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ABSTRACT 

The goal of this paper is to evaluate numerically a double integral of partial Derivatives Using RTRT Method. For 
Trapezoidal method (one of Newton-Cotes formula) which will be based on two dimensions x and y. In addition to that 
Romberg acceleration rule will be used to get more accurate results together with less time (faster convergence) and 
number of subintervals which are involved. We shall refer to this method by RTRT, where R stands for Romberg 
acceleration and T for Trapezoidal rule. 
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INTRODUCTION 

 There are many research discussed the solution of single integrals numerically [5,9], but numerical evaluation of double 
integral is, in general, more complicated than that of single integral, since the integrand depends on two variables and we 
will deal with the regions or surfaces in the first and not with intervals as is the case in the second [6]. 

      Numerical evaluation of this kind of integral is generally very complicated, since the surface areas should be found 
together with their moment of inertia of plan surfaces and the volumes under the double integral. 

     Mohammed et. el.  [7] introduced an approach to find numerical solution of double integrals of improper integrand using 
three different methods: RM (RS), RT (RS) and RS (RS), which depend respectively on middle point rule plus Trapezoidal 
rule, Simpson rule on the dimension y, and Simpson rule on the dimension x using Romberg acceleration rule on both 
dimensions x and y, without ignoring the impropriety in both dimensions. They deduced that RM (RS) is the best based on 
the accuracy and rapidity of convergence. 

     Dheya'e [1], used four methods based on combination of Romberg acceleration rule with Simpson rule, and Romberg 
acceleration rule with middle point principle to solve double integrals, their integrands are continuous, but they are with 
improper derivatives or  just improper. These methods are RM (RS), RM (RM), RS (RM) and RS (RS), which gave good 
results. For the improper integrals in a point or more, she deduced that RM (RM) and RM (RS) have superiority on the 
other two methods, since these later methods are slow in providing accuracy in too large number of subintervals on the 
both dimensions x and y , as give correct solution for very small number of decimal places. By introducing many arbitrary 
examples she showed that the improper integrals, RM (RS) is the best if the impropriety can be removed, while RM (RM) 
is preferable in case that impropriety cannot be removed. As far as the integrand with improper derivative, she shoed that 
RM (RS) is the best with respect to rapid convergence to the analytical values with quite less number of subintervals. 

1.The RTRT Method 

 It is a combination of Trapezoid rule with Romberg acceleration rule on both x and y dimensions. The aim is evaluation 

the approximate value of the double integral 

 
d

c

b

a

ydxdyxfI )(                                  ...  (1)    

The integral I can be rewritten in the form 


d

c

ydyFI )(                                              ...  (2)   

where  


b

a

xdyxfyF ),()(                                  …   (3)  

the Trapezoid rule gives an approximate value for the integral in (2) (on the dimension y), which is 
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where hicyi  , ),,2,1( mi  , and m is number of subintervals to which the interval ],[ dc  is partitioned, 
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substituted in (3) to have 
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Applying Trapezoid rule too on the integral in (5) yields the following expression 
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where hjcx j  , ),,2,1( nj  , and n is number of subintervals to which the interval ],[ ba  is 

partitioned and 
n

ab
h


  , ( )E h  represents the correc-tion terms on the dimension x . 

Romberg acceleration rule will be applied to improve values of )( iyF . These resulting values are nothing but the 

approximate values of the integral in (3) and substituting )( iyF  for each  mi ,,2,1   in the expression (4), and 

thus values of the integral in (2) will be obtained by Romberg acceleration and Trapezoid rules and give approximate value 
of the integral in (1). 

     When Romberg acceleration rule is applied on x dimension, then the error will depend on the behavior of the integrand 

),( iyxf . If this function has improper partial derivatives in one or both limits of the interval ],[ ba  then the 

impropriety will be eliminated on the dimension x and the correction terms on the x is 

 642)( hChBhAhE TTTT                                          ... (7)  

which is provided by Fox [2], where ,,, TTT CBA  are constants depend on the derivatives of the 

function ),( iyxf at the two limits ax   and bx  , and )(hET  are correction terms of Trapezoid rule on x.  

     The error (on y) depends on the behavior of the function )(yF on the interval ],[ dc . 

     If the )(yF is (or its derivatives are) improper at one of the endpoints of the interval ],[ dc , then error on y will be ( 

Fox [2] )  

  642
2211 )()()( hChBhAxgaxgahE TTTT        ... (8)   

where )(hET  represents correction terms for Trapezoid rule on y . 

     As far as partitioning concern, the two intervals ],[ ba  and ],[ dc  are respectively partitioned into n and m 

subintervals, and we will choose  

     ,8,4,2,1n     and    ,8,4,2,1m  

     In Trapezoid rule we let 1n  , then the value of the integral in (2) will be calculated by Romberg acceleration method 

on values of the Trapezoid rule, next we take 2n  following the same procedure which mentioned above, and so on 

until the absolute error becomes less than or equal to some fixed number EPS1 (on y) (Sastry [4] and Saxena [3]). 

     Evaluating the integral (2) needs finding )( 1yF  by Romberg acceleration rule together with Trapezoid rule on the 

integral in (5), next we choose 1m  in the expression (4), then we have to calculate )( 1yF  from the expression (6) 

where 1n . the resulting vales will be tabulated with corresponding values of n and m . 

     If 2m , then )( 1yF  and )( 2yF  should be calculated for (4) by applying (6) for 1n  , 2n  and so on. 

Assuming that the error in )( 1yF  is less than or equal to EPS for 16n  and the absolute error in )( 2yF  is less than 

or equal to EPS when 64n , then the approximate value of the integral which is the solution of (1) when 2m  will be 

fixed in the table with the largest value  64n , and so on for 2m  . 

2- Romberg Integral 

 This method referred to the German scientist Romberg in 1955 based on triangular arrangement of numerical appro-
ximated values of specific integral with successive application on one of Newton-Cotes (Nasser [8]), which takes the form 

 642)( hChBhAhTI TTT              ... (9)   

Choosing two different values for h, namely 1h and 2h  give 
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Substituting 2/12 hh   in (11) and solving the resulting formula with (10) to obtain TA  after elimination of 

terms containing ,, 64 hh  we will get 
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here 1hh  . Formula (12) does not give the actual value of the integral, but its approximate value which is closer to the 
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where ,, TT BA   are constants. In a analogous way closer value of the integral can be obtained using 
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Hence, we have a table of values called Romberg table. 

     In general, values of this table can be obtained using Trapezoid rule and the formula       
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4- Examples: To evaluate the integral   
1

0

1

0

22 ydxdyxI numerically, bearing in mind that its actual value is 

0.7651957165 rounded to 10 decimal places. The integrand has improper partial derivatives at the point 

)0,0(),( yx . the type of impropriety is square root. Depending on (3) it is possible to find )(yF  by analytical 

integration 
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It is clear that )(yF  has square root impropriety at 0y , hence the error from Trapezoid rule on y will be [7], 

       427
4

5
3

3
2

3
1 ln)( hBhAhahahhahahE TTT  

      67
4

5
3

43
2

3
1

2 ln hChahahBhhahahA TTT  

where ,,, TTi BAa are constants, ,3,2,1i   

     Using RTRT method with 
1210EPS and 

13101EPS  yields the results in Table1. which are correct to ten 

decimal places, and we get value equal to the analytical one when 32n  and 256m  (
112 subintervals): 
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Table1. Solution of the double integral   
1

0

1

0

22 ydxdyxI  

N RTRT M 

32 1.3977935747 1 

64 0.5763142858 2 

32 0.7925329247 4 

32 0.7612909740 8 

32 0.7654559971 16 

32 0.7651873201 32 

32 0.7651958498 64 

32 0.7651957151 128 

32 0.7651957165 256 

Now, to find numerical solution of the double integral   
1

0

1

0

ydxdyxI , [8], the integrand has improper partial 

derivatives at the point )0,0(),( yx , the type of impropriety is again square root. The analytical value of this integral 

is 0.975161133, which is rounded to nine decimal places. Integrating (3) analytically gives us 
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Since the )(yF has improper derivative at 0y , with square root impro-priety, hence the error from Trapezoid rule on 

y will be  
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where ,,,, TTii BAaa are constants, ,3,2,1i   

     Using the tolerances 
1210EPS  and 

13101 EPS we obtained the results which appears in table2. Note that 

correct  value of the integral is that corresponding to 32n  and 256m  (
132 subintervals). 

Table2. Solution of the double integral   
1

0

1
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ydxdyxI  

 

 

 

 

 

 

 

 

 

 

 

N RTRT m 

1 1.3977935747 32 

2 0.5763142858 64 

4 0.7925329247 32 

8 0.7612909740 32 

16 0.7654559971 32 

32 0.7651873201 32 

64 0.7651958498 32 

128 0.7651957151 32 

256 0.7651957165 32 
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As a third example, let us take the double integral   
1

0

1

0

44 ydxdyxI , which has improper partial 

derivatives at )0,0(),( yx , and the type of impropriety is again the square root. The actual value of this integral is 

yet unknown. In this case )(yF cannot be obtained by analytical integration, thus we expect that the error of Trapezoid 

rule )(hET  on the dimension y will take the form 

      642)( hChBhAhE TTTT  

as ,,, TTT CBA  stand for constants. 

We fixed 
1210EPS  and 

13101 EPS , because that the actual value of the double integral is unknown, from 

table3. we realize that the correct solution for 8 decimal places is reached when 64n  and 32m  (
112  sub-

intervals), for 9 decimal places will correspond 64n  and 64m  (
122  sub-intervals), and for ten decimal places 

when 64n  and 128m  (
132  sub-intervals). 

 

                                         Table3. Solution of the double integral   
1

0

1

0

44 ydxdyxI  

N RTRT m 

1 1.256096080 64 

2 0.360012597 64 

4 0.556843506 64 

8 0.544522204 64 

16 0.544715462 64 

32 0.544714706 64 

64 0.544714707 64 

128 0.544714707 64 

 

3- Discussion 

Three double integrals are introduced as examples, all are of improper partial derivatives. To solve any one of them we 
use method of RTRT on the dimensions x and y, and we got results equal to the analytical values up to 10 or 9 decimal 

places using 
132 subintervals which is a relatively small number.  Hence we recommend this method of RTRT to solve 

double integral numerically. 
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