−1 𝑁

1[ ]
𝑁

1
= ∂

∂𝑡 𝑁 𝑢( )⎡⎣ ⎤⎦𝑡=0
= ∂

∂𝑡  𝑢2𝑢
𝑥( ) =  𝑢2𝑢

𝑥𝑡
+ 2𝑢𝑢

𝑡
𝑢

𝑥( )
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𝑁
1

= 𝑢
0

2𝑢
1𝑥

+ 2𝑢
0
𝑢

1
𝑢

0𝑥( )
𝑁

1
=− 128𝑥3𝑡

𝑢
2

=− 𝐿
𝑡
−1 − 128𝑥3𝑡[ ]
, with the same procedure we get𝑢

2
= 64𝑥3𝑡2

, and so on.𝑢
3

=− 640𝑥4𝑡3

The solution to equation 7 in the form of a series is provided by

𝑢 =
𝑛=0

∞

∑ 𝑢
𝑛

= 𝑢
0

+ 𝑢
1

+ 𝑢
2

+ …

𝑢 = 2𝑥 − 8𝑥2𝑡 + 64𝑥3𝑡2 − 640𝑥4𝑡3 + …

From above we observe the solution u is

𝑢 = {2𝑥 𝑡 = 0 1
4𝑡 1 + 16𝑥𝑡 − 1( ) 𝑡 > 0 

Example 2: We will solve the fourth-order nonlinear differential equation in this example while considering the mixed
derivative. Consider the problem to be as follows:

, (9)𝑢
𝑥𝑡

− 6𝑢𝑢
𝑥𝑥

− 6 𝑢
𝑥( )2 + 𝑢

𝑥𝑥𝑥𝑥
+ 3𝑢

𝑦𝑦
= 0

Upon initial stipulation, , rewrite the eq.(9) as follow𝑢
𝑥

𝑥, 𝑦, 0( ) =− 1
2 𝑐𝑠𝑐2 1

2  𝑥 + 𝑦( )( ) 𝑐𝑜𝑡ℎ 1
2 𝑥 + 𝑦( )( )

𝑢
𝑥𝑡

= 6𝑢𝑢
𝑥𝑥

+ 6 𝑢
𝑥( )2 − 𝑢

𝑥𝑥𝑥𝑥
− 3𝑢

𝑦𝑦

It’s clear that , , and𝑋 = (𝑥, 𝑦) 𝑅(𝑢) =− 𝑢
𝑥𝑥𝑥𝑥

− 3𝑢
𝑦𝑦

𝑁(𝑢) = 6𝑢𝑢
𝑥𝑥

+ 6 𝑢
𝑥( )2 𝑔 𝑥, 𝑦, 𝑡( ) = 0

(10) , such that𝐿
𝑡
(𝑢

𝑥
) = 𝑁(𝑢) − 𝑢

𝑥𝑥𝑥𝑥
− 3𝑢

𝑦𝑦
𝐿

𝑡
= ∂

∂𝑡

We take the to both sides of eq.(10)𝐿
𝑡
−1( )

𝑢
𝑥
(𝑥, 𝑦, 𝑡) = 𝑢

𝑥
𝑥, 𝑦, 0( ) + 𝐿

𝑡
−1 𝑁(𝑢) − 𝑢

𝑥𝑥𝑥𝑥
− 3𝑢

𝑦𝑦( )
𝑢

0𝑥
= −1

2 𝑐𝑠𝑐ℎ2 1
 2   𝑥 + 𝑦( )( )𝑐𝑜𝑡ℎ 1

2   𝑥 + 𝑦( )( ) ⇒ 

𝑢
0

= 1
2 𝑐𝑠𝑐ℎ2 1

2 𝑥 + 𝑦( )( )
𝑢

𝑛+1( )𝑥
𝑥, 𝑦, 𝑡( ) = 𝐿

𝑡
−1 𝑁

𝑛
− 𝑢

𝑛𝑥𝑥𝑥𝑥
− 3𝑢

𝑛𝑦𝑦( ) ⇒

,𝑢
(𝑛+1)

(𝑥, 𝑦, 𝑡) = 𝐿
𝑥

−1 𝐿
𝑡
−1 𝑁

𝑛
− 𝑢

𝑛𝑥𝑥𝑥𝑥
− 3𝑢

𝑛𝑦𝑦( )⎡⎢⎣
⎤⎥⎦ 𝐿

𝑥
= ∂

∂𝑥

𝑢
1

= 𝐿
𝑥

−1 𝐿
𝑡
−1 𝑁

0
− 𝑢

0𝑥𝑥𝑥𝑥
− 3𝑢

0𝑦𝑦( )⎡⎢⎣
⎤⎥⎦

𝑢
0𝑥𝑥

= 𝑢
0𝑦𝑦

= 1
4 𝑐𝑠𝑐ℎ4 1

2 𝑥 + 𝑦( )( ) + 1
2 𝑐𝑠𝑐ℎ2 1

2 𝑥 + 𝑦( )( )𝑐𝑜𝑡ℎ2 1
2 𝑥 + 𝑦( )( )

𝑢
0𝑥𝑥𝑥

=− 𝑐𝑠𝑐ℎ4 1
2 𝑥 + 𝑦( )( )𝑐𝑜𝑡ℎ 1

2  𝑥 + 𝑦( )( ) − 1
2 𝑐𝑠𝑐ℎ2 1

2  𝑥 + 𝑦( )( )𝑐𝑜𝑡ℎ3 1
2  𝑥 + 𝑦( )( )

𝑢
0𝑥𝑥𝑥𝑥

= 1
2 𝑐𝑠𝑐ℎ6 1

2 𝑥 + 𝑦( )( ) + 11
4 𝑐𝑠𝑐ℎ4 1

2 𝑥 + 𝑦( )( )𝑐𝑜𝑡ℎ2 1
2 𝑥 + 𝑦( )( ) + 1

2 𝑐𝑠𝑐ℎ2 1
2 𝑥 + 𝑦( )( )𝑐𝑜𝑡ℎ4 1

2 𝑥 + 𝑦( )( )
Now, calculate the nonlinear part as follow:

𝑁
0

= 𝑁 𝑢( ) = 6𝑢𝑢
𝑥𝑥

+ 6 𝑢
𝑥( )2 = 6𝑢

0
𝑢

0𝑥𝑥
+ 6 𝑢

0𝑥( )2

103



Journal of Advances in Mathematics Vol 22 (2023) ISSN: 2347-1921 https://rajpub.com/index.php/jam

𝑁
0

= 3
4 𝑐𝑠𝑐ℎ6 1

2 𝑥 + 𝑦( )( ) + 3𝑐𝑠𝑐ℎ4 1
2 𝑥 + 𝑦( )( )𝑐𝑜𝑡ℎ2 1

2 𝑥 + 𝑦( )( )
𝑢

1
= 𝐿

𝑥
−1 𝑡 3

4 𝑐𝑠𝑐ℎ6 1
2 𝑥 + 𝑦( )( ) + 3𝑐𝑠𝑐ℎ4 1

2 𝑥 + 𝑦( )( )𝑐𝑜𝑡ℎ2 1
2 𝑥 + 𝑦( )( ) − 1

2 𝑐𝑠𝑐ℎ6 1
2 𝑥 + 𝑦( )( ) − 11

4 𝑐𝑠𝑐ℎ4 1 
2  𝑥 + 𝑦( )( )𝑐𝑜𝑡ℎ2 1 

2  𝑥((⎡
⎣

⎡
⎣

𝑢
1

= 𝐿
𝑥

−1 𝑡 1
4 𝑐𝑠𝑐ℎ6 1

2 𝑥 + 𝑦( )( ) + 1
4 𝑐𝑠𝑐ℎ4 1

2 𝑥 + 𝑦( )( )𝑐𝑜𝑡ℎ2 1
2 𝑥 + 𝑦( )( ) − 1

2 𝑐𝑠𝑐ℎ2 1
2 𝑥 + 𝑦( )( )𝑐𝑜𝑡ℎ4 1

2  𝑥 + 𝑦( )( ) − 3
4 𝑐𝑠𝑐ℎ4 1

2  𝑥((⎡
⎣

⎡
⎣

𝑢
1

= 𝐿
𝑥

−1 − 𝑐𝑠𝑐ℎ4 1
2 𝑥 + 𝑦( )( ) − 2𝑐𝑠𝑐ℎ2 1

2 𝑥 + 𝑦( )( )𝑐𝑜𝑡ℎ2 1
2 𝑥 + 𝑦( )( )⎡

⎣
⎤
⎦𝑡⎡

⎣
⎤
⎦

, (11)𝑢
1

= 𝑡𝐿
𝑥

−1 𝑑 2𝑐𝑠𝑐ℎ2 1
2 𝑥 + 𝑦( )( )𝑐𝑜𝑡ℎ 1

2 𝑥 + 𝑦( )( )( )⎡
⎣

⎤
⎦

after integrating eq. (11) w.r.t. we get𝑥

⟹  𝑢
1

= 2𝑡𝑐𝑠𝑐ℎ2 1
2 𝑥 + 𝑦( )( )𝑐𝑜𝑡ℎ 1

2 𝑥 + 𝑦( )( )
𝑢

1𝑥
= 𝑡 − 𝑐𝑠𝑐ℎ4 1

2 𝑥 + 𝑦( )( ) − 2𝑐𝑠𝑐ℎ2 1
2 𝑥 + 𝑦( )( )𝑐𝑜𝑡ℎ2 1

2 𝑥 + 𝑦( )( )⎡
⎣

⎤
⎦

𝑢
1𝑥𝑥

= 𝑡
2 4𝑐𝑠𝑐ℎ4 1

2 𝑥 + 𝑦( )( )𝑐𝑜𝑡ℎ 1
2 𝑥 + 𝑦( )( ) + 4𝑐𝑠𝑐ℎ4 1

2 𝑥 + 𝑦( )( )𝑐𝑜𝑡ℎ 1
2 𝑥 + 𝑦( )( ) + 4𝑐𝑠𝑐ℎ2 1

2 𝑥 + 𝑦( )( )𝑐𝑜𝑡ℎ3 1
2 𝑥 + 𝑦( )( )⎡

⎣
⎤
⎦

𝑢
1𝑥𝑥𝑥

= 2𝑡 − 𝑐𝑠𝑐ℎ6 1
2 𝑥 + 𝑦( )( ) − 4𝑐𝑠𝑐ℎ4 1

2  𝑥 + 𝑦( )( )𝑐𝑜𝑡ℎ2 1
2  𝑥 + 𝑦( )( )( ) + 𝑡 − 3𝑐𝑠𝑐ℎ4 1 

2 𝑥 + 𝑦( )( )𝑐𝑜𝑡ℎ2 1 
2  𝑥 + 𝑦( )( ) − 2𝑐𝑠𝑐ℎ2(

𝑢
1𝑥𝑥𝑥𝑥

= 17𝑡𝑐𝑠𝑐ℎ6 1
2  𝑥 + 𝑦( )( )𝑐𝑜𝑡ℎ 1

2  𝑥 + 𝑦( )( ) + 26𝑡𝑐𝑠𝑐ℎ4 1
2 𝑥 + 𝑦( )( )𝑐𝑜𝑡ℎ3 1

2  𝑥 + 𝑦( )( ) + 2𝑡𝑐𝑠𝑐ℎ2 1
2  𝑥 + 𝑦( )( )𝑐𝑜𝑡ℎ5 1

2  𝑥 +((
𝑢

2
= 𝐿

𝑥
−1 𝐿

𝑡
−1 𝑁

1
− 𝑢

1𝑥𝑥𝑥𝑥
− 3𝑢

1𝑦𝑦( )⎡⎢⎣
⎤⎥⎦

𝑁
1

= ∂
∂𝑡 𝑁 𝑢( )⎡⎣ ⎤⎦𝑡=0

= ∂
∂𝑡  6𝑢𝑢

𝑥𝑥
+ 6 𝑢

𝑥( )2( ) = 6 𝑢𝑢
𝑡𝑥𝑥

+ 𝑢
𝑡
𝑢

𝑥𝑥
+ 2𝑢

𝑥
𝑢

𝑡𝑥( )
𝑁

1
= 6 𝑢

0
𝑢

1𝑥𝑥
+ 𝑢

1
𝑢

0𝑥𝑥
+ 2𝑢

0𝑥
𝑢

1𝑥( )
𝑁

1
= 21𝑡𝑐𝑠𝑐ℎ6 1

2  𝑥 + 𝑦( )( )𝑐𝑜𝑡ℎ 1
2  𝑥 + 𝑦( )( ) + 24𝑡𝑐𝑠𝑐ℎ4 1

2  𝑥 + 𝑦( )( )𝑐𝑜𝑡ℎ3 1
2  𝑥 + 𝑦( )( )

𝑢
2

= 𝐿
𝑥

−1 𝐿
𝑡
−1 21𝑡𝑐𝑠𝑐ℎ6 1

2 𝑥 + 𝑦( )( )𝑐𝑜𝑡ℎ 1
2 𝑥 + 𝑦( )( ) + 24𝑡𝑐𝑠𝑐ℎ4 1

2 𝑥 + 𝑦( )( )𝑐𝑜𝑡ℎ3 1
2 𝑥 + 𝑦( )( ) − 17𝑡𝑐𝑠𝑐ℎ6 1 

2 𝑥 + 𝑦( )( )𝑐𝑜𝑡ℎ 1
2  𝑥((⎡⎢⎣

⎡⎢⎣

𝑢
2

= 𝑡2

2! 𝐿
𝑥

−1 − 16𝑐𝑠𝑐ℎ4 1
2 𝑥 + 𝑦( )( )𝑐𝑜𝑡ℎ 1

2  𝑥 + 𝑦( )( ) − 8𝑐𝑠𝑐ℎ2 1
2 𝑥 + 𝑦( )( )𝑐𝑜𝑡ℎ3 1 

2 𝑥 + 𝑦( )( )⎡
⎣

⎤
⎦

𝑢
2

= 𝑡2

2! 𝐿
𝑥

−1 − 8𝑐𝑠𝑐ℎ4 1
2  𝑥 + 𝑦( )( )𝑐𝑜𝑡ℎ 1

2  𝑥 + 𝑦( )( ) − 8 𝑐𝑠𝑐ℎ4 1
2  𝑥 + 𝑦( )( )𝑐𝑜𝑡ℎ 1 

2 𝑥 + 𝑦( )( ) + 𝑐𝑠𝑐ℎ2 1 
2 𝑥 + 𝑦( )( )𝑐𝑜𝑡ℎ3 1

2  𝑥 + 𝑦(((⎡
⎣

𝑢
2

= 𝑡2

2! 4𝑐𝑠𝑐ℎ4 1
2  𝑥 + 𝑦( )( ) + 8𝑐𝑠𝑐ℎ2 1

2  𝑥 + 𝑦( )( )𝑐𝑜𝑡ℎ2 1
2  𝑥 + 𝑦( )( )⎡

⎣
⎤
⎦

and so forth

𝑢 =
𝑛=0

∞

∑ 𝑢
𝑛

= 𝑢
0

+ 𝑢
1

+ 𝑢
2

+ …

𝑢 = 1
2 𝑐𝑠𝑐ℎ2 1 

2 𝑥 + 𝑦( )( ) + 2𝑡𝑐𝑠𝑐ℎ2 1
2  𝑥 + 𝑦( )( )𝑐𝑜𝑡ℎ 1

2 𝑥 + 𝑦( )( ) + 𝑡2

2! 4𝑐𝑠𝑐ℎ4 1
2 𝑥 + 𝑦( )( ) + 8𝑐𝑠𝑐ℎ2 1

2  𝑥 + 𝑦( )( )𝑐𝑜𝑡ℎ2 1 
2 𝑥 + 𝑦(((

𝑢 = 1
2 𝑐𝑠𝑐ℎ2 1

2  𝑥 + 𝑦 − 4𝑡( )( )⎡
⎣

⎤
⎦𝑡=0

+ 𝑡 ∂
∂𝑡  1

2 𝑐𝑠𝑐ℎ2 1
2 𝑥 + 𝑦 − 4𝑡( )( )( )⎡

⎣
⎤
⎦𝑡=0

+ 𝑡2

2!
∂2

∂𝑡2  1
2  𝑐𝑠𝑐ℎ2 1

2 𝑥 + 𝑦 − 4𝑡( )( )( )⎡⎢⎣
⎤⎥⎦𝑡=0

+ …

That comes pretty close to becoming the solution to the problem:

𝑢 = 1
2 𝑐𝑠𝑐ℎ2 1

2 𝑥 + 𝑦 − 4𝑡( )( )
Conclusion

While ADM and its variations can be used to solve the same examples by employing an Adomain polynomial to arrive
at exact analytical solution, the nonlinear terms in this article the suggested approach is simpler to compute because
they don’t involve the use of Adomain polynomial or using any unknown parameter or complex rule to calculate those
boundaries. Therefore, this methodis very efficient, simple to apply, and rapidly converges to precise results.
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