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Abstract:
The purpose of this paper is to deal with the following nonlinear Hadamard fractional boundary value
problem

HDα
1+u(t) + f(t, u(t), u(t)) + g(t, u(t)) = 0,

1 < t < e, 1 < α ≤ 2,

u(1) = u(e) = 0,

where HDα
1+ is the Hadamard fractional derivative operator. Using the mixed monotone operator

method, we prove an existence and uniqueness result for this mixed fractional Hadamard boundary
value problem. As an application of this result, we give one example to establish an existence and
uniqueness of a positive solution.
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1 Introduction

A large class of fractional ordinary differential equations as well as partial differential equations is of
essential importance and rapidely developed.Illustrated by several applications, it attracted a lot re-
searchers and therefore many results derived in different fields of sciences. The novelty that we prove
here is based on the motivation due to the rapid development of such fractional theory and several
applications for a class of ordinary as well as partial differential equations. One may observe that such
applications spread in a variety of sciences such as engineering, physics, biology, medicine and related
fields. For additional lectures and details, we refer the reader to [2, 8, 13, 14, 15] and the references
therein. Several research papers and monographs on fractional calculus are essentially established to
the existence of solutions of fractional ordinary differential equations, and partial differential equa-
tions on terms of fixed points of some special operators. Some of them are recently devoted with
the existence of solutions of nonlinear initial (or singular and nonsingular boundary) value problems
using nonlinear analysis methods focusing on fixed point theorems, Leray-Schauder theory, etc.), see
[1, 3, 4, 5, 6, 7, 9, 10, 11, 12, 16, 17] and the references therein.
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The purpose of this paper is to deal with existence of non trivial solutions to the Dirichlet boundary
value problems of Hadamard fractional order differential equations

HDα
1+u(t) + f(t, u(t), u(t)) + g(t, u(t)) = 0, 1 < t < e, 1 < α ≤ 2, (1)

u(1) = u(e) = 0, (2)

where HDα
1+ is the Hadamard fractional derivative operator, f : [1, e] × [0,+∞) × [0,+∞) → [0,+∞) and

g : [1, e]× [0,+∞)→ [0,+∞) are given continuous functions. We show that under appropriate conditions
on the nonlinear terms f and g, the fractional boundary value problem (1)− (2) has a unique positive
solution. Mathematical tools mainly used here are fixed point theory for operators acting on cones
in a Banach space and Green’s function associated to these operators. Such constructions of Green’s
function and cone are the backbone of this paper. We illustrate this result by providing an example .

2 Notations, Definitions and Lemmas

For completeness sake, let us dwell with some references, definitions, lemmas and basic results needed
in the proof of the main result of this paper.

Definition 2.1 The Riemann-Liouville fractional derivative of order α > 0 of a continuous function
ϕ : (0,+∞)→ R is given by

Dα
0+ϕ(t) = 1

Γ(n− α)

(
d

dt

)(n) ∫ t

0

ϕ(s)
(t− s)α−n+1

ds

s
.

Here n = [α] + 1 stands for integer part such that the right side is defined on (0, 1) point by point.

[α] denotes the integer part of number α, provided that the right side on (0,+∞) is defined point-wisely,
and Γ is the Euler gamma function.

Definition 2.2 If g ∈ C([a, b],R) and α > 0, then the Hadamard fractional integral is defined by

Iαa+ g(t) = 1
Γ(α)

∫ t

a

g(s)
(log t− log s)1−α

ds

s
.

Definition 2.3 Let α ≥ 0, and n = [α] + 1. If f ∈ ACn([a, b]) then the Hadamard fractional derivative of
order α of f defined by

HDα
a+ f(t) = 1

Γ(n− α)

∫ t

a

f (n)(s)
(log t− log s)α−n+1

ds

s
,

exists almost everywhere on [a, b] ([α] is the entire part of α).

HIαa+ f(t) = 1
Γα

∫ t

a

f(s)
(log t− log s)1−α

ds

s
.

The following theorem gives the relation between the solution u and the Green’s function G defined in
a general interval [a, b].

2



Journal of Advances in Mathematics Vol 22 (2023) ISSN: 2347-1921 https://rajpub.com/index.php/jam

Theorem 2.1 Let 1 < α ≤ 2 and q ∈ C([a, b],R). Then the unique solution of the problem

(L) HDα
1+u(t) + q(t)u(t) = 0, a < t < b, 1 < α ≤ 2,

u(a) = u(b) = 0,

is given by

u(t) =
∫ t

a

G(t, s)u(s)q(s)ds
s

+
∫ b

t

G(t, s)u(s)q(s)ds
s
,

where the Green function G(t, s) is defined by

Γ(α)G(t, s) =



(log t− log a)α−1
(

log b−log s
log b−log a

)α−1
− (log t− log s)α−1,

a ≤ s ≤ t,

(log t− log a)α−1
(

log b−log s
log b−log a

)α−1
,

t ≤ s ≤ b.

(3)

Proof:
As argued in [8, 14], the solution of Hadamard differential equation in (L) can be written in the following
integral equation

u(t) = c1(log t− log a)α−1 + c2(log t− log a)α−2

− 1
Γ(α)

∫ t

a

(log t− log s)α−1 q(s)ds
s
.

Using the boundary conditions (2), we found

c2 = 0, and c1 = 1
Γ(α)

∫ b

a

(
log t− log s
log b− log a

)α−1
q(s)ds

s
,

and therefore

u(t) = (log t− log a)α−1 1
Γ(α)

∫ b

a

(
log b− log s
log b− log a

)α−1
q(s)ds

s

− 1
Γ(α)

∫ t

a

(log t− log s)α−1 q(s)ds
s
.

The next lemma represents an important auxiliary result which is essential in proving the main result
of this paper.

Lemma 2.1 Let 1 < α ≤ 2. Then the Green function G defined in (3) is positive, continuous, and
satisfies

1
Γ(α)h(t)[(1− log s)α−1 − 1] ≤ G(t, s) ≤ 1

Γ(α)h(t)(1− log s)α−1, for all t, s ∈ [1, e],

where h(t) = (log t)α−1, t ∈ [1, e].

For the proof of Lemma 2.2, to obtain estimates for G, we proceed as follows. It is easy to see for the
right hand-side inequality that for (t, s) ∈ [1, e]× [1, e],

Γ(α)G(t, s) ≤ (log t)α−1(1− log s)α−1.
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It remains to prove that the left hand-side inequality is satisfied. To do this, we first consider two cases
t ≥ s, and t ≥ s. Before starting, one may we remark that for t ≤ e,

(log t− log s) ≤ (log t− log t log s) = log t(1− log s).

Hence, we conclude that for t ≥ s, we have

Γ(α)G(t, s) ≥ (log t)α−1(1− log s)α−1 − (log t)α−1 (4)

= (log t)α−1[(1− log s)α−1 − 1].

This due to the fact that

(log t− log s) ≤ (log t− log t log s) (5)

= log t(1− log s)

≤ log t,

valid for (t, s) ∈ [1, e]× [1, e].

It remains now to prove the case corresponding to s ≥ t. Indeed,

Γ(α)G(t, s) ≥ (log t)α−1(1− log s)α−1 (6)

≥ (log t)α−1[(1− log s)α−1 − 1]

≥ ((log t)α−1 − (log t)α + (log t)α)(1− log s)α−1.

In what follows, we introduce some basic concepts in ordered Banach spaces and a fixed point theorem
needed to accomplish the main finding.

Suppose that (E, ‖ · ‖) is a real Banach space which is partially ordered by a cone P ⊂ E, i.e.,

x, y ∈ E, x � y ⇐⇒ y − x ∈ P.

If x � y and x 6= y, then we denote x ≺ y or y � x. By θE we denote the zero element of E. Recall that
a nonempty closed convex set P ⊂ E is a cone if it satisfies two conditions

(a). x ∈ P, λ ≥ 0 =⇒ λx ∈ P ;

(b). −x, x ∈ P =⇒ x = θE.

An other issue that we look for here is to investigate the cone as well as its properties to construct
some subset of it. We denote the interior of the cone by Int(P ), which is defined by Int(P ) := {x ∈
P |x is an interior point ofP}. If P is not empty, it is called a solid cone. The cone P is called normal
if there exists a constant N positive such that for all x, y ∈ E, θE � x � y implies ‖x‖ ≤ N‖y‖. This
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inequality is sharp in the sense that N the normality constant of P is the best one. For all x, y ∈ E, the
notation x ∼ y means that there exist λ > 0 and µ > 0 such that

λy � x � µy.

Clearly, ∼ is an equivalence relation. Given h � θE, we denote by Ph the set

Ph = {x ∈ E |x ∼ h}.

It is easy to see that Ph ⊂ P .

Definition 2.4 An operator A : E → E is said to be increasing (resp. decreasing) if for all x, y ∈ E, x � y
implies Ax � Ay (resp. Ax � Ay).

Definition 2.5 An operator A : P × P → P is said to be a mixed monotone operator if it satisfies

(x, y), (u, v) ∈ P × P, x � u, y � v =⇒ A(x, y) � A(u, v).

An element x∗ ∈ P is called a fixed point of A if A(x∗, x∗) = x∗.

Definition 2.6 If an operator A : P → P satisfies

A(tx) � tAx, ∀t ∈ (1, e), x ∈ P,

it is called sub-homogeneous operator.

It is worth to mention that C. Zhai and M. Hao [16] established the following fixed point result.

Lemma 2.2 (16) Let β ∈ (0, 1). Let A : P × P → P be a mixed monotone operator that satisfies

A(tx, t−1y) � tβA(x, y), t ∈ (0, 1), x, y ∈ P. (7)

Let B : P → P be an increasing sub-homogeneous operator. Assume that

(i) there is h0 ∈ Ph such that A(h0, h0) ∈ Ph and Bh0 ∈ Ph;

(ii) there exists a constant δ0 > 0 such that A(x, y) � δ0Bx, for all x, y ∈ P .

Then

(I) A : Ph × Ph → Ph, B : Ph → Ph;

(II) there exist u0, v0 ∈ Ph and r ∈ (0, 1) such that

rv0 � u0 ≺ v0, u0 � A(u0, v0) +Bu0 � A(v0, u0) +Bv0 � v0;

(III) there exists a unique x∗ ∈ Ph such that x∗ = A(x∗, x∗) +Bx∗;

(IV) for any initial values x0, y0 ∈ Ph, constructing successively the sequences

xn = A(xn−1, yn−1) +Bxn−1, yn = A(yn−1, xn−1) +Byn−1, n = 1, 2, . . .

we have xn → x∗ and yn → x∗ as n→∞.
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3 Main result

This section is devoted to establish the main result of this paper.To do this, we define E = C([1, e])
the Banach space of continuous functions on [1, e] with the norm ‖y‖ = max{|y(t)| : t ∈ [1, e]}, P = {y ∈
C([1, e]) | y(t) ≥ 0, t ∈ [1, e]}.

Now, we are ready to prove the result of this paper formulated in the following theorem

Theorem 3.1 Let 1 < α ≤ 2 and assume that

(H1) the functions f : [1, e] × [0,+∞) × [0,+∞) → [0,+∞) and g : [1, e] × [0,+∞) → [0,+∞) are continuous
with M({t ∈ [1, e] | g(t, 0) 6= 0}) > 0, where M denotes the Lebesgue measure;

(H2) f(t, x, y) is increasing in x ∈ [0,+∞) for fixed t ∈ [1, e] and y ∈ [0,+∞), decreasing in y ∈ [0,+∞) for
fixed t ∈ 10, e] and x ∈ [0,+∞), and g(t, x) is increasing in x ∈ [0,+∞) for fixed t ∈ [1, e];

(H3) g(t, λx) ≥ λg(t, x) for all λ ∈ (0, 1), t ∈ [1, e], x ∈ [0,+∞), and there exists a constant β ∈ (0, 1) such
that f(t, λx, λ−1y) ≥ λβf(t, x, y) for all λ ∈ (1, e), t ∈ [1, e], x, y ∈ [0,+∞);

(H4) there exists a constant δ0 > 0 such that f(t, x, y) ≥ δ0g(t, x) for all t ∈ [1, e], x, y ∈ [0,+∞).

Then

(1) there exist u0, v0 ∈ Ph and r ∈ (0, 1) such that rv0 � u0 ≺ v0 and

u0(t) ≤
∫ e

1
G(t, s)f(s, u0(s), v0(s)) ds

s
+
∫ e

1
G(t, s)g(s, u0(s)) ds

s
, t ∈ [1, e],

v0(t) ≥
∫ e

1
G(t, s)f(s, v0(s), u0(s)) ds

s
+
∫ e

1
G(t, s)g(s, v0(s)) ds

s
, t ∈ [1, e],

where h(t) = (log t)α−1(1− log t), t ∈ [1, e];

(2) Problem (1)− (2) has a unique positive solution x∗ ∈ Ph;

(3) For any x0, y0 ∈ Ph, constructing successively the sequences

xn(t) =
∫ e

1
G(t, s)f(s, xn−1(s), yn−1(s)) ds

s
+
∫ e

1
G(t, s)g(s, xn−1(s)) ds

s
, n = 1, 2, . . . ,

yn(t) =
∫ e

1
G(t, s)f(s, yn−1(s), xn−1(s)) ds

s
+
∫ e

1
G(t, s)g(s, yn−1(s)) ds

s
, n = 1, 2, . . . ,

we have ‖xn − x∗‖ → 0 and ‖yn − x∗‖ → 0 as n→∞.

Proof. From Theorem 2.1, Problem (1)− (2) has the following integral formulation

u(t) =
∫ e

1
G(t, s)f(s, u(s), u(s)) ds

s
+
∫ e

1
G(t, s)g(s, u(s)) ds

s
.

Let us introduce two operators A : P × P → E and B : P → E defined by

A(u, v)(t) =
∫ e

1
G(t, s)f(s, u(s), v(s)) ds

s
, (Bu)(t) =

∫ e

1
G(t, s)g(s, u(s)) ds

s
.
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It is easy to see that u is a solution to (1)− (2) if and only if A(u, u) +Bu = u. Using (H1), we establish
that A : P × P → P and B : P → P . In view of (H2), from one side, one may conclude that A is mixed
monotone and B is increasing. In light of (H3), from another side, for any λ ∈ (0, 1), and u, v ∈ P , we
have

A(λu, λ−1v)(t) =
∫ e

1
G(t, s)f(s, λu(s), λ−1v(s)) ds

s

≥ λβ
∫ e

1
G(t, s)f(s, u(s), v(s)) ds

s

= λβA(u, v)(t),

for all t ∈ [1, e]. Hence, for all λ ∈ (0, 1), and u, v ∈ P , we have

A(λu, λ−1v) � λβA(u, v).

Thus, condition (4) of Lemma2.4 is satisfied. From (H3), we conclude that for all λ ∈ (0, 1), and u ∈ P ,

B(λu)(t) =
∫ e

1
G(t, s)g(s, λu(s)) ds

s

≥ λ

∫ e

1
G(t, s)g(s, u(s)) ds

s

= λBu(t),

for all t ∈ [1, e]. Then, for all λ ∈ (0, 1) and u ∈ P , it comes

B(λu) � λBu.

To this step, we conclude that B is a sub-homogeneous operator. For the next, we prove that A(h, h) ∈ Ph
and Bh ∈ Ph. Indeed, using Lemma 2.2 and (H2), we obtain

A(h, h)(t) =
∫ e

1
G(t, s)f(s, h(s), h(s)) ds

s
≤ 1

Γ(α)h(t)
∫ e

1
(1− log s)α−2f(s, hmax, 0) ds

s
,

where hmax = max{h(t) : t ∈ [1, e]}. Again, Using Lemma 2.2 and (H2), we have

A(h, h)(t) =
∫ e

1
G(t, s)f(s, h(s), h(s)) ds

s
≥ 1

Γ(α)h(t)
∫ e

1
(1− log s)α−1f(s, 0, hmax) ds

s
.

Let us define µ1, and µ2 by
µ1 = 1

Γ(α)

∫ e

1
(1− log s)α−1f(s, 0, hmax) ds

s

and
µ2 = 1

Γ(α)

∫ e

1
(1− log s)α−2f(s, hmax, 0) ds

s
.

We have
µ1h � A(h, h) � µ2h.

It yields from (H2) and (H4), that

f(s, hmax, 0) ≥ f(s, 0, hmax) ≥ δ0g(s, 0) ≥ 0.

Since M({t ∈ [1, e] | g(t, 0) 6= 0}) > 0, we have

µ2 = 1
Γ(α)

∫ e

1
(1− log s)α−2f(s, hmax, 0) ds

s
≥ δ0

Γ(α)

∫ e

1
(1− log s)α−2g(s, 0) ds

s
> 0
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and
µ1 = 1

Γ(α)

∫ e

1
(1− log s)α−1f(s, 0, hmax) ds

s
≥ (α− 1)δ0

Γ(α)

∫ e

1
(1− log s)α−1g(s, 0) ds

s
> 0.

Thus we proved that A(h, h) ∈ Ph. Similarly,

1
Γ(h)h(t)

∫ e

1
(1− log s)α−1g(s, 0) ds

s
≤ Bh(t) ≤ 1

Γ(α)h(t)
∫ e

1
(1− log s)α−2g(s, hmax) ds

s
.

From M({t ∈ [1, e] | g(t, 0) 6= 0}) > 0, we have Bh ∈ Ph. Then condition (i) of Lemma 2.4 is satisfied. In the
following we show the condition (ii) of Lemma 2.4 is satisfied. Let u, v ∈ P . From (H4), we have

A(u, v)(t) =
∫ e

1
G(t, s)f(s, u(s), v(s)) ds

s
≥ δ0

∫ e

1
G(t, s)g(s, u(s)) ds

s
= δ0Bu(t).

Therefore for all t ∈ [1, e], and u, v ∈ P , we have A(u, v) � δ0Bu. So the conclusion of Theorem 3.1 follows
from Lemma 2.4.
Example

Let us consider the following fractional boundary value problem

D
3/2
0+ u(t) + 2

(√
t+ u(t)

)
+ 1
u(t) + 4 = 0, 0 < t < 1, (8)

u(1) = u(e) = 0. (9)

In this example, we have α = 3/2. Consider the functions f : [1, e] × [0,+∞) × [0,+∞) → [0,+∞) and
g : [1, e]× [0,+∞)→ [0,+∞) defined by

f(t, x, y) =
√
t+ x+ 1

y + 4

for all t ∈ [1, e], x, y ∈ [0,+∞). Then (5) is equivalent to

D
3/2
0+ u(t) + f(t, u(t), u(t)) + g(t, u(t)) = 0, 1 < t < e.

For all λ ∈ (0, 1), t ∈ [1, e], x ∈ [0,+∞), we have

g(t, λx) = λx+
√
t ≥ λ(

√
t+ x) = λg(t, x).

for all λ ∈ (0, 1), t ∈ [1, e], x, y ∈ [0,+∞), we have

f(t, λx, λ−1y) =
√
t+ λx+ 1√

λ−1y + 4

=
√
t+ λx+

√
λ√

y + 4λ

≥
√
λ

(√
t+ x+ 1√

y + 4

)
= λf(t, x, y).

for all t ∈ [1, e], x, y ∈ [0,+∞), we have

f(t, x, y) =
√
t+ x+ 1√

y + 4
≥
√
t+ x = g(t, x).

To this end, in view of Theorem 3.1, it follows that Problem (5) − (6) has a unique positive solution
x∗ ∈ Ph, where h(t) = (log t)α−1(1− log t), t ∈ [1, e].
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