
Journal of Advances in Mathematics Vol 22 (2023) ISSN: 2347-1921 https://rajpub.com/index.php/jam

DOI: https://doi.org/10.24297/jam.v22i.9535

Bifurcation analysis of dynamical systems with fractional order

differential equations via the modified Riemann-Liouville derivative

J. M. AL-Rmali (1) and R. A. Shahein (2,3)

(1) Department of Mathematics, Faculty of sciences of Al-Jouf University, Saudi Arabia.

(2) Department of Mathematics, College of Science, Taibah University, Saudi Arabia.

(3) Department of Mathematics and Computer Science, Faculty of Science, Menoufia University, Egypt.

Abstract:

In this manuscript, the solutions of linear dynamical systems with fractional differential equations via the modified

Riemann-Liouville derivative is derived. By using Jumarie type of derivative (JRL), we stated and proved the Existence

and uniqueness theorems of the dynamical systems with fractional order equations. Also a novel stability analysis of

fractional dynamical systems by Jumarie type derivative is established and some important stability conditions are

determined. The achieved results have various applications in mathematics, plasma physics and almost all branches

of physics that have non-conservative forces. Finally, we investigated interesting application of nonlinear space-time

fractional Korteweg-de Vries (STFKdV) equation in Saturn F-ring’s region. Moreover, our investigation could be basic

interest to explain and interpret the effects of fractional and modification parameters on STFKdV equation. This is

novel study on this model by dynamical system (DS) to describe the behavior of nonlinear waves without solve this

system.

Keywords: Dynamical systems, Modified Riemann-Liouville derivative, Fractional differential equations, Mittage-

Leffler function.

1 Introduction

Recently, solution of fractional differential equations has received a great deal of the attention of researchers because

it has been used in various fields of sciences and engineering. It is one of the generalization of the classical calculus

and it is a great tool to model and many nature dynamical system that have long memory and long-range spatial

interactions. The fractional dynamical system (FDS) describes the system contain non-conservative forces in various

branches of physics [1]. It is very important to point out that the fractional integrals were studied before the fractional

derivatives. This is due to the fact that the derivatives of fractional order are defined by the fractional integrals.

The most popular definition of fractional integral was given by Riemann-Liouville [2, 3, 4]. Regard the fractional

derivatives, there are several different definitions because there is no applicable fractional derivative definition in all

situations and each definition has its own advantages and disadvantages. Fractional dynamical systems have seen

excitable growth because its global property, i.e. the next state of the system depends not only on present state but

also on all of its historical states. Therefore, the differential equations in different fractional derivative definitions have

different type of solutions. Recently, many authors used methods to solve linear and non-linear differential equations

as Predictor-Corrector method and Adomian decomposition [5]. In 2006, G.Jumair developed Riemann-Liouville

derivative to avoid non-zero fractional derivative of constant functions this means that, it is possible to interpret

different physically phenomena [6]. Ghosh et al., developed analytical method to solve linear system of fractional

differential equations with Jumarie derivative [7]. In fact and without a great loss of generality, stability of dynamical

systems play a pivotal role in many applications, whether in nonlinear ordinary differential equation (ODE) or FDS.

This recently technique is tremendously important in plasma physics, so many researchers investigated numerous
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physical models. Up to the best of our knowledge, all studies of bifurication analysis in plasma physics was carried

out on Kadomtsev-Petviashvili (KP) Eq. [8], KdV [9], and recently on NSE [10, 11] but no research was done for

stability of STFKdV in plasma physics, so this is new investigation on this field. Motivated by above works, this paper

consists of six sections organized as following: In section 2, we have defined some most used definitions of fractional

derivative that is basic Riemann-Liouville fractional derivative (R-L), the version of the Italian mathematician Caputo

and the modified of Riemann-Liouville definition called Jumarie fractional derivative. In the begin of section 3, the

existence and uniqueness theorems and stability analysis of DS with fractional-order via Jumarie type of derivative

have been described. Also we used Jumarie type fractional derivative to find the solutions of FDS by using Mittag-

Leffler functions. In section 4, application of nonlinear FDS in dusty plasma by using the bifurcation theory of planar

dynamical system is investigated. Finally, some discussion of results and conclusion are given in Secs. 5 and 6.

2 Basic Definitions of Fractional Derivatives

Definition 1. [2, 3] The Riemann-Liouville definitin (R-L) is proposed as

Dα
a f(θ) =

1

Γ(n− α)

dn

dθn

∫ θ

a

(θ − s)n−α−1 f(s) ds (2.1)

where f(θ) : R → R is a continuous function and one time integrable and n− 1 ≤ α < n, with n positive and Γ(n−α)

is the Gamma function.

This definition is applicable for continuous functions but non-differentiable and the fractional derivative of a constant

function is non zero. While the Caputo definition is given for n-times differentiable functions, it is assumed that the

nth derivative exists. In addition, in Caputo definition the fractional derivative of a constant function is zero that is

a benefit for some physical phenomena.

Definition 2. [2, 3] Caputo definition is introduced as

cDα
a f(θ) =

∫ θ

a

(θ − s)n−α−1

Γ(n− α)
f (n)(s) ds, (2.2)

where f(θ) ∈ Cn([a, b]), f (n)(θ) ∈ L1[a, b] and n− 1 < α ≤ n with positive n.

To overcome the non-zero fractional derivative of a constant function by Riemann-Liouville derivative, Jumarie modi-

fied the (R-L) formula of fractional derivative. Moreover, the differentiability condition required by Caputo definition

is not required by Jumarie derivative. Important remark to mention that if the functions are not continuous at the

origin, then Jumarie fractional derivative does not exist.

Definition 3. [4, 6, 12] The modified fractional derivative of (R-L) of f(θ) is proposed as

JDα
a f(θ) =



1
Γ(−α)

∫ θ

a
(θ − s)−α−1 f(s) ds, α < 0,

1
Γ(1−α)

d
dθ

∫ θ

a
(θ − s)−α [f(s)− f(a)] ds, 0 < α < 1,

[fα−n(θ)]
(n)

, n ≤ α < n+ 1 , n ≥ 1.

such that f(θ) : R → R be a continuous function.

For more details on the properties of fractional derivative, refereed to,[2, 3, 4, 13]. It is important to give a brief

overview for the Mittag-Leffler function which has increased the attention of researchers because it mostly appears
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in the solution of fractional-order integral equations or fractional-order differential equations. It is a generalization

function of the exponential function and it was introduced by the Swedish mathematician Magnus Gustaf Mittag-

Leffler in (1903-1904). Due to its importance, it is given the call ”the Queen function of fractional calculus”.

The one parameter Mittag-Leffler function [3] is denoted by

Eα(θ) =

∞∑
k=0

θk

Γ(αk + 1)
, (α > 0, θ ∈ C). (2.3)

The two parameters function of the Mittag-Leffler [3] is introduced as

Eα,ω(θ) =

∞∑
k=0

θk

Γ(αk + ω)
, (α > 0, ω > 0), (2.4)

with the widely known properties:

Eα,1(θ) = Eα(θ).

E1,1(θ) =

∞∑
k=0

θk

Γ(k + 1)
= eθ.

Eα,ω(θ) = θEα,α+ω(θ) +
1

Γ(ω)
. (2.5)

The Mittag-Leffler function with matrix variable A is defined by

Eα(A) =

∞∑
k=0

Ak

Γ(αk + 1)
, α > 0,

where A is an arbitrary nth order matrix over complex field [14]. A relationship between the Mittag-Leffler function

and fractional Sine and Cosine given by Jumarie [7, 12].

Eα(iθ
α) = cosα(θ

α) + i sin(θα), (2.6)

cosα(θ
α) =

Eα(iθ
α) + Eα(−iθα)

2
=

∞∑
k=0

(−1)k
θ2kα

Γ(1 + 2αk)
, (2.7)

sinα(θ
α) =

Eα(iθ
α)− Eα(−iθα)

2
=

∞∑
k=0

(−1)k
θ(2k+1)α

Γ(1 + 2αk)
, (2.8)

Eα((a± b)θα) = Eα(aθ
α)± Eα(bθ

α). (2.9)

3 Stability and Solutions of Fractional Dynamical Systems

In this section, we prove existence and uniqueness theorems of the following FDS with fractional-order α via the

modified Riemann-Liouville derivative:
JDα

θ X = AX, X(0) = X0, (3.1)

where A ∈ L(R2), X(θ) = (x1(θ), x2(θ))
T , 0 < α < 1 and θ ∈ [0, T ]. One more objective is investigation the stability

of FDS because most of the mathematical models represented by fractional dynamical systems.
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3.1 Existence and Uniqueness Theorems

The existence and uniqueness of the solution of linear system with fractional order with Riemann-Liouville type of

derivative has been investigated in Ref. [15]. Here, we state and prove existence and uniqueness theorem of the linear

system (3.1) via Jumarie type of derivative and we solve (3.1) in several cases.

Proposition 1. Let A ∈ L(R2) is the Jordan form which have eigenvalues β1, β2. in the following forms:[
β1 0

0 β2

]
,

[
γ −µ

µ γ

]
,

[
β 0

1 β

]
,

where in the first matrix the eigenvalues are distinct or repeated when β1 equal β2, the second matrix has complex form

of eigenvalues β = γ ± iµ and the last non diognal matrix has repeated eigenvalues.

Theorem 1. Suppose that A ∈ L(R2) has distinct real eigenvalues. Then, given x0 ∈ R2,∃ t > 0, system (3.1) has a

unique solution defined on [0,t]. Proof

JDα
θ X(θ) = AX(θ), A =

[
β1 0

0 β2

]
, (3.2)

Let {K1,K2} be the distinct eigenvectors corresponding to the distinct eigenvalues {β1, β2} so that A Kj = βjKj , j =

1, 2. If all eigenvalues are real and distinct, then the eigenvectors {K1,K2} forms a basis of R2. Then, B =

diag[β1, β2] = FAF−1 where F = (K1,K2)
T . Define Y=FX. Then,

JDαY (θ) = F JDαX(θ)

= FAX(θ)

= FAF−1Y (θ)

= BY (θ).

Here, Y (θ) = (y1(θ), y2(θ))
T , X(θ) = (x1(θ), x2(θ))

T , Y (0) = (y
(0)
1 , y

(0)
2 )T = Y0 = FX(0) = F (x

(0)
1 , x

(0)
2 )T = FX0.

Since B is diagonal, we can write

JDαyi(θ) = βiyi(θ), yi(0) = (Y
(0)
i ), i = 1, 2.

Here, βiyi(θ) = gi(θ, yi) : φi → R, φi = [0, T ]× [(y
(0)
i )−ℓi, (y

(0)
i )+ℓi] for positive ℓi. gi(θ, yi) is locally Lipschitz contin-

uous in the second variable [13]. Hence, there is a unique solution yi : [0, ti] → R solving JDαyi(θ) = βiyi(θ), yi(0) =

(y
(0)
i ), where ti = min{T,

(
ℓiΓ(α+1)
∥gi∥∞

)1/α
}, i = 1, 2. Let t = min{t1, t2}, then X(θ) = F−1Y (θ) uniquely solves (3.1)

with θ ∈ [0, t], for having
(

ℓiΓ(α+1)
∥gi∥∞

)1/α
.

Theorem 2. Consider the system
JDα

θ X(θ) = AX(θ), X(0) = X0, (3.3)

where α ∈ (0, 1), θ ∈ [0, T ], X(0) = (x1(0), x2(0))
T , X0 = (x

(0)
1 , x

(0)
2 )T and

A =

[
β 0

1 β

]

is the Jordan matrix. Then, (3.1) has a unique solution defined on [0,t]. Proof:

Substituting X(θ) = (x1(θ), x2(θ))
T into (3.3) and using the matrix A we obtain firstly,

JDα
θ x1(θ) = βx1(θ),
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x1(0) = x
(0)
1 .

Here, g1(θ, x1) = βx1 is defined on φ1 = [0, T ]× [x1(0)− ℓ1, x1(0)+ ℓ1], for ℓ1 positive , g1 is continuous and Lipschitz

in the second variable. Hence, it has a unique solution x1(θ), θ ∈ [0, t1] where t1 = min{T,
(

ℓ1Γ(α+1)
∥g1∥∞

)1/α
}.

Secondly,
JDα

θ x2(θ) = x1(θ) + βx2(θ),

now x1(θ) is a known function.

Here, g2(θ, x2) = x1(θ) + βx2 is defined on φ2 = [0, T ] × [x2(0) − ℓ2, x2(0) + ℓ2] for ℓ2 > 0, g2 is continuous and

Lipschitz in the second variable. Hence, it has a unique solution x2(θ), θ ∈ [0, t2] , t2 = min{T,
(

ℓ2Γ(α+1)
∥g2∥∞

)1/α
}. Hence,

x1(θ) and x2(θ) are known functions. Therefore, the system(3.3) has a unique solution on [0,t] where t = min{t1, t2}.

Theorem 3. (i) Consider the system

JDαX(θ) =

[
γ −µ

µ γ

]
X(θ), (3.4)

where γ, µ ∈ R, X(0) = X0, θ ∈ [0, T ] and 0 < α < 1.

Define z(θ) = x1(θ) + ix2(θ). Then,

JDαz(θ) = βz, z(0) = z0 = x1(0) + ix2(0), β = γ + iµ, (3.5)

is equivalent to (3.3), it can be shown that (3.4) has a unique solution.

(ii) Consider the system JDαX(θ) = AX(θ);X(0) = X0 and α ∈ (0, 1), A ∈ L(R2) has eigenvalues β = γ± iµ, where

γ and µ ∈ R. Then, there is a matrix F such that A = FAF−1. i.e

A = F

[
γ −µ

µ γ

]
F−1.

Define Y (θ) = F−1X(θ), then

JDαY (θ) =

[
γ −µ

µ γ

]
Y (θ), Y (0) = Y0. (3.6)

Hence, from (i) equation (3.5) has a unique solution.

Theorem 4. If the matrix A in the system (3.1) has any type of previous eigenvalues. Then, there is a unique solution

to (3.1) defined on [0,t].

Proof:

Since there is a basis of R2 as mentiend in Theorem 1, in which the system of fractional differential equations becomes

JDαY (θ) = BY (θ), Y (0) = Y0 .

Where B is composed of diagonal blocks as defined in Theorem 1, in this basis, the system decouples into simpler

subsystems. Then, from Theorem 1 and 2 ∃ t > 0 and a unique solution to (3.1) defined on [0,t] which can be obtained

by simple formula X(θ) = F−1Y (θ), where F is defined in Theorem 1.

3.2 Stability of Dynamical System with Fractional-Order via Jumarie Type of Deriva-

tive

The first discussion for the stability of the FDS using Caputo and Riemann-Liouville form of derivative has been

established in [16] and developed in [17, 18]. In the framework, the dynamical system (3.1) will be established and

some stability conditions will be determined by the use of Jumarie type of derivative.
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Theorem 5. the unique solution of the system

JDα
θ X(θ) = AX(θ), X(0) = X0, (3.7)

where A is an nth order matrix over the complex field, X is a specified vector, 0 < α < 1 and θ ∈ [0, T ] is Eα(θ
αA) X0.

Proof: we use Laplace transform of Jumarie type of derivative [12]

L{JDαf(θ)} = sα F (s)− sα−1f(0), (0 < α < 1) (3.8)

for a given initial condition X(θ0) = X0. Let

L{X(θ)} = X(s) , L{X(0)} = X0.

Then,

sαX(s)− sα−1X0 = AX(s),

(sαI −A)X(s) = sα−1X0 (3.9)

Since,

|sαI −A| =
n∏

i=1

(sα − βi),

where βi are the eigenvalues of A, (sαI −A) is an invertable matrix. Thus, we obtain

X(s) = sα−1(sαI −A)−1X0. (3.10)

Inserting the formula

(sαI −A)−1 =

∞∑
k=0

s−αk−αAk,

into (3.10) and taking the inverse Laplace transform term by term (3.10) becomes

X̃(θ) =

∞∑
k=0

θkαAk

Γ(αk + 1)
X0

= Eα(θ
αA) X0. (3.11)

Definition 1. The autonomous system (3.7) is said to be

(i) stable if and only if ∀ x0,∃ A such that ∥X(θ)∥ ≤ A ,∀ θ ≥ 0.

(ii) asymptotically stable if and only if limθ→∞ ∥X(θ)∥ = 0.

Definition 2. The point Xeq = (x1,eq, x2,eq, ......) is an equilibrium point of a fractional differential system (3.7), if

and only if JDαXeq = 0. Note, for the autonomous linear planar system the equilibrium point is the origin, that is

Xeq = (0, 0)T .

The analysis of stability of the FDS is more complicated than that of classical differential equations. This is because

that the fractional derivatives are non-local and have weakly singular kernels. Additionally, the behavior of the Mittag-

Leffler function plays an important role in the study of the stability of the FDS. The following propositions explain

the behavior of Mittag-Leffler function in different cases.
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Proposition 2. [14, 19] Let 0 < α < 2 and ω be an arbitrary complex number, then for an arbitrary integer number

r ≥ 1 the following hold

Eα,ω(θ) =
1

α
θ(1−ω)/αexp(θ1/α)−

r∑
k=1

1

Γ(ω − αk)

1

θk
+ ξ

(
|θ|−(r+1)

)
,

with |θ| → ∞, |arg(θ)| ≤ α π
2 , and

Eα,ω(θ) = −
r∑

k=1

1

Γ(ω − αk)

1

θk
+ ξ

(
|θ|−(r+1)

)
,

with |θ| → ∞, |arg(θ)| > α π
2 .

Proposition 3. [16] The asymptotic for Eα(βθ
α) as θ reaches infinity, is introduced as follows:

(i) for |arg(β)| ≤ απ/2, Eα(βθ) ∼ 1
αe

β1/αθ,

(ii) for |arg(β)| > απ/2, Eα(βθ) ∼ 1
−β,Γ(1−α)θ

−α, which decays slowly to 0.

Now, the characteristic equation of system (3.1) will be established and some stability conditions will be determined

by using Jumarie type of derivative. Let ∆s = (Isα −A), then equation (3.9) can be written as

∆sX(s) = sα−1X0. (3.12)

The character equation of (3.12) is given by

det (∆s) = det(Isα −A) = 0. (3.13)

Since (3.13) contains fractional order, it is difficult to be solved. However, we can determine the stability of system

(3.7) by the eigenvalues of ∆s when all the roots of the transcdental equation (3.13) lie in the open left half complex

plane, i.e Re(s) < 0. Let β = sα, then

det(βI −A) = 0, (3.14)

it follows that, s = β1/α and

|arg(s)| = |arg(β1/α)| ≥ π

2
.

Thus,

|arg(β)| ≥ απ

2
. (3.15)

All the characteristic roots of system (3.7) have a negative real part, which described by the stable and unstable areas

in the Fig. 1 and means that the eigenvalues of this system lie in the complex plane except the sector bordered by the

angles ±απ
2 . The unstable area becomes larger as long as α increases and symmetric about the positive x-axis.
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Figure 1: Stable and unstable regions of system (3.7).

Theorem 6. If all the eigenvalues of the characteristic polynomials of ∆s have a negative real part, then the equilibrium

solution of system (3.7) is asymptotically stable.

Theorem 7. The autonomous system (3.7) is said to be

(i) asymptotically stable if and only if

|arg(σ(A))| > απ

2
, (3.16)

where arg(σ(A)) is the argument of all eigenvalues of A, giving in the formula arg(γ ± iµ) = tan−1(µγ ). In this case,

the stability is also called θ−α stability where the components of the state decay towards 0 like θ−1.

(ii) stable if and only if either it is asymptotically stable or the critical roots which satisfy |arg(σ(A))| = απ
2 , have

geometric multiplicity one.

Proof: The proof is straightforward by the proposition (2) and (3).

Special cases:

(i) for the case of pure imaginary β1,2 = ±iµ, we have, |arg(β1,2)| = ±π
2 > απ

2 , and equilibrium point of (3.7) is

asymptotically stable if α ∈ (0, 1) while it is stable if α ∈ (0, 1].

(ii) the case of zero eigenvalues of A in (3.7) is not covered in theorems since the argument of zero in the complex

plane can be arbitrary.

Now, we apply the obtained results with the characteristic method which has received much attention in recent

years (see, for example, [7]). This method is employed to solve the fractional-order system (3.1). The analytical

solutions are expressed in terms of Mittag-Leffler function and the generalized cosine and sine functions.

3.3 Characteristic Method of Solutions of FDS

Consider the system of linear fractional differential equations
JDα[x] = ax+ by,

JDα[y] = cx+ dy,

(3.17)

where α ∈ (0, 1), a, b, c and d are constants, x and y are functions of θ.

Since JDα[x(θ)] = βx(θ) has a solution in the form x(θ) = AEα(βθ
α), where A is arbitrary constant, we put
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x = AEα(βθ
α) and y = BEα(βθ

α) in (3.17) and using
JDαEα(βθ

α) = βEα(βθ
α), we have 

A(β − a)− bB = 0,

−cA+ (β − d)B = 0.

(3.18)

Eliminating A and B from (3.18) yields ∣∣∣∣∣ a− β b

c d− β

∣∣∣∣∣ = 0,

which gives the characteristic equation

β2 − (a+ d)β + (ad− bc) = 0, (3.19)

with roots β1 and β2, we consider three main cases:

Case I : Suppose that β1 and β2 are real and distinct roots for the characteristic equation (3.19). Then, the solution

of (3.17) is given by

x = x1 + x2 = A1Eα(β1θ
α) +A2Eα(β2θ

α), y = y1 + y2 = B1Eα(β1θ
α) +B2Eα(β2θ

α).

And the general solution of system (3.17) can be represented by

x = c1A1Eα(β1θ
α) + c2A2Eα(β2θ

α), y = c1B1Eα(β1θ
α) + c2B2Eα(β2θ

α),

where c1, c2, A1, A2, B1 and B2 are arbitrary constants.

This case arises in the following example.

Example 1. Use the method of linear algebra to find the solutions of the following system:
JDαx = −x− 2y,

JDαy = x− 4y,

(3.20)

subject to

0 < α ≤ 1, x(0) = 2 and y(0) = 0.

Solution: Let

x = AEα(βθ
α) and y = BEα(βθ

α),

be the solutions of system (3.20 ). Then, substituting x and y into the considered system gives
(−1− β)A− 2B = 0,

A+ (−4− β)B = 0.

(3.21)

The corresponding characteristic equation is β2 + 5β + 6 = 0, from which we have β = −2,−3. Substituting β = −2

into (3.21), we get A = 1and B = 1
2 . Substituting β = −3 into (3.21) yields A = B = 1. Therefore, the solutions are

x = Eα(−2θα) + 0.5Eα(−3θα)

y = Eα(−2θα) + Eα(−3θα).

Using the initial conditions leads to c1 = 1, c2 = 2. Therefore, the required solutions are

x = Eα(−θα) + Eα(−3θα),

y = Eα(−θα) + 2Eα(−3θα).
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Figure 2: The solutions x(θ) and y(θ) for negative eigenvalues of the system (3.20) for different values of α

.

In Fig. 2, it is found that the curves of the solutions x(θ) and y(θ), within θ = [0, 3] at different values of α ∈ (0, 1],

decline and tend to equilibrium point as θ increases. It is worth to mention that as long as α increases the declines go

faster to equilibrium point. Therefore, the equilibrium point is asymptotically stable.

Case II : If the roots of the characteristic equation (3.19) are complex β1,2 = γ ± iµ. Then, the solutions can be

written as following:

x = [Eα(γθ
α)] [(A1cosα(µθ

α)−A2sinα(µθ
α)) + i (A2cosα(µθ

α) +A1sinα(µθ
α))] .

y = [Eα(γθ
α)] [(B1cosα(µθ

α)−B2sinα(µθ
α)) + i (B2cosα(µθ

α) +B1sinα(µθ
α))] .

We can write x as linear combination of x1 (Re[x]) and x2 (Im[x]), Similar is done for y. Therefore, the general

solution of (3.17) is represented as following:

x = [Eα(γθ
α)] [M((A1cosα(µθ

α)−A2sinα(µθ
α)) +N((A2cosα(µθ

α) +A1sinα(µθ
α))] ,

y = [Eα(γθ
α)] [M(B1cosα(µθ

α)−B2sinα(µθ
α)) +N((B2cosα(µθ

α) +B1sinα(µθ
α))] .

Where M and N can be determined from the initial conditions.

Example 2. Use the characteristic method to find the solutions of the following system:
JDαx = y,

JDαy = −4x,

(3.22)

subject to

0 < α < 1, x(0) = 1 and y(0) = 2.

Solution: Let

x = AEα(βθ
α) and y = BEα(βθ

α),

be the solutions of system (3.22). Then substituting x, y into the given system leads to
β A−B = 0,

4A+ β B = 0.

(3.23)

From the corresponding characteristic equation, we have β = ±2i. Substituting β = 2i into (3.23) to obtain A = 1,

B = 2i. Then, the solutions are

x = cosα(2θ
α) + isinα(2θ

α), y = −2sinα(2θ
α) + 2icosα(2θ

α).
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Therefore, the solutions can be written in the form

x = Mcosα(2θ
α) +Nsinα(2θ

α), y = −2Msinα(2θ
α) + 2N cosα(2θ

α).

The initial conditions give us that M = 1 and N = 1, so we get

x = cosα(2θ
α) + sinα(2θ

α), y = −2sinα(2θ
α) + 2 cosα(2θ

α).

Figure 3: The particular solutions x(θ) and y(θ) of system (3.22) for pure imaginary eigenvalues with θ = [0, 3] for

different values of α, in 2-dimensional (a, b) and 3-dimensional (c).

From Fig. 3, it is clear that the wave is oscillating as a periodic type and its amplitude increases as α increases. graphs

(a,b) exhibit that as α increases up to one, the wave tends away from equilibrium point (0,0). This result successfully

agrees with the stability classification of the equilibrium point of special cases.

Case III : If the roots of the characteristic equation (3.19) are real and repeated β1 = β2 = β. Then, the solutions

of system (3.17) are given by

x = x1 + x2 = AEα(βθ
α) + (A1θ

α +A2)Eα(βθ
α), y = y1 + y2 = BEα(βθ

α) + (B1θ
α +B2)Eα(βθ

α).

The general solutions are,

x = c1AEα(βθ
α) + c2(A1θ

α +A2)Eα(βθ
α), y = c1BEα(βθ

α) + c2(B1θ
α +B2)Eα(βθ

α),

where c1 and c2 can be determined from the initial conditions and A, A1, A2, B, B1 and B2 are arbitrary constants.

Example 3. Use the characteristic method to find the solutions of the following system:
JDαx = 2x− y,

JDαy = x+ 4y,

(3.24)

subject to

0 < α ≤ 1, x(0) = 2 and y(0) = 1.

Solution: Let x = AEα(βθ
α) and y = BEα(βθ

α), be the solutions of (3.24), then substituting x and y into (3.24)

gives 
(β − 2)A+B = 0,

−A+ (β − 4) B = 0.

(3.25)
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From the corresponding characteristic equation, we have β = 3, 3. Substituting β = 3 into (3.25) yields A = −B.

Taking A = −1 leads to B = 1 so, the first solution is in the form

x1 = −Eα(3θ
α) , y1 = Eα(3θ

α).

The second solution will be

x2 = (A1θ
α +A2) [Eα(3θ

α)] , y2 = (B1θ
α +B2) [Eα(3θ

α)] .

Differentiating x2 and y2 αth order and applying the product rule for Jumarie type of derivative yield

JDαx = 3(A1θ
α +A2)Eα(3θ

α) + Γ(1 + α)A1Eα(3θ
α).

JDαy = 3(B1θ
α +B2)Eα(3θ

α) + Γ(1 + α)B1Eα(3θ
α).

Substituting JDαx and JDαy into (3.24) and Comparing the coefficients of θ, simplifying gives

A1 = −B1,

A2 +A1Γ(1 + α) = −B2.

For simple non-zero values, we choose A1 = −1, B1 = 1 and B2 = 0 then, A2 = Γ(1+α). Using the initial conditions,

we find c1 = 1 and c2 = 3
Γ(1+α) . Hence, the solutions are

x =

[
2− 3θα

Γ(1 + α)

]
Eα(3θ

α), y =

[
1 +

3θα

Γ(1 + α)

]
Eα(3θ

α).

Figure 4: The solutions of system (3.24) for α = 0.8 and 1.0 .

In the Fig. 4, we noticed that as α increases, the amplitude of x(θ) tends to −∞ and the amplitude of y(θ) tends to

∞. Then, the equilibrium point Xeq = (0, 0) is unstable.

For the special cases we have the following example:

Example 4. Use the characteristic method to find the solutions of the following system:
JDαx = −3y,

JDαy = 3y,

(3.26)

subject to

0 < α ≤ 1, x(0) = 1 and y(0) = −1.

Solution: The solutions of the given system are

x(θ) = Eα(3θ
α), y(θ) = −Eα(3θ

α).

Here β = 0, 3. From the Fig. 5, we can conclude that the equilibrium point is unstable.
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Figure 5: The solutions of system (3.26) for various values of α.

4 Applications of Nonlinear Fractional Dynamical System in Dusty Plasma

Consider an unmagnetized dusty plasma consists of isothermal electrons and ions, hot dust, cold dust grain. In

equilibruim, the condition of charge neutrality is Ni0 = Nc0Zc +Nh0Zh +Ne0 , where Ne0, Nh0, Nc0 and Ni0 are the

unperturbated number density of species. The charge number for negatively charged hot (cold) dust is Zh (Zc) . The

nonlinear fluid model is described by the following one dimensional system of continuity, motion for cold (hot) dust

and Poisson [20].
∂Nc

∂t
+

∂(NcVc)

∂x
= 0 (4.1)

∂Vc

∂t
+ Vc

∂Vc

∂x
= γc

∂φ

∂x
, (4.2)

when (Te, Ti ≫ Th) for adiabatic hot grains, similar equations are

∂Nh

∂t
+

∂(NhVh)

∂x
= 0, (4.3)

∂Vh

∂t
+ Vh

∂Vh

∂x
+

1

MhNh

∂Ph

∂x
= γh

∂φ

∂x
, (4.4)

where

Ph = Pho(
Nh

Nh0
)ρ, (4.5)

∂2φ

∂x2
= 4πe(ZcNc + ZhNh +Ne −Ni), (4.6)

where Vc (Vh) represents the velocity of cold (hot) dust grain, Mh (Mc) is the mass of hot (cold) grain, φ is the

electrostatic potential of plasma medium, Ph0 = Nh0Th and γc = eZc

Mc
, γh = eZh

Mh
and ρ = 3 in one dimensional fluid.

The temperature of electron (ions) is Te (Ti), Th (Tc) is the temperature of hot (cold)grains. The density Ne and Ni

of electrons and ions obey the Maxwell Boltzmann distribution as,

Ne = Ne0 exp(
eφ

Te
), (4.7)

Ni = Ni0 exp(
−eφ

Ti
). (4.8)

For formulation of KdV equation, the reductive perturbation method consider,

ξ = ε
1
2 (x− Vpht) , τ = ε

3
2 t, (4.9)

where the strength of nonlinearity is ε and Vph for wave speed propagation. Eqs.(4.1)-(4.6) are expanded as:

Nc

Vc

Nh

Vh

φ


=



Nc0

0

Nh0

0

0


+ ε



Nc1

Vc1

Nh1

Vh1

φ1


+ ε2



Nc2

Vc2

Nh2

Vh2

φ2


+ · · · (4.10)
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The boundary conditions for this system are |ξ| → ∞, Nc = Nc0, Nh = Nh0, Vc = Nh = φ = 0. Put Eqs.(4.7)-(4.10) in

Eqs.(4.1)-(4.6) and equating the coefficients of like power of ε .

The KdV equation is obtained as Ref. [20].

∂φ1

∂τ
+ C φ1

∂φ1

∂ξ
+D

∂3ϕ1

∂ξ3
= 0, (4.11)

where the dispersion equation is,

3Nc0Ph0TeTiZcγc + V 4
pheMhNh0

[
(Ne0Te +Ne0Ti +Nc0TeZc) +Nh0TeZh

]
+

V 2
ph

[
−3ePh0(Ne0(Te + Ti) + Te(Nc0Zc +Nh0Zh))−MhNh0TeTi(Nc0Zcγc +Nh0Zhγh)

]
= 0,

and the coefficients of terms in KdV equation are,

C =
1

2T 2
e T

2
i Vphγ1(Nc0Zcγ2

1γc +M2
hN

3
h0V

4
phZhγh)[

−3M2
hN

3
h0Zhγ

2
hT

2
e T

2
i V

4
ph(Ph0 +MhNh0V

2
ph)− 3γ3

1Nc0T
2
e T

2
i Zcγ

2
c +

γ3
1

(
e2V 4

ph

(
Ne0T

2
e −Ne0T

2
i +Nc0T

2
e Zc +Nh0T

2
e Zh

))]

D =
V 3
phγ

2
1

8eπ
(
Nc0Zcγ2

1γc +M2
hN

3
h0V

4
phZhγh

) , γ1 = MhNh0V
2
ph − 3Ph0

4.1 Planar Dynamical System for Space-Time Fractional KdV Equation

The KdV Eq.(4.11) is converted to the space-time fractional KdV equation (STFKdV) by using the Agrawal technique[21]-

[23]
JDα

τ φ1(ξ, τ) + C φ1(ξ, τ)
JDλ

ξφ1(ξ, τ) +D JDλλλ
ξ φ1(ξ, τ) = 0. (4.12)

The STFKdV equation is transformed to ODE by introduce a new variable[20]

η =
ξλ

Γ(λ+ 1)
− (τδ)α

Γ(α+ 1)
, (4.13)

where δ defined as a modification parameter in the transformation law, and we use some properties of JRL fractional

derivative.
JDα

y y
δ =

Γ(1 + δ)

Γ(1 + δ − α)
y(δ−α), JDα

y f(u(y)) =
JDα

y u(y)(
df

du
).

Let φ1(ξ, τ) = φ(η), so we get the ODE

−δα
dφ(η)

dη
+ C φ(η)

dφ(η)

dη
+ D

d3φ(η)

dη3
= 0. (4.14)

By integrate Eq.(4.14) with zero constant due to satisfy the boundary conditions, we get

−δαφ(η) + C φ2(η) +D
d2φ(η)

dη2
= 0. (4.15)

The Eq.(4.15) is equal to autonomous planar dynamical system (DS):
dφ
dη = Z

dZ
dη = δ φ

D − C
D φ2

. (4.16)
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We investigate the bifurcations of phase portraits of system (4.16) in the (φ,Z) with α and δ are changed. Bifurcation

analysis of dynamic system having important role in our research. This importance is the fact that we can essentially

draw the phase portrait which describe the behavior of different solutions without solving the system.

Figure: 6 Phase portrait for dynamical system (4.16) with different values of α at δ = 0.6, β = 1; .

4.2 Bifurcations

We had the Jacobian matrix to linearizated the system (4.16) as

m =

(
0 1

δα

D − 2Cφ
D 0

)
.

The system (4.16) has two equilibrium points at q1(0, 0) and q2(
δα

C , 0). The eigenvalues of Jacobian matric m at

q1(0, 0) is λ1 = ±
√

δα

D are distinct real, where δα

D be insure positive, so we classify the equilibrium point q1 as unstable

saddle point, see Fig.(6-a). Eigenvalues of m at q2(
δα

C , 0) is λ2 = ± i
√

δα

D , so we classify the equilibrium point q2 as

stable center, so that φ(η) becomes periodic as exhibited in Fig. (6-b). Trajectories are closed curves that are known

as homoclinic orbits as shown in Figs.(7). in Fig.(7-a,b), there are two points in the phase portrait correspond to, a

saddle point at q1(0, 0) and other to a center point at q2(
δα

C , 0). We concluded that, we have two types of solutions

for system (4.16), periodic and solitary solutions due to the phase portrait of a dynamical system. A solitary wave

solution analogous to the homoclinic orbit at an equilibrium point, also the phase portrait has a family of periodic

orbits about an equilibrium point of the system, then the system has a family of periodic wave solutions corresponding

to the family of periodic orbits about that point [24].
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Figure: 7 Phase portrait for homoclinic orbits with different values of α at δ = 0.6, β = 1; .

Figure: 8 Phase portrait for homoclinic orbits with different values of δ at α = 0.6, β = 1; .
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5 Results and Discussion

The nonlinear STFKdV equation is converted to nonlinear D.S. in plasma physics that containing electrons, ions, cold

and hot dust grains have been examined. We investigated the influence of two parameters; space-time fractional α

and the modification parameter δ on the behavior of solutions. Our numerical studies and all phase portraits of our

system have been carried using the parameters of Saturn F-ring’s i.e., the mass of dust grains are Mc = Mh = 1012Mi

, dust charges are Zh = 1000, Zc = 10, the equilibrium densities are Nc0 = 8 cm−3, Nh0 = 6 cm−3, Ne0 = 10 cm−3,

and the temperature of hot grains, electrons and ions are Th = 0.05 eV, Te = Ti = 1 eV , respectively, as given in

(Salim et al., 2015 [25]; Akhtar et al., 2007 [26]; El-Shewy et al., 2011 [27]). We achieved a solitary and periodic waves

by the bifurcation analysis. The parameters δ = 0.6, α = 0.2 give the saddle phase portrait in Fig. (6-a) and center

in Fig.(6-b). Furthermore there is one homoclinic orbit to q1 enclosing one center q2 at α = 0.2 as Fig.(7-a) and at

α = 0.6 as Fig.(7-b). It is observed that from these graphs that as α increases the amplitude of solitary wave decrease.

In Fig.(7-a,b) as the parameter of fractional α increases, the number of periodic solutions around second equilibrium

point decrease in same interval. So that the waves become rarefaction and this observation is in a good agrement with

results in Ref.[20] where the amplitude of soliton wave decreases and width increases as α increases . In Figs.(8) at

α = 0.6, it is observed that from these figures as δ increases, the envelope solitary wave reverses its behavior from

rarefactive to compressive wave. This effect of modification parameter is congruent with the observation in Ref.[20]

where the width of wave decreases and the amplitude increases as δ increases .

6 Conclusions

The stability, the existence and uniqueness of fractional linear systems are an active research area nowadays. Here we

presented the conditions under which the solutions of the proposed systems exist and unique. The solutions of some

FDS are obtained by linear algebra method. The general solutions are obtained in terms of Mittag-Leffler function

which helps us to understand the long behaviour of the solutions. The behaviour of solutions of the given systems are

studied in the neighbourhood of the equilibrium point (original) JRL. Moreover it seems to be the best among others

because this operator can be used to model some natural phenomena and it does not require differentiable functions.

Finally we introduced a very important application of the effect of fractional parameters in astrophysical plasmas.

The results from this work are expected to contribute to in-depth understanding of nonlinear waves that may appear

in the interstellar regions of Saturn.
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