DOI https://doi.org/10.24297/jam.v21i.9317

Existence of a bounded variation solution of a nonlinear integral equation in  $L_1(R^+)$ 

Wagdy G. El-Sayed<sup>1</sup>, Ragab O. Abd El-Rahman<sup>2</sup>, Sheren A. Abd El-Salam <sup>3</sup>, Asmaa A. El Shahawy<sup>4</sup>

<sup>1</sup> Department of mathematics and computer science, Faculty of Science, Alexandria University, Alexandria, Egypt

<sup>2,3,4</sup>Department of mathematics, Faculty of Science, Damanhour University, Damanhour, Egypt

<sup>1</sup>wagdygoma@alexu.edu.eg, <sup>2</sup>dr.ragab@sci.dmu.edu.eg, <sup>3</sup>shrnahmed@yahoo.com, <sup>4</sup>asmaashahawy91@yahoo.com

### Abstract

In this paper, we study the existence of a unique solution of a nonlinear integral equation in the space of bounded variation on an unbounded interval by using measure of noncompactness and Darbo fixed point theorem.

**Keywords:** Nemytskii operator, Volterra integral operator, Hausdorff measure of noncompactness, Functions of bounded variation, Darbo fixed point theorem.

## 1 Introduction

Integral equations create a very important and significant part of mathematical analysis and their applications to real world problems (cf. [1], [3], [7], [22],[24]). The theory of integral equations has been well developed with the help of various tools from functional analysis, topology and fixed-point theory.

This paper studies the existence of a unique solution of the following nonlinear integral equation

$$x(t) = g(t) + h(t)f(t, x(t)) + \int_0^{\phi(t)} k(t, s)f(s, x(s))ds, \qquad t \in \mathbb{R}^+,$$
(1)

in the space  $L_1(R^+)$  of functions of bounded variation.

## 2 Preliminaries

This section is devoted to recall some notations and results that will be needed in the sequel. Let R be the field of real numbers and  $R^+$  be the interval  $[0, \infty)$ . Denote by  $L_1 = L_1(R^+)$  the space of Lebesgue integrable functions on the interval  $[0, \infty)$ , with the standard norm

$$||x|| = \int_0^\infty |x(t)|dt.$$

The most important operator in nonlinear functional analysis is the so-called Nemytskii operator ([2], [11], [12],[21]).

**Definition 2.1** If  $f(t,x) = f: R^+ \times R \to R$  satisfies Carathéodory conditions i.e. it is measurable in t for any  $x \in R$  and continuous in x for almost all  $t \in R^+$ . Then to every function x(t) being measurable on  $R^+$  we may assign the function

$$(Fx)(t) = f(t, x(t)), t \in R^+.$$

The operator F is called the Nemytskii (or superposition) operator generated by f.



Furthermore, we propose a theorem which gives necessary and sufficient condition for the Nemytskii operator to map the space  $L_1$  into itself continuously.

**Theorem 2.1** ([2], [15]) If f satisfies Carathéodory conditions, then the Nemytskii operator F generated by the function f maps continuously the space  $L_1$  into itself if and only if

$$|f(t,x)| \le a(t) + b|x|,$$

for every  $t \in R^+$  and  $x \in R$ , where  $a(t) \in L_1$  and  $b \ge 0$  is a constant.

### **Definition 2.2** (Volterra integral operator) [25]

Let  $k: \Delta \to R$  be a function that is measurable with respect to both variables, where  $\Delta = \{(t, s) : 0 \le s \le t < \infty\}$ . For an arbitrary function  $x \in L_1(R^+)$ , we define

$$(Vx)(t) = \int_0^t k(t,s)x(s)ds, \quad t \ge 0.$$

The above operator V is the well-known linear Volterra integral operator. Obviously, if  $V: L_1 \to L_1$  then it is continuous [23].

### **Definition 2.3** (/5], /10], /20])

The Hausdorff measure of noncompactness  $\chi(X)$  (see also [16]–[18]) is defined as

$$\chi(X) = \inf\{r > 0 : \text{there exists a finite subset } Y \text{ of } E \text{ such that } x \subset Y + B_r\}.$$

Another regular measure was defined in the space  $L_1(I)$  ([4], [9]). For any  $\varepsilon > 0$ , let c be a measure of equiintegrability of the set X:

$$c(X) = \lim_{\varepsilon \to 0} \{ \sup_{x \in X} \{ \sup [\int_{D} |x(\tau)| d\tau : D \subset R^{+}, \text{ meas} D \le \varepsilon] \} \} = 0$$
 (2)

and

$$d(X) = \lim_{T \to \infty} \{ \sup \left[ \int_{T}^{\infty} |x(\tau)| d\tau : x \in X \right] \}, \tag{3}$$

where meas D represents the Lebesgue measure of subset D.

Put

$$\gamma(X) = c(X) + d(X). \tag{4}$$

Then we have the following theorem [19], which connects between the two measures  $\chi(X)$  and  $\gamma(X)$ .

**Theorem 2.2** Let  $X \in M_E$  and compact in measure, then

$$\chi(X) \le \gamma(X) \le 2\chi(X)$$
.

Now, we give Darbo fixed point theorem (cf.[8], [13], [14], [21]).

**Theorem 2.3** If Q is nonempty, bounded, closed and convex subset of E and let  $A: Q \to Q$  be a continuous transformation which is a contraction with respect to the measure of noncompactness  $\mu$ , i.e. there exists a constant  $k \in [0,1)$  such that

$$\mu(AX) \le k\mu(X),$$

for any nonempty subset X of Q. Then A has at least one fixed point in the set Q.

**Definition 2.4** (Functions of bounded variation) ([6], [20])

Let  $x : [a,b] \to R$  be a function. For each partition  $P : a = t_0 < t_1 < \ldots < t_n = b$  of the interval [a,b], we define

$$Var(x, [a, b]) = \sup \sum_{i=1}^{n} |x(t_i) - x(t_{i-1})|,$$

where the supremum is taken over the interval [a,b]. If  $Var(x) < \infty$ , we say that x has bounded variation and we write  $x \in BV$ .

We denote by BV = BV[a, b] the space of all functions of bounded variation on [a, b].

**Theorem 2.4** [4] Assume that  $X \subset L_1(I)$  is of locally generalized bounded variation, then Conv X (convex hull of X) and  $\bar{X}$  are of the same type.

**Corollary 2.1** [4] Let  $X \subset L_1(I)$  is of locally generalized bounded variation, then Conv X is also such.

Next, we will have the following theorem, which we will further use (cf. [4]).

**Theorem 2.5** Assume that  $X \subset L_1$  is a bounded set have the following hypotheses:

- (i) there exists  $t_0 \ge 0$  such that the set  $x(t_0) : x \in X$  is bounded in R,
- (ii) X is of locally generalized bounded variation on  $R^+$ ,
- (iii) for any a > 0 the following equality holds

$$\lim_{T\to\infty} \{\sup_{x\in X} \{meas\ \{t>T: |x(t)|\geq a\}\}\} = 0.$$

Then the set X is compact in measure.

Corollary 2.2 [4] If  $X \subset L_1$  is a bounded set satisfies the hypotheses of Theorem 2.5. Then Conv X is compact in measure.

### 3 Main result

Equation (1) can be written in operator form as

$$(Gx)(t) = g(t) + h(t)Fx(t) + VFx(t),$$

$$(5)$$

where (Fx)(t) = f(t,x) and  $(Vx)(t) = \int_0^{\phi(t)} k(t,s)x(s)ds$ .

We will treat equation (1) under the following assumptions listed below:

- (i)  $g, h: R^+ \to R$ ,  $g \in L_1(R^+)$  and h(t) is bounded function such that  $\sup_{t \in R^+} |h(t)| \le M$ .
- (ii)  $f: R^+ \times R \to R$  satisfies Carathéodory conditions and there exist a function  $a \in L_1(R^+)$  and a constant  $b \ge 0$  such that  $|f(t,x)| \le a(t) + b|x|$ , for all  $t \in R^+$  and  $x \in R$ .

(iii) there exists L > 0 such that

$$|f(t,x) - f(s,y)| \le L(|t-s| + |x-y|).$$

(iv)  $k(t,s): \Delta \to R$  is measurable in both variables and such that the integral operator V generated by k maps  $L_1$  into  $L_1$ ,  $(\Delta = \{(t,s): 0 \le s \le t < \infty\})$ . Moreover,  $\forall h > 0$ .

$$\lim_{T \to \infty} \{ \text{meas } \{ t > T : |(Vx)(t)| \ge h \} \} = 0,$$

uniformly with respect to  $x \in X$ , where X is an arbitrary bounded subset of  $L_1$ .

(v) The generalized variation of the function  $t \to k(t, s)$  is essentially bounded on  $[0, T] \ \forall \ T > 0$  and uniformly on  $s \in [0, T]$ .

Also, the function v(T) is defined as

$$v(T) = \text{ess sup}\{\text{var}_t k(t, s), [0, T] : s \in [0, T]\},\$$

then we get  $v(T) < \infty \ \forall \ T \geq 0$ .

- (vi)  $\phi: R^+ \to R^+$  is increasing and continuous function such that  $\phi(t) < t, \ \forall \ t \in R^+$  and it is bounded on  $R^+$ .
- (vii) b(M + ||V||) < 1.

**Theorem 3.1** Under the above assumptions (i)-(vii), equation (1) has at least one solution  $x \in L_1(R^+)$  which is a function of locally bounded variation on the interval  $R^+$ .

**Proof.** First of all observe that by assumption (ii) the operator F maps the space  $L_1(R^+)$  into itself and is continuous. By assumption (iv) the Volterra operator V maps  $L_1(R^+)$  into itself and is continuous. Finally, for every  $x \in L_1(R^+)$  and by assumption (i) we can deduce that  $Gx \in L_1(R^+)$ . Moreover, we get

$$\begin{split} \|Gx\| &= \|g + hFx + VFx\| \\ &\leq \|g\| + \int_0^\infty |h(t)f(t,x(t)|dt + \int_0^\infty \int_0^{\phi(t)} |k(t,s)f(s,x(s))|dsdt \\ &\leq \|g\| + M \int_0^\infty [a(t) + b|x(t)|]dt + \int_0^\infty \int_0^t |k(t,s)||f(s,x(s))|dsdt \\ &\leq \|g\| + M\|a\| + bM \int_0^\infty |x(t)|dt + \|V\| \int_0^\infty |f(s,x(s))|dt \\ &\leq \|g\| + M\|a\| + bM\|x\| + \|V\| \int_0^\infty [a(t) + b|x(t)|]dt \\ &\leq \|g\| + M\|a\| + bM\|x\| + \|V\|\|a\| + b\|V\|\|x\| \\ &\leq \|g\| + M\|a\| + \|V\|\|a\| + b(M + \|V\|)r \\ &\leq r. \end{split}$$

From the above estimate, the operator G transforms the ball  $B_r$  into itself, where

$$r = \frac{\|g\| + M\|a\| + \|V\|\|a\|}{1 - b(M + \|V\|)} > 0.$$

Next, let us choose an arbitrary  $x \in B_r$ . Observe that

$$|(Gx)(0)| = |g(0) + h(0)f(0,0)|$$

$$\leq |g(0)| + |h(0)||f(0,0)|$$

$$< \infty.$$
(6)

Hence we infer that all functions belonging to  $GB_r$  are bounded at the point t=0 by the same constant.

Further, let us fix T > 0 and take a sequence  $t_i$  such that  $0 = t_0 < t_1 < t_2 ... < t_n = T$ . Then using our assumptions, we obtain

$$\begin{split} \sum_{i=1}^{n} |(Gx)(t_i) - (Gx)(t_{i-1})| & \leq & \sum_{i=1}^{n} |g(t_i) - g(t_{i-1})| \\ & + & \sum_{i=1}^{n} |h(t_i)f(t_i,x(t_i)) - h(t_{i-1})f(t_{i-1},x(t_{i-1}))| \\ & + & \sum_{i=1}^{n} |\int_{0}^{\phi(t_i)} k(t_i,s)f(s,x(s))ds - \int_{0}^{\phi(t_{i-1})} k(t_{i-1},s)f(s,x(s))ds| \\ & \leq & V(g,T) + \sum_{i=1}^{n} |h(t_i)f(t_i,x(t_i)) - h(t_i)f(t_i,x(t_{i-1}))| \\ & + & \sum_{i=1}^{n} |h(t_i)f(t_i,x(t_{i-1})) - h(t_{i-1})f(t_i,x(t_{i-1}))| \\ & + & \sum_{i=1}^{n} |h(t_{i-1})f(t_i,x(t_{i-1})) - h(t_{i-1})f(t_{i-1},x(t_{i-1}))| \\ & + & \sum_{i=1}^{n} |\int_{0}^{\phi(t_i)} k(t_i,s)f(s,x(s))ds - \int_{0}^{\phi(t_i)} k(t_{i-1},s)f(s,x(s))ds| \\ & + & \sum_{i=1}^{n} |\int_{0}^{\phi(t_i)} k(t_{i-1},s)f(s,x(s))ds - \int_{0}^{\phi(t_{i-1})} k(t_{i-1},s)f(s,x(s))ds| \\ & \leq & V(g,T) + L \sum_{i=1}^{n} |h(t_i)||x(t_i) - x(t_{i-1})| \\ & + & \sum_{i=1}^{n} |h(t_i) - h(t_{i-1})||f(t_i,x(t_{i-1}))| \\ & + & L \sum_{i=1}^{n} |h(t_{i-1})||t_i - t_{i-1}| \\ & + & \int_{0}^{\phi(t_i)} (\sum_{i=1}^{n} |k(t_{i-1},s)||f(s,x(s))|ds \\ & + & \sum_{i=1}^{n} \int_{\phi(t_{i-1})}^{\phi(t_{i-1})} |k(t_{i-1},s)||f(s,x(s))|ds \\ & + & \sum_{i=1}^{n} \int_{\phi(t_{i-1})}^{\phi(t_{i-1})} |k(t_{i-1},s)||f(s,x(s))|ds \\ & + & \sum_{i=1}^{n} \int_{\phi(t_{i-1})}^{\phi(t_{i-1})} |k(t_{i-1},s)||f(s,x(s))|ds \\ & + & k_0 \int_{0}^{T} a(s)ds + k_0 b \int_{0}^{T} |x(s)|ds \\ & \leq & V(a,T) + LMV(x,T) + V(h,T) + MN \end{split}$$

$$+ \int_{0}^{T} v(T)a(s)ds + b \int_{0}^{T} v(T)|x(s)|ds + k_{0} \int_{0}^{T} a(s)ds + k_{0}b \int_{0}^{T} |x(s)|ds$$

$$\leq V(g,T) + LMV(x,T) + V(A,T) + MN$$

$$+ v(T)||a|| + bv(T)r + k_{0}||a|| + k_{0}br < \infty,$$

$$(7)$$

where  $N = L|t_i - t_{i-1}|$ .

In view of the above estimate all functions belonging to  $GB_r$  have variation majorized by the same constant on every closed subinterval of the interval  $R^+$ .

Next, let us consider the set  $Q_r$ =Conv  $GB_r$ , obviously  $Q_r \subset B_r$ . we will prove that  $Q_r$  is nonempty, bounded, convex, closed and compact in measure.

 $Q_r$  being nonempty follows by considering the nonincreasing function  $x(t) = \frac{r}{\pi} (\frac{1}{1+t^2})$  where

$$||x|| = \int_0^\infty |x(t)|dt = \int_0^\infty |\frac{r}{\pi}(\frac{1}{1+t^2})|dt = \frac{r}{\pi}\arctan|_0^\infty = \frac{r}{\pi}(\frac{\pi}{2}) \le r.$$

Also  $Q_r$  is bounded as a subset of  $B_r$ .

To show that  $Q_r$  is convex. Let  $x_1, x_2 \in Q_r$ , then  $||x_i|| \le r$ , i = 1, 2.

Let

$$z(t) = \lambda x_1(t) + (1 - \lambda)x_2(t), \quad t \in \mathbb{R}^+, \ \lambda \in \mathbb{R}^+.$$

Then

$$||z|| \le \lambda ||x_1|| + (1 - \lambda)||x_2||$$
  
$$\le \lambda r + (1 - \lambda)r = r.$$

So the convexity of  $Q_r$  is established.

To show that  $Q_r$  is closed. Let  $\{x_n\}$  be a sequence of elements in  $Q_r$  convergent in  $L_1(R^+)$  to x, then the sequence is convergent in measure and as a consequence of the Vitali convergence theorem and the characterization of convergence in measure (the Riesz theorem) we obtain the existence of a subsequence  $\{x_{n_k}\}$  of  $\{x_n\}$  which converges to x almost uniformly on  $R^+$  which means that  $x \in Q_r$  and so the set  $Q_r$  is closed.

Further, in virtue of (6),(7) and Theorem 2.5 we conclude that the set  $GB_r$  is compact in measure. By Corollary 2.2 this yields that the set  $Q_r$  is also compact in measure. Moreover, Corollary 2.1 implies that the set  $Q_r$  is of locally generalized bounded variation on  $R^+$ . Now, from assumption (i), and since  $Q_r \subset B_r$ , then G is a self-mapping of the set  $Q_r$  into it self and is continuous.

In what follows, we will show that the operator G is a contraction with respect to the measure of noncompactness  $\chi$ . Assume that X is a nonempty subset of  $Q_r$  and let  $\varepsilon > 0$  is fixed, then for any  $x \in X$  and for a set  $D \subset R^+$ , meas  $D \le \varepsilon$ , we obtain

$$\begin{split} \int_{D} |(Gx)(t)|dt & \leq & \int_{D} g(t|dt + \int_{D} |h(t)||f(t,x(t))|dt + \int_{D} \int_{0}^{t} |k(t,s)||f(s,x(s))|dsdt \\ & \leq & \int_{D} g(t)dt + M \int_{D} [a(t) + b|x(t)|]dt + \|V\| \int_{D} [a(s) + b|x(s)|]dtds \\ & \leq & \int_{D} g(t)dt + M \int_{D} a(t) + bM \int_{D} |x(s)|ds + \|V\| \int_{D} a(s)ds + b\|V\| \int_{D} |x(s)|ds \end{split}$$

Now, using the fact that

$$\lim_{\varepsilon \to 0} \sup \{ \int_D g(t)dt : D \subset R^+, \text{ meas} D \le \varepsilon \} = 0,$$

and

$$\lim_{\varepsilon \to 0} \sup \{ \int_D a(t)dt : D \subset R^+, \text{ meas } D \le \varepsilon \} = 0,$$

Then using (2), we get

$$c(GX) \le b(M + ||V||)c(X). \tag{8}$$

Furthermore, fixing T > 0 we arrive at the following estimate

$$\int_T^\infty |(Gx)(t)|dt \leq \int_T^\infty g(t)dt + M \int_T^\infty a(t)dt + Mb \int_T^\infty |x(t)|dt + \|V\| \int_T^\infty a(s)ds + b\|V\| \int_T^\infty |x(s)ds| ds + b\|V$$

As  $T \to \infty$ , the above inequality yields

$$d(GX) \le b(M + ||V||)d(X),\tag{9}$$

where d(X) has been defined before in (3).

Hence combining (8) and (9) we get

$$\gamma(GX) \le b(M + ||V||)\gamma(X),$$

Since  $X \subset Q_r$  and  $Q_r$  is compact in measure, then we have

$$\chi(GX) \le b(M + ||V||)\chi(X).$$

Thus in virtue of assumption (vii) we can apply Darbo fixed point theorem which guarantees equation (1) has at least one solution. This completes the proof.  $\blacksquare$ 

# 4 Example

. Consider the integro-differential equation

$$x(t) = g(t) + \int_0^t p(t, s) f(s, x'(s)) ds, \qquad t \in \mathbb{R}^+$$
 (10)

Differentiate both sides of equation (10) with respect to t, we get

$$x'(t) = g'(t) + p(t,t)f(t,x'(t)) + \int_0^t p'(t,s)f(s,x'(s))ds$$
(11)

Put x'(t) = y(t), g'(t) = h(t), p(t,t) = q(t) and p'(t,s) = k(t,s) in (11)

Then we have

$$y(t) = h(t) + q(t)f(t, y(t)) + \int_0^t k(t, s)f(s, y(s))ds, \qquad t \in \mathbb{R}^+$$
 (12)

Taking into account all assumptions of Theorem 3.1 with  $\phi(t) = t$ , then equation (10) has at least one solution  $x \in L_1(\mathbb{R}^+)$  which is a function of locally bounded variation on  $\mathbb{R}^+$ .

# 5 Uniqueness of the solution

Now, we can prove the existence of our unique solution.

**Theorem 5.1** Let the assumptions of Theorem 3.1 be satisfied but instead of assumption (vii), let M + ||V|| < 1. Then, equation (1) has a unique solution on  $R^+$ .

**Proof.** To prove the unique solution of equation (1), let x(t), y(t) be any two solutions of equation (1) in  $B_r$ , we have

$$||x - y|| = ||h(t)[f(t, x(t)) - f(t, y(t))] + \int_0^{\phi(t)} k(t, s)[f(s, x(s)) - f(s, y(s))]ds||$$

$$\leq \int_0^{\infty} |h(t)||f(t, x(t)) - f(t, y(t))|dt + \int_0^{\infty} \int_0^{\phi(t)} |k(t, s)||f(s, x(s)) - f(s, y(s))|ds$$

$$\leq M \int_0^{\infty} |x(t) - y(t)|dt + ||V|| \int_0^t |x(s) - y(s)|ds$$

$$\leq (M + ||V||)||x - y||.$$

Therefore,

$$[1 - (M + ||V||)]||x - y||_{L_1} \le 0,$$

This yields  $||x - y|| = 0, \Rightarrow x = y$ , which completes the proof.

Data Availability (excluding Review articles)

Applicable.

### References

- [1] R. P. Agarwal, D. O'Regan and P. J. Y. Wong, Positive solutions of differential, difference and integral equations, Kluwer Academic Publishers, Dordrecht, 1999.
- [2] J. Appell and P. P. Zabrejko, Continuity properties of the superposition operator, Preprint No. 131, Univ. Augsburg, 1986.
- [3] I. K. Argros, Quadratic equations and applications to Chandrasekhar's and related equations, Bull. Austral. Math. Soc., 32, (1985), 275-292.
- [4] J. Banas and W. G. El-Sayed, Measures of noncompactness and solvability of an integral equation in the class of functions of locally bounded variation, J. Math. Anal. Appl. 167 (1) (1992), 133-151.
- [5] J. Banas and K. Goebel, Measures of noncompactness in Banach spaces, Lect. Notes in Math. 60, M. Dekker, New york and Basel 1980.
- [6] D. Bugajewski, On BV-solutions of some nonlinear integral equations, Integral Equations and Operator Theory, vol. 46, no. 4, pp. 387-398, 2003.
- [7] J. Caballero, J. Rocha and K. Sadarangani, Solvability of a Volterra integral equation of convolution type in the class of monotonic functions, Intern. Math. Journal, 4, no.1, (2001), 69-77.
- [8] G. Darbo, Punti untiti in transformazioni a condominio noncompatto, Rend. Sem. Mat. Univ. Padora 24 (1955) 84-92.
- [9] F. S. De Blasi, On a property of the unit sphere in Banach spaces, Bull. Math. Soc. Sci. Math. R. S. Roum. 21 (1977), 259–262.
- [10] M. M. El-Borai, W. G. El-Sayed & R. M. Bayomi, Solvability of non-linear integro-differential equation, Inter. J. Sc. & Eng. Res., Vol. 10, Issu. 7, July-2019, ISSN 2229-5518, pp. 1085-1093.

- [11] M. M. El-Borai, W. G. El-Sayed & F. N. Ghaffoori, On the solvability of nonlinear integral functional equation, Inter. J. Math. Tren. & Tech. (IJMTT), Vol. 34, No. 1, June 2016, 39-44.
- [12] M. M. El-Borai, W. G. El-Sayed & F. N. Ghaffoori, Existence Solution For a Fractional Nonlinear Integral Equation of Volterra Type, Aryabhatta J. M. & Inform., Vol. 08, Iss.-02, (Jul.-Dec. 2016), 1-15.
- [13] W. G. El-Sayed, M. M. El-Borai, M. M. metwali and N. I. Shemais, On the solvability of a nonlinear functional integral equations via measure of noncompactness in  $L^P(\mathbb{R}^N)$ , J. Adv. Math. (JAM), Vol 19 (2020) ISSN: 2347-1921, 74-88.
- [14] W. G. El-Sayed, M. M. El-Borai, M. M. metwali and N. I. Shemais, An existence theorem for a nonlinear integral equation of Urysohn type in  $L^P(\mathbb{R}^N)$ , Adv. Math. Sci. J. 9 (2020), no. 11, ISSN: 1857-8365, 9995-10005.
- [15] W. G. El-Sayed, M. M. El-Borai, M. M. metwali and N. I. Shemais, On Monotonic Solutions of Nonlinear Quadratic Integral Equation of Convolution Type, Case Studies J., ISSN (2305-509X)- Vol. 9, Issue 10-oct-2020, 78-87.
- [16] M. M. El-Borai, W. G. El-Sayed, A. M. Moter, Continuous Solutions of a Quadratic Integral Equation, Inter. J. Life Science and Math. (IJLSM), Vol. 2 (5)-4, (2015), 21-30.
- [17] W. G. El-Sayed, Nonlinear functional integral equations of convolution type, Portugaliae Mathematica 54 (4) (1997) 449-456.
- [18] W.G. El-Sayed, A.A. El-Bary, M.A. Darwish, Solvability of Urysohn integral equation, Appl. Math. Comput. 145 (2003) 487-493.
- [19] W. G. El-Sayed, On the Solvability of a Functional Integral Equation, East-West J. Math. Vol. 10 (2),(2008) pp. 153-160.
- [20] W. G. El-Sayed, R. O. Abd El-Rahman, S. A. Abd El-Salam, A. A. El Shahawy, Bounded variation solutions of a functional integral equation in  $L_1(R^+)$ , Int. J. Mech. Eng., ISSN: 0974-5823, Vol. 7 No. 2 February 2022, 2600-2605.
- [21] W. G. El-Sayed, R. O. Abd El-Rahman, S. A. Abd El-Salam, A. A. El Shahawy, On the existence of a bounded variation solution of a fractional integral equation in  $L_1[0,T]$  due to the spread of COVID 19, J. Adv. Math. (JAM), Vol. 21 (2022) ISSN: 2347-1921, 107-115.
- [22] S. Hu, M. Khavanin and W. Zhuang, Integral equations arising in the kinetic theory of gases, Appl. Analysis, 34, (1989), 261-266.
- [23] M. A. krasnosel'ski, P. P. Zabrejko, J. I. Pustyl'nik and P. J. Sobolevskii, Integral operators in spaces of summable functions, Noordhoff, Leyden, (1976).
- [24] D. O'Regan and M. Meehan, Existence theory for nonlinear integral and integrodifferential equations, Kluwer Academic, Dordrecht, 1998.
- [25] P. P. Zabrejko, A. I. Koshelev, M. A. krasnosel'ski, S.G. Mikhlin, L. S. Rakovshchik and V. J. Stecenco, Integeral Equations, Noordhoff, Leyden, (1975).

### Supplementary Materials

Not applicable.

### Conflicts of Interest

The authors declare that they have no competing interests.

## Funding Statement

The research was self-sposored by the author.

### Acknowledgments

The authors like to thank the anonymous referees for their valuable comments and suggestions, which greatly improved the presentation of this paper.