DOI: https://doi.org/10.24297/jam.v20i. 8969

Coefficient Bounds for a New Subclasses of Bi-Univalent Functions Associated with Horadam Polynomials

Najah Ali Jiben Al-Ziadi
Department of Mathematics, College of Education, University of AI-Qadisiyah, Diwaniya-Iraq

Abstract

: In this work we present and investigate three new subclasses of the function class Σ of bi-univalent functions in the open unit disk Δ defined by means of the Horadam polynomials. Furthermore, for functions in each of the subclasses introduced here, we obtain upper bounds for the initial coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$. Also, we debate Fekete-Szegö inequality for functions belongs to these subclasses.

Keywords: Bi-univalent functions, Coefficient bounds, Fekete-Szegö inequality, Holomorphic function, Horadam polynomials.

2010 AMS Mathematics Subject Classification: 30C45, 30C50.

Introduction

Symbolized by \mathcal{A} the function class of the shape:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are holomorphic in the open unit disk $\Delta=\{z: z \in \mathbb{C}$ and $|z|<1\}$ and normalized under the conditions indicated by $f(0)=f^{\prime}(0)-1=0$. Furthermore, symbolized by \mathcal{S} the class of all functions in \mathcal{A} which are univalent in U.

The Koebe One-Quarter Theorem [4] shows that the image of Δ includes a disk of radius $1 / 4$ under each function f from \mathcal{S}. Thereby each univalent function of this kind has an inverse f^{-1} which fulfills

$$
f^{-1}(f(z))=z \quad(z \in \Delta)
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)
$$

where

$$
\begin{equation*}
f^{-1}(w)=g(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots . \tag{2}
\end{equation*}
$$

The function $f \in \mathcal{A}$ is considered bi-univalent in Δ if together f^{-1} and f are univalent in Δ. Indicated by the Taylor-Maclaurin series expansion (1), the class of all bi-univalent functions in Δ can be symbolized by Σ. In the year 2010, Srivastava et al. [10] refreshed the study of various classes of bi-univalent functions. Moreover, many penmans explored bounds for different subclasses of bi-univalent functions (see, for example [$3,5,6,11]$). The coefficient estimate problem involving the bound of $\left|a_{n}\right|(n \in \mathbb{N} \backslash\{1,2\}, \mathbb{N}=\{1,2,3, \ldots\})$ is still an open problem.

For two functions \mathcal{D} and \mathcal{Y}, holomorphic in the open unit disk Δ, we say that the function $\mathcal{D}(w)$ is subordinate to $\mathcal{Y}(\mathrm{w})$ in Δ, and write

$$
\mathcal{D}(w)<\mathcal{Y}(w) \quad(w \in \Delta)
$$

if there exists a Schwarz function $\mathcal{T}(w)$, holomorphic in Δ, with

$$
\mathcal{T}(0)=0 \text { and }|\mathcal{T}(w)|<1 \quad(w \in \Delta),
$$

such that

$$
\mathcal{D}(w)=\mathcal{Y}(\mathcal{T}(w)) \quad(w \in \Delta) .
$$

In special, if the function \mathcal{Y} is univalent in Δ, the above subordination is equivalent to

$$
\mathcal{D}(0)=\mathcal{Y}(0) \text { and } \mathcal{D}(\Delta) \subset \mathcal{Y}(\Delta)
$$

The following recurrence relation gives the Horadam polynomials $h_{n}(x)$ (see (8))

$$
\begin{equation*}
h_{n}(x)=p x h_{n-1}(x)+q h_{n-2}(x), \quad(x \in \mathbb{R}, \quad n \in \mathbb{N} \backslash\{1,2\}, \mathbb{N}=\{1,2,3, \ldots\}) \tag{3}
\end{equation*}
$$

with $h_{1}(x)=k, h_{2}(x)=b x$ and $h_{3}(x)=p b x^{2}+k q$ where k, b, p and q are some real constants. The characteristic equation of repetition relationship (3) is $t^{2}-p x t-q=0$. There are two real roots of this equation

$$
\alpha_{1}=\frac{p x+\sqrt{p^{2} x^{2}+4 q}}{2} \text { and } \alpha_{2}=\frac{p x-\sqrt{p^{2} x^{2}+4 q}}{2} .
$$

The generating function of the Horadam polynomials $h_{n}(x)$ is indicated by

$$
\begin{equation*}
\Omega(x, z)=\sum_{n=1}^{\infty} h_{n}(x) z^{n-1}=\frac{k+(b-k p) x z}{1-p x z-q z^{2}} \tag{4}
\end{equation*}
$$

It should be noted that for specific values of $\mathrm{k}, \mathrm{b}, \mathrm{p}$ and q , the Horadam polynomial $h_{n}(x)$ leads to different polynomials, among those, we list a few cases here (see, [7, 8], for more details) :
a) If $k=b=p=q=1$, then we get the Fibonacci polynomials $F_{n}(x)$.
b) If $k=2$ and $b=p=q=1$, then we have the Lucas polynomials $L_{n}(x)$.
c) If $k=q=1$ and $b=p=2$, then we attain the Pell polynomials $P_{n}(x)$.
d) If $k=b=p=2$ and $q=1$, then we have the Pell-Lucas polynomials $Q_{n}(x)$.
e) If $k=b=1, p=2$ and $q=-1$, then we obtain the Chebyshev polynomials $T_{n}(x)$ of the first kind.
f) If $k=1, b=p=2$ and $q=-1$, then we attain the Chebyshev polynomials $U_{n}(x)$ of the second kind.

Coefficient bounds and Fekete-Szegö inequality for the class $\mathcal{K}_{\boldsymbol{\Sigma}}(\boldsymbol{\beta}, \boldsymbol{x})$

Definition 1 A function $f \in \Sigma$ is said to be in the class $\mathcal{K}_{\Sigma}(\beta, x)$ for $0 \leq \beta \leq 1$ and $x \in \mathbb{R}$, if the following conditions of subordination are satisfied:

$$
\begin{equation*}
(1-\beta) f^{\prime}(z)+\beta\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)<\Omega(x, z)+1-k \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\beta) g^{\prime}(w)+\beta\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right) \prec \Omega(x, w)+1-k \tag{6}
\end{equation*}
$$

where the function $g=f^{-1}$ is indicated by (2) and k is real constant.

Remark 1

For $\beta=0$, the class $\mathcal{K}_{\Sigma}(\beta, x)$ shortens to the class Σ^{\prime} presented and investigated by Alamoush [2].
For $\beta=1$, the class $\mathcal{K}_{\Sigma}(\beta, x)$ shortens to the class $\mathcal{K}_{\Sigma}(x)$ presented and investigated by Abirami et al. [1].
Theorem 1 Let the function $f \in \Sigma$ indicated by (1) be in the class $\mathcal{K}_{\Sigma}(\beta, x)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{|b x| \sqrt{|b x|}}{\sqrt{\left|[(3-\beta) b-4 p] b x^{2}-4 k q\right|}} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{b^{2} x^{2}}{4}+\frac{|b x|}{3(\beta+1)} \tag{8}
\end{equation*}
$$

and for some $\mu \in \mathbb{R}$,

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{c}
\frac{|b x|}{3(\beta+1)} \text { if } \tag{9}\\
|\mu-1| \leq \frac{\left|[(3-\beta) b-4 p] b x^{2}-4 k q\right|}{3(\beta+1) b^{2} x^{2}} \\
\frac{|b x|^{3}|\mu-1|}{\left|[(3-\beta) b-4 p] b x^{2}-4 k q\right|} \text { if } \\
|\mu-1| \geq \frac{\left|[(3-\beta) b-4 p] b x^{2}-4 k q\right|}{3(\beta+1) b^{2} x^{2}}
\end{array}\right.
$$

Proof. Let $f \in \mathcal{K}_{\Sigma}(\beta, x), 0 \leq \beta \leq 1$ and $x \in \mathbb{R}$. Then there are two holomorphic function $v, u: \Delta \rightarrow \Delta$ indicated by

$$
v(z)=t_{1} z+t_{2} z^{2}+t_{3} z^{3}+\cdots \quad(z \in \Delta)
$$

and

$$
u(w)=s_{1} w+s_{2} w^{2}+s_{3} w^{3}+\cdots \quad(w \in \Delta)
$$

with $v(0)=u(0)=0,|v(z)|<1$ and $|u(w)|<1, z, w \in \Delta$, such that

$$
(1-\beta) f^{\prime}(z)+\beta\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec \Omega(x, v(z))+1-k
$$

and

$$
(1-\beta) g^{\prime}(w)+\beta\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)<\Omega(x, u(w))+1-k .
$$

Or, in equivalent way,

$$
\begin{equation*}
(1-\beta) f^{\prime}(z)+\beta\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)=1+h_{1}(x)-k+h_{2}(x) v(z)+h_{3}(x)[v(z)]^{2}+\cdots \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\beta) g^{\prime}(w)+\beta\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)=1+h_{1}(x)-k+h_{2}(x) u(w)+h_{3}(x)[u(w)]^{2}+\cdots \tag{11}
\end{equation*}
$$

From (10) and (11), we attain

$$
\begin{equation*}
(1-\beta) f^{\prime}(z)+\beta\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)=1+h_{2}(x) t_{1} z+\left[h_{2}(x) t_{2}+h_{3}(x) t_{1}^{2}\right] z^{2}+\cdots \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\beta) g^{\prime}(w)+\beta\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)=1+h_{2}(x) s_{1} w+\left[h_{2}(x) s_{2}+h_{3}(x) s_{1}^{2}\right] w^{2}+\cdots \tag{13}
\end{equation*}
$$

Notice that if

$$
|v(z)|=\left|t_{1} z+t_{2} z^{2}+t_{3} z^{3}+\cdots\right|<1 \quad(z \in \Delta)
$$

and

$$
|u(w)|=\left|s_{1} w+s_{2} w^{2}+s_{3} w^{3}+\cdots\right|<1 \quad(w \in \Delta)
$$

then

$$
\left|t_{i}\right| \leq 1 \text { and }\left|s_{i}\right| \leq 1 \quad(i \in \mathbb{N})
$$

It follows from (12) and (13) that

$$
\begin{align*}
& 2 a_{2}=h_{2}(x) t_{1} \tag{14}\\
& 3(1+\beta) a_{3}-4 \beta a_{2}^{2}=h_{2}(x) t_{2}+h_{3}(x) t_{1}^{2} \tag{15}\\
& -2 a_{2}=h_{2}(x) s_{1} \tag{16}
\end{align*}
$$

and

$$
\begin{equation*}
-3(1+\beta) a_{3}+2(\beta+3) a_{2}^{2}=h_{2}(x) s_{2}+h_{3}(x) s_{1}^{2} . \tag{17}
\end{equation*}
$$

From (14) and (16), we find that

$$
\begin{equation*}
t_{1}=-s_{1} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
8 a_{2}^{2}=\left[h_{2}(x)\right]^{2}\left(t_{1}^{2}+s_{1}^{2}\right) . \tag{19}
\end{equation*}
$$

If we add (15) to (17), we get

$$
\begin{equation*}
(6-2 \beta) a_{2}^{2}=h_{2}(x)\left(t_{2}+s_{2}\right)+h_{3}(x)\left(t_{1}^{2}+s_{1}^{2}\right) \tag{20}
\end{equation*}
$$

By using (19) in equation (20), we have

$$
\begin{equation*}
\left[(6-2 \beta)-\frac{8 h_{3}(x)}{\left[h_{2}(x)\right]^{2}}\right] a_{2}^{2}=h_{2}(x)\left(t_{2}+s_{2}\right), \tag{21}
\end{equation*}
$$

which yields

$$
\left|a_{2}\right| \leq \frac{|b x| \sqrt{|b x|}}{\sqrt{\left|[(3-\beta) b-4 p] b x^{2}-4 k q\right|}}
$$

Next, if we deduct (17) from (15), we get

$$
\begin{equation*}
6(\beta+1)\left(a_{3}-a_{2}^{2}\right)=h_{2}(x)\left(t_{2}-s_{2}\right)+h_{3}(x)\left(t_{1}^{2}-s_{1}^{2}\right) \tag{22}
\end{equation*}
$$

In view of (18) and (19), equation (22) becomes

$$
a_{3}=\frac{\left[h_{2}(x)\right]^{2}\left(t_{1}^{2}+s_{1}^{2}\right)}{8}+\frac{h_{2}(x)\left(t_{2}-s_{2}\right)}{6(\beta+1)} .
$$

Now, with the help of equation (3), we deduce that

$$
\left|a_{3}\right| \leq \frac{b^{2} x^{2}}{4}+\frac{|b x|}{3(\beta+1)}
$$

Finally, by using (21) and (22) for some $\mu \in \mathbb{R}$, we get

$$
\begin{aligned}
a_{3}-\mu a_{2}^{2} & =\frac{h_{2}(x)\left(t_{2}-s_{2}\right)}{6(\beta+1)}+\frac{\left[h_{2}(x)\right]^{3}(1-\mu)\left(t_{2}+s_{2}\right)}{(6-2 \beta)\left[h_{2}(x)\right]^{2}-8 h_{3}(x)} \\
& =\frac{h_{2}(x)}{2}\left[\left(\Psi(\mu, x)+\frac{1}{3(\beta+1)}\right) t_{2}+\left(\Psi(\mu, x)-\frac{1}{3(\beta+1)}\right) s_{2}\right]
\end{aligned}
$$

where

$$
\Psi(\mu, x)=\frac{\left[h_{2}(x)\right]^{2}(1-\mu)}{(3-\beta)\left[h_{2}(x)\right]^{2}-4 h_{3}(x)} .
$$

Thus, we conclude that

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{l}
\frac{\left|h_{2}(x)\right|}{3(\beta+1)} \text { if } 0 \leq|\Psi(\mu, x)| \leq \frac{1}{3(\beta+1)} \\
\left|h_{2}(x)\right||\Psi(\mu, x)| \text { if }|\Psi(\mu, x)| \geq \frac{1}{3(\beta+1)}
\end{array}\right.
$$

and with respect to (3), it evidently completes the proof of the theorem (1).
Remark 2 If we put $\beta=0$ in Theorem (1), we get the outcomes which were indicated by Alamoush [2]. In addition, if we put $\beta=1$ in Theorem (1), we get the outcomes which were indicated by Abirami et al. [1].

Coefficient bounds and Fekete-Szegö inequality for the class $\mathcal{W}_{\Sigma}(\alpha, x)$

Definition 2 A function $f \in \Sigma$ is said to be in the class $\mathcal{W}_{\Sigma}(\alpha, x)$ for $0 \leq \alpha \leq 1$ and $x \in \mathbb{R}$, if the following conditions of subordination are satisfied:

$$
\begin{equation*}
\frac{z f^{\prime}(z)+\left(2 \alpha^{2}-\alpha\right) z^{2} f^{\prime \prime}(z)}{4\left(\alpha-\alpha^{2}\right) z+\left(2 \alpha^{2}-\alpha\right) z f^{\prime}(z)+\left(2 \alpha^{2}-3 \alpha+1\right) f(z)}<\Omega(x, z)+1-k \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{w g^{\prime}(w)+\left(2 \alpha^{2}-\alpha\right) w^{2} g^{\prime \prime}(w)}{4\left(\alpha-\alpha^{2}\right) w+\left(2 \alpha^{2}-\alpha\right) w g^{\prime}(w)+\left(2 \alpha^{2}-3 \alpha+1\right) g(w)}<\Omega(x, w)+1-k, \tag{24}
\end{equation*}
$$

where the function $g=f^{-1}$ is indicated by (2) and k is real constant.
Remark 3 For $\alpha=0$, the class $\mathcal{W}_{\Sigma}(\alpha, x)$ shortens to the class $\mathcal{W}_{\Sigma}(x)$ introduced and investigated by Srivastava et al. [9].

Theorem 2 Let the function $f \in \Sigma$ indicated by (1) be in the class $\mathcal{W}_{\Sigma}(\alpha, x)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{|b x| \sqrt{|b x|}}{\sqrt{\left|\left[\left(12 \alpha^{4}-28 \alpha^{3}+15 \alpha^{2}+2 \alpha+1\right) b-\left(1+3 \alpha-2 \alpha^{2}\right)^{2} p\right] b x^{2}-\left(1+3 \alpha-2 \alpha^{2}\right)^{2} k q\right|}} \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{b^{2} x^{2}}{\left(1+3 \alpha-2 \alpha^{2}\right)^{2}}+\frac{|b x|}{2\left(2 \alpha^{2}+1\right)} \tag{26}
\end{equation*}
$$

and for some $\mu \in \mathbb{R}$,

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{c}
\frac{|b x|}{2\left(2 \alpha^{2}+1\right)} \text { if } \tag{27}\\
|\mu-1| \leq \frac{\left|\left[\left(12 \alpha^{4}-28 \alpha^{3}+15 \alpha^{2}+2 \alpha+1\right) b-\left(1+3 \alpha-2 \alpha^{2}\right)^{2} p\right] b x^{2}-\left(1+3 \alpha-2 \alpha^{2}\right)^{2} k q\right|}{2\left(2 \alpha^{2}+1\right) b^{2} x^{2}} \\
\frac{|b x|^{3}|\mu-1|}{\left|\left[\left(12 \alpha^{4}-28 \alpha^{3}+15 \alpha^{2}+2 \alpha+1\right) b-\left(1+3 \alpha-2 \alpha^{2}\right)^{2} p\right] b x^{2}-\left(1+3 \alpha-2 \alpha^{2}\right)^{2} k q\right|} \text { if } \\
|\mu-1| \geq \frac{\left|\left[\left(12 \alpha^{4}-28 \alpha^{3}+15 \alpha^{2}+2 \alpha+1\right) b-\left(1+3 \alpha-2 \alpha^{2}\right)^{2} p\right] b x^{2}-\left(1+3 \alpha-2 \alpha^{2}\right)^{2} k q\right|}{2\left(2 \alpha^{2}+1\right) b^{2} x^{2}}
\end{array} .\right.
$$

Proof. Let $f \in \mathcal{W}_{\Sigma}(\alpha, x), 0 \leq \alpha \leq 1$ and $x \in \mathbb{R}$. Then there are two holomorphic function $v, u: \Delta \rightarrow \Delta$ indicated by

$$
v(z)=t_{1} z+t_{2} z^{2}+t_{3} z^{3}+\cdots \quad(z \in \Delta)
$$

and

$$
u(w)=s_{1} w+s_{2} w^{2}+s_{3} w^{3}+\cdots \quad(w \in \Delta)
$$

with $v(0)=u(0)=0,|v(z)|<1$ and $|u(w)|<1, z, w \in \Delta$, such that

$$
\frac{z f^{\prime}(z)+\left(2 \alpha^{2}-\alpha\right) z^{2} f^{\prime \prime}(z)}{4\left(\alpha-\alpha^{2}\right) z+\left(2 \alpha^{2}-\alpha\right) z f^{\prime}(z)+\left(2 \alpha^{2}-3 \alpha+1\right) f(z)}<\Omega(x, v(z))+1-k
$$

and

$$
\frac{w g^{\prime}(w)+\left(2 \alpha^{2}-\alpha\right) w^{2} g^{\prime \prime}(w)}{4\left(\alpha-\alpha^{2}\right) w+\left(2 \alpha^{2}-\alpha\right) w g^{\prime}(w)+\left(2 \alpha^{2}-3 \alpha+1\right) g(w)}<\Omega(x, u(w))+1-k .
$$

Or, in equivalent way,

$$
\begin{align*}
\frac{z f^{\prime}(z)+\left(2 \alpha^{2}-\alpha\right) z^{2} f^{\prime \prime}(z)}{4\left(\alpha-\alpha^{2}\right) z+\left(2 \alpha^{2}-\alpha\right) z f^{\prime}(z)+\left(2 \alpha^{2}-3 \alpha+1\right) f(z)} \\
\quad=1+\mathrm{h}_{1}(\mathrm{x})-\mathrm{k}+\mathrm{h}_{2}(\mathrm{x}) \mathrm{v}(\mathrm{z})+\mathrm{h}_{3}(\mathrm{x})[\mathrm{v}(\mathrm{z})]^{2}+\cdots \tag{28}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{w g^{\prime}(w)+\left(2 \alpha^{2}-\alpha\right) w^{2} g^{\prime \prime}(w)}{4\left(\alpha-\alpha^{2}\right) w+\left(2 \alpha^{2}-\alpha\right) w g^{\prime}(w)+\left(2 \alpha^{2}-3 \alpha+1\right) g(w)} \\
& \quad=1+h_{1}(x)-k+h_{2}(x) u(w)+h_{3}(x)[u(w)]^{2}+\cdots . \tag{29}
\end{align*}
$$

From the equations (28) and (29), we attain

$$
\begin{align*}
& \frac{z f^{\prime}(z)+\left(2 \alpha^{2}-\alpha\right) z^{2} f^{\prime \prime}(z)}{4\left(\alpha-\alpha^{2}\right) z+\left(2 \alpha^{2}-\alpha\right) z f^{\prime}(z)+\left(2 \alpha^{2}-3 \alpha+1\right) f(z)} \\
& \quad=1+h_{2}(x) t_{1} z+\left[h_{2}(x) t_{2}+h_{3}(x) t_{1}^{2}\right] z^{2}+\cdots \tag{30}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{w g^{\prime}(w)+\left(2 \alpha^{2}-\alpha\right) w^{2} g^{\prime \prime}(w)}{4\left(\alpha-\alpha^{2}\right) w+\left(2 \alpha^{2}-\alpha\right) w g^{\prime}(w)+\left(2 \alpha^{2}-3 \alpha+1\right) g(w)} \\
& \quad=1+h_{2}(x) s_{1} w+\left[h_{2}(x) s_{2}+h_{3}(x) s_{1}^{2}\right] w^{2}+\cdots \tag{31}
\end{align*}
$$

Notice that if

$$
|v(z)|=\left|t_{1} z+t_{2} z^{2}+t_{3} z^{3}+\cdots\right|<1 \quad(z \in \Delta)
$$

and

$$
|u(w)|=\left|s_{1} w+s_{2} w^{2}+s_{3} w^{3}+\cdots\right|<1 \quad(w \in \Delta),
$$

then

$$
\left|t_{i}\right| \leq 1 \text { and }\left|s_{i}\right| \leq 1 \quad(i \in \mathbb{N})
$$

It follows from (30) and (31) that

$$
\begin{align*}
& \left(1+3 \alpha-2 \alpha^{2}\right) a_{2}=h_{2}(x) t_{1} \tag{32}\\
& \left(12 \alpha^{4}-28 \alpha^{3}+11 \alpha^{2}+2 \alpha-1\right) a_{2}^{2}+\left(4 \alpha^{2}+2\right) a_{3}=h_{2}(x) t_{2}+h_{3}(x) t_{1}^{2} \tag{33}\\
& -\left(1+3 \alpha-2 \alpha^{2}\right) a_{2}=h_{2}(x) s_{1} \tag{34}
\end{align*}
$$

and

$$
\begin{equation*}
\left(12 \alpha^{4}-28 \alpha^{3}+19 \alpha^{2}+2 \alpha+3\right) a_{2}^{2}-\left(4 \alpha^{2}+2\right) a_{3}=h_{2}(x) s_{2}+h_{3}(x) s_{1}^{2} . \tag{35}
\end{equation*}
$$

From (32) and (34), we find that

$$
\begin{equation*}
t_{1}=-s_{1} \tag{36}
\end{equation*}
$$

and

$$
\begin{equation*}
2\left(1+3 \alpha-2 \alpha^{2}\right)^{2} a_{2}^{2}=\left[h_{2}(x)\right]^{2}\left(t_{1}^{2}+s_{1}^{2}\right) . \tag{37}
\end{equation*}
$$

If we add (33) to (35), we get

$$
\begin{equation*}
\left(24 \alpha^{4}-56 \alpha^{3}+30 \alpha^{2}+4 \alpha+2\right) a_{2}^{2}=h_{2}(x)\left(t_{2}+s_{2}\right)+h_{3}(x)\left(t_{1}^{2}+s_{1}^{2}\right) . \tag{38}
\end{equation*}
$$

By using (37) in equation (38), we have

$$
\begin{equation*}
\left[\left(24 \alpha^{4}-56 \alpha^{3}+30 \alpha^{2}+4 \alpha+2\right)-\frac{2\left(1+3 \alpha-2 \alpha^{2}\right)^{2} h_{3}(x)}{\left[h_{2}(x)\right]^{2}}\right] a_{2}^{2}=h_{2}(x)\left(t_{2}+s_{2}\right) \tag{39}
\end{equation*}
$$

which yields

$$
\left|a_{2}\right| \leq \frac{|b x| \sqrt{|b x|}}{\sqrt{\left|\left[\left(12 \alpha^{4}-28 \alpha^{3}+15 \alpha^{2}+2 \alpha+1\right) b-\left(1+3 \alpha-2 \alpha^{2}\right)^{2} p\right] b x^{2}-\left(1+3 \alpha-2 \alpha^{2}\right)^{2} k q\right|}}
$$

Next, if we deduct (35) from (33), we obtain

$$
\begin{equation*}
4\left(2 \alpha^{2}+1\right)\left(a_{3}-a_{2}^{2}\right)=h_{2}(x)\left(t_{2}-s_{2}\right)+h_{3}(x)\left(t_{1}^{2}-s_{1}^{2}\right) \tag{40}
\end{equation*}
$$

In view of (36) and (37), equation (40) becomes

$$
a_{3}=\frac{\left[h_{2}(x)\right]^{2}\left(t_{1}^{2}+s_{1}^{2}\right)}{2\left(1+3 \alpha-2 \alpha^{2}\right)^{2}}+\frac{h_{2}(x)\left(t_{2}-s_{2}\right)}{4\left(2 \alpha^{2}+1\right)} .
$$

Now, with the help of equation (3), we deduce that

$$
\left|a_{3}\right| \leq \frac{b^{2} x^{2}}{\left(1+3 \alpha-2 \alpha^{2}\right)^{2}}+\frac{|b x|}{2\left(2 \alpha^{2}+1\right)} .
$$

Finally, by using (39) and (40) for some $\mu \in \mathbb{R}$, we get

$$
\begin{gathered}
a_{3}-\mu a_{2}^{2}=\frac{h_{2}(x)\left(t_{2}-s_{2}\right)}{4\left(2 \alpha^{2}+1\right)}+\frac{\left[h_{2}(x)\right]^{3}(1-\mu)\left(t_{2}+s_{2}\right)}{\left(24 \alpha^{4}-56 \alpha^{3}+30 \alpha^{2}+4 \alpha+2\right)\left[h_{2}(x)\right]^{2}-2\left(1+3 \alpha-2 \alpha^{2}\right)^{2} h_{3}(x)} \\
=\frac{h_{2}(x)}{2}\left[\left(\Psi(\mu, x)+\frac{1}{2\left(2 \alpha^{2}+1\right)}\right) t_{2}+\left(\Psi(\mu, x)-\frac{1}{2\left(2 \alpha^{2}+1\right)}\right) s_{2}\right],
\end{gathered}
$$

where

$$
\Psi(\mu, x)=\frac{\left[h_{2}(x)\right]^{2}(1-\mu)}{\left(12 \alpha^{4}-28 \alpha^{3}+15 \alpha^{2}+2 \alpha+1\right)\left[h_{2}(x)\right]^{2}-\left(1+3 \alpha-2 \alpha^{2}\right)^{2} h_{3}(x)} .
$$

Thus, we conclude that

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{l}
\frac{\left|h_{2}(x)\right|}{2\left(2 \alpha^{2}+1\right)} \text { if } 0 \leq|\Psi(\mu, x)| \leq \frac{1}{2\left(2 \alpha^{2}+1\right)} \\
\left|h_{2}(x)\right||\Psi(\mu, x)| \text { if }|\Psi(\mu, x)| \geq \frac{1}{2\left(2 \alpha^{2}+1\right)}
\end{array}\right.
$$

and with respect to (3), it evidently completes the proof of the theorem (2).
Remark 4 If we put $\alpha=0$ in Theorem (2), we get the outcomes which were indicated by Srivastava et al. [9].

Coefficient bounds and Fekete-Szegö inequality for the class $\mathcal{N}_{\Sigma}(\boldsymbol{\alpha}, \boldsymbol{\gamma}, \boldsymbol{x})$

Definition 3 A function $f \in \Sigma$ is said to be in the class $\mathcal{N}_{\Sigma}(\alpha, \gamma, x)$ for $0 \leq \alpha \leq 1, \gamma \in \mathbb{C} \backslash\{0\}$ and $x \in \mathbb{R}$, if the following conditions of subordination are satisfied:

$$
\begin{equation*}
1+\frac{1}{\gamma}\left[\frac{\alpha z^{3} f^{\prime \prime \prime}(z)+(1+2 \alpha) z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}{\alpha z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}-1\right] \prec \Omega(x, z)+1-k \tag{41}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{\gamma}\left[\frac{\alpha w^{3} g^{\prime \prime \prime}(w)+(1+2 \alpha) w^{2} g^{\prime \prime}(w)+w g^{\prime}(w)}{\alpha w^{2} g^{\prime \prime}(w)+w g^{\prime}(w)}-1\right] \prec \Omega(x, w)+1-k, \tag{42}
\end{equation*}
$$

where the function $g=f^{-1}$ is indicated by (2) and k is real constant.
Theorem 3 Let the function $f \in \Sigma$ indicated by (1) be in the class $\mathcal{N}_{\Sigma}(\alpha, \gamma, \mathrm{x})$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{|\gamma||b x| \sqrt{|b x|}}{\sqrt{\left|\left[\gamma\left(2+4 \alpha-4 \alpha^{2}\right) b-4(1+\alpha)^{2} p\right] b x^{2}-4(1+\alpha)^{2} k q\right|}} \tag{43}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{|\gamma|^{2} b^{2} x^{2}}{4(1+\alpha)^{2}}+\frac{|\gamma||b x|}{6(1+2 \alpha)}, \tag{44}
\end{equation*}
$$

and for some $\mu \in \mathbb{R}$,

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{c}
\frac{|\gamma||b x|}{6(1+2 \alpha)} \text { if } \tag{45}\\
|\mu-1| \leq \frac{\left|\left[\gamma\left(1+2 \alpha-2 \alpha^{2}\right) b-2(1+\alpha)^{2} p\right] b x^{2}-2(1+\alpha)^{2} k q\right|}{3|\gamma|(1+2 \alpha) b^{2} x^{2}} \\
\frac{|\gamma|^{2}|b x|^{3}|\mu-1|}{\left|\left[\gamma\left(2+4 \alpha-4 \alpha^{2}\right) b-4(1+\alpha)^{2} p\right] b x^{2}-4(1+\alpha)^{2} k q\right|} \quad \text { if } \\
|\mu-1| \geq \frac{\left|\left[\gamma\left(1+2 \alpha-2 \alpha^{2}\right) b-2(1+\alpha)^{2} p\right] b x^{2}-2(1+\alpha)^{2} k q\right|}{3|\gamma|(1+2 \alpha) b^{2} x^{2}}
\end{array} .\right.
$$

Proof. Let $f \in \mathcal{N}_{\Sigma}(\alpha, \gamma, x), 0 \leq \alpha \leq 1, \gamma \in \mathbb{C} \backslash\{0\}$ and $x \in \mathbb{R}$. Then there are two holomorphic function $v, u: \Delta \rightarrow \Delta$ indicated by

$$
v(z)=t_{1} z+t_{2} z^{2}+t_{3} z^{3}+\cdots \quad(z \in \Delta)
$$

and

$$
u(w)=s_{1} w+s_{2} w^{2}+s_{3} w^{3}+\cdots \quad(w \in \Delta)
$$

with $v(0)=u(0)=0,|v(z)|<1$ and $|u(w)|<1, z, w \in \Delta$, such that

$$
1+\frac{1}{\gamma}\left[\frac{\alpha z^{3} f^{\prime \prime \prime}(z)+(1+2 \alpha) z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}{\alpha z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}-1\right] \prec \Omega(x, v(z))+1-k
$$

and

$$
1+\frac{1}{\gamma}\left[\frac{\alpha w^{3} g^{\prime \prime \prime}(w)+(1+2 \alpha) w^{2} g^{\prime \prime}(w)+w g^{\prime}(w)}{\alpha w^{2} g^{\prime \prime}(w)+w g^{\prime}(w)}-1\right] \prec \Omega(x, u(w))+1-k
$$

Or, in equivalent way,

$$
\begin{align*}
& 1+\frac{1}{\gamma}\left[\frac{\alpha z^{3} f^{\prime \prime \prime}(z)+(1+2 \alpha) z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}{\alpha z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}-1\right] \\
& \quad=1+h_{1}(x)-k+h_{2}(x) v(z)+h_{3}(x)[v(z)]^{2}+\cdots \tag{46}
\end{align*}
$$

and
$1+\frac{1}{\gamma}\left[\frac{\alpha w^{3} g^{\prime \prime \prime}(w)+(1+2 \alpha) w^{2} g^{\prime \prime}(w)+w g^{\prime}(w)}{\alpha w^{2} g^{\prime \prime}(w)+w g^{\prime}(w)}-1\right]$

$$
\begin{equation*}
=1+h_{1}(x)-k+h_{2}(x) u(w)+h_{3}(x)[u(w)]^{2}+\cdots . \tag{47}
\end{equation*}
$$

From (46) and (47), we get

$$
\begin{array}{r}
1+\frac{1}{\gamma}\left[\frac{\alpha z^{3} f^{\prime \prime \prime}(z)+(1+2 \alpha) z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}{\alpha z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}-1\right] \\
=1+h_{2}(x) t_{1} z+\left[h_{2}(x) t_{2}+h_{3}(x) t_{1}^{2}\right] z^{2}+\cdots \tag{48}
\end{array}
$$

and

$$
\begin{align*}
& 1+\frac{1}{\gamma}\left[\frac{\alpha w^{3} g^{\prime \prime \prime}(w)+(1+2 \alpha) w^{2} g^{\prime \prime}(w)+w g^{\prime}(w)}{\alpha w^{2} g^{\prime \prime}(w)+w g^{\prime}(w)}-1\right] \\
& =1+h_{2}(x) s_{1} w+\left[h_{2}(x) s_{2}+h_{3}(x) s_{1}^{2}\right] w^{2}+\cdots . \tag{49}
\end{align*}
$$

Notice that if

$$
|v(z)|=\left|t_{1} z+t_{2} z^{2}+t_{3} z^{3}+\cdots\right|<1 \quad(z \in \Delta)
$$

and

$$
|u(w)|=\left|s_{1} w+s_{2} w^{2}+s_{3} w^{3}+\cdots\right|<1 \quad(w \in \Delta),
$$

then

$$
\left|t_{i}\right| \leq 1 \text { and }\left|s_{i}\right| \leq 1 \quad(i \in \mathbb{N})
$$

It follows from (48) and (49) that

$$
\begin{align*}
& \frac{2(1+\alpha)}{\gamma} a_{2}=h_{2}(x) t_{1} \tag{50}\\
& \frac{6(1+2 \alpha)}{\gamma} a_{3}-\frac{4(1+\alpha)^{2}}{\gamma} a_{2}^{2}=h_{2}(x) t_{2}+h_{3}(x) t_{1}^{2} \tag{51}\\
& -\frac{2(1+\alpha)}{\gamma} a_{2}=h_{2}(x) s_{1} \tag{52}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{6(1+2 \alpha)}{\gamma}\left(2 a_{2}^{2}-a_{3}\right)-\frac{4(1+\alpha)^{2}}{\gamma} a_{2}^{2}=h_{2}(x) s_{2}+h_{3}(x) s_{1}^{2} \tag{53}
\end{equation*}
$$

From (50) and (52), we find that

$$
\begin{equation*}
t_{1}=-s_{1} \tag{54}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{8(1+\alpha)^{2}}{\gamma^{2}} a_{2}^{2}=\left[h_{2}(x)\right]^{2}\left(t_{1}^{2}+s_{1}^{2}\right) \tag{55}
\end{equation*}
$$

If we add (51) to (53), we get

$$
\begin{equation*}
\frac{\left(4+8 \alpha-8 \alpha^{2}\right)}{\gamma} a_{2}^{2}=h_{2}(x)\left(t_{2}+s_{2}\right)+h_{3}(x)\left(t_{1}^{2}+s_{1}^{2}\right) \tag{56}
\end{equation*}
$$

By using (55) in equation (56), we have

$$
\begin{equation*}
\left[\frac{\left(4+8 \alpha-8 \alpha^{2}\right)}{\gamma}-\frac{8(1+\alpha)^{2} h_{3}(x)}{\gamma^{2}\left[h_{2}(x)\right]^{2}}\right] a_{2}^{2}=h_{2}(x)\left(t_{2}+s_{2}\right) \tag{57}
\end{equation*}
$$

which yields

$$
\left|a_{2}\right| \leq \frac{|\gamma||b x| \sqrt{|b x|}}{\sqrt{\left|\left[\gamma\left(2+4 \alpha-4 \alpha^{2}\right) b-4(1+\alpha)^{2} p\right] b x^{2}-4(1+\alpha)^{2} k q\right|}}
$$

Next, if we deduct (53) from (51), we get

$$
\begin{equation*}
\frac{12(1+2 \alpha)}{\gamma}\left(a_{3}-a_{2}^{2}\right)=h_{2}(x)\left(t_{2}-s_{2}\right)+h_{3}(x)\left(t_{1}^{2}-s_{1}^{2}\right) \tag{58}
\end{equation*}
$$

In view of (54) and (55), equation (58) becomes

$$
a_{3}=\frac{\gamma^{2}\left[h_{2}(x)\right]^{2}\left(t_{1}^{2}+s_{1}^{2}\right)}{8(1+\alpha)^{2}}+\frac{\gamma h_{2}(x)\left(t_{2}-s_{2}\right)}{12(1+2 \alpha)} .
$$

Now, with the help of equation (3), we conclude that

$$
\left|a_{3}\right| \leq \frac{|\gamma|^{2} b^{2} x^{2}}{4(1+\alpha)^{2}}+\frac{|\gamma||b x|}{6(1+2 \alpha)}
$$

Finally, by using (57) and (58) for some $\mu \in \mathbb{R}$, we get

$$
a_{3}-\mu a_{2}^{2}=\frac{\gamma h_{2}(x)\left(t_{2}-s_{2}\right)}{12(1+2 \alpha)}+\frac{\gamma^{2}\left[h_{2}(x)\right]^{3}(1-\mu)\left(t_{2}+s_{2}\right)}{\gamma\left(4+8 \alpha-8 \alpha^{2}\right)\left[h_{2}(x)\right]^{2}-8(1+\alpha)^{2} h_{3}(x)}
$$

$$
=\frac{\gamma h_{2}(x)}{2}\left[\left(\Psi(\mu, x)+\frac{1}{6(1+2 \alpha)}\right) t_{2}+\left(\Psi(\mu, x)-\frac{1}{6(1+2 \alpha)}\right) s_{2}\right],
$$

where

$$
\Psi(\mu, x)=\frac{\gamma\left[h_{2}(x)\right]^{2}(1-\mu)}{\gamma\left(2+4 \alpha-4 \alpha^{2}\right)\left[h_{2}(x)\right]^{2}-4(1+\alpha)^{2} h_{3}(x)} .
$$

Thus, we conclude that

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{l}
\frac{|\gamma|\left|h_{2}(x)\right|}{6(1+2 \alpha)} \text { if } 0 \leq|\Psi(\mu, x)| \leq \frac{1}{6(1+2 \alpha)} \\
|\gamma|\left|h_{2}(x)\right||\Psi(\mu, x)| \text { if }|\Psi(\mu, x)| \geq \frac{1}{6(1+2 \alpha)}
\end{array}\right.
$$

and with respect to (3), it evidently completes the proof of the theorem (3).

References

1. Abirami C, Magesh N, Yamini J. Initial bounds for certain classes of bi-univalent functions defined by Horadam polynomials. Abstract and Applied Analysis. 2020; Article ID 7391058, 8 pages.
2. Alamoush AG. On a subclass of bi-univalent functions associated to Horadam polynomials. Int. J. Open Problems Complex Analysis. 2020; 12(1): 58-65.
3. Bulut S. A new comprehensive subclass of analytic bi-close-to-convex function. Turk. J. Math. 2019; 43: 1414-1424.
4. Duren PL. Univalent Functions. Grundlehren der Mathematischen Wissenschaften, Band 259, Springer Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
5. Frasin BA, Aouf MK. New subclasses of bi-univalent functions. Appl. Math. Lett. 2011; 24: 1569-1573.
6. Güney HÖ, Murugusundaramoorthy G, Sokól. Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers. Acta Univ. Sapient. Math. 2018; 10(1):70-84.
7. Horadam AF, Mahon JM. Pell and Pell-Lucas polynomials. Fibonacci Quart. 1985; 23: 7-20.
8. Horzum T, Kocer EG. On some properties of Horadam polynomials. Int. Math. Forum. 2009; 4: 12431252.
9. Srivastava HM, Altinkaya Ş, Yalçin S. Certain subclasses of bi-univalent functions associated with the Horadam polynomials. Iran. J. Sci. Technol. Trans. A Sci. 2019; 43: 1873-1879.
10. Srivastava HM, Mishra AK, Gochhayat P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010; 23: 1188-1192.
11. Wanas AK, Yalçin S. Horadam polynomials and their applications to new family of bi-univalent functions with respect to symmetric conjugate points. Proyecciones Journal of Math. 2021; 40(1): 107116.
