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Abstract:  

This paper is aimed at investigating and introducing the main results regarding the concept of Regional 

Boundary Gradient Strategic Sensors (RBGS-sensors) the in Diffusion Distributed Parameter Systems (DDP-

Systems) . Hence, such a method is characterized by Parabolic Differential Equations (PDEs) in which the behavior 

of the dynamic is created by a Semigroup (𝑆∆(𝓉))𝓉≥0of Strongly Continuous type (SCSG) in a Hilbert Space (HS) 

. Additionally , the grantee conditions which ensure the description for such sensors are given respectively to 

together with the Regional Boundary Gradient Observability (RBG-Observability) can be studied and achieved . 

Finally , the results gotten are applied to different situations with altered sensors positions are undertaken and 

examined. 

Keywords: WRBG-Obsevability, ERBG-Obsevability, RBGS-Sensors, DDP-Systems.  

1  Introduction 

The Observation Problem [1-3] is one of the most important notion in the analysis of DDP-Systems was attracted 

the attention of many researchers [4-7].  In various cases, one may interest in the cognition of the state of a 

𝑃𝐷𝐸𝑠 system on a sub region  𝔉 of internal and  boundary the domain ℧ in a unbounded interval [8-18] or 

bounded time [19-23].  

The investigation of this notion is incited by specific Physical Problem, in Thermic, Mechanic, Environment, for 

example some physical problems concern the determination of laminar flux conditions, developed in steady 

state by vertical uniformly heated plate [24-27].  

This approach can be applied to find the unknown boundary convective condition on the front face of  the active 

plate, as in [26]. The reconstruction is based on knowledge of the dynamical system via measurement 

information  given by internal sensors type pointwise (𝔟1, 𝔟2) (that means by the thermocouples for instance see 

(𝐅𝐢𝐠𝐮𝐫𝐞 𝟏).   

 

Fig.1:Real heated plate diffusion. 

Thence, this study designed at giving the required conditions of the RBGS-Sensors in this region, that builds 

RBG-State. Thus, the main reasons for presenting this notion are: Firstly it makes cognition for the usual observer 

concept closer to actual world quandaries, Secondly it can be introduced and explore the main results concerned 

to the DDP-Systems [24-26 ] in connection with 𝑅𝐵𝐺𝑆 − 𝑆𝑒𝑛𝑠𝑜𝑟𝑠.This job is arranged in the following:  
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Certain definitions with identification of the 𝐸𝑅𝐵𝐺 − 𝑂𝑏𝑠𝑒𝑣𝑎𝑏𝑖𝑙𝑖𝑡𝑦 for 𝑒𝑥𝑎𝑐𝑡𝑙𝑦 case and  WRBG-Obsevability for 

𝑤𝑒𝑎𝑘𝑙𝑦 case, are given in the next section. Section three introduces most for the required ailments to RBGS-

Sensors and a reformation process is developed to come across the internal state region to the boundary. Later, 

several applications for sensors positions in regions of rectangular types are presented and illustrated. 

2  RBG-Observability in DDP-Systems 

The current section invests to study the notion of RBG- Observability  in DDP-Systems. It makes certain important 

outcomes concerning this notion. 

2.1.Preliminaries Considerations Of The System 

The following assumptions are to be given 

•  ℧  stay Open  and Bounded in ℛ𝑛 , is the space domain with smooth boundary 𝜕℧. 

•  𝔉  remains a sub-boundary on 𝜕℧. 

•  [𝑂, 𝒯], 𝒯 > 𝑂  stand to a space-time interval cylinder. 

• The 𝐻𝑆𝑠 with 𝕎, 𝕌  and  𝕐 are separable where 𝕎 is the space of the state 𝓌,  𝕌 = ℒ2(0, 𝒯, ℛ𝑝) is the space of 

the input 𝑢 and  𝕐 = ℒ2(0, 𝒯, ℛ𝑞) is the space of output 𝒴 [16]. 

•  Reflected  𝐷𝐷𝑃 − 𝑆𝑦𝑠𝑡𝑒𝑚 described by the following 𝑃𝐷𝐸𝑠    

        

{
 

 
𝜕𝓌

𝜕𝓉
( 𝜁, 𝓉 ) = ∆𝓌( 𝜁, 𝓉 ) + 𝐵𝑢(𝓉)                                                   Π𝒯

𝓌( 𝜁, 0 ) = 𝓌0( 𝜁 )                                                                            ℧̅ 
𝜕𝓌

𝜕𝑣
(𝜇, 𝓉) = 0                                                                                       Ξ𝒯

                                           (1)            

where   Π𝒯 = ℧ × ] 0, 𝒯 [,   Ξ𝒯 = 𝜕℧ × ] 0, 𝒯 [ ,   𝜁 ∈ ℧, 𝜇 ∈ 𝜕℧, 𝓉 ∈ [0, 𝒯], and ( 𝜁, 𝓉 ) ∈ ℧ × ] 0, 𝒯 [, ( 𝜇, 𝓉 ) ∈ 𝜕℧ ×

] 0, 𝒯 [,  ( 𝜁, 0 ) ∈ ℧̅, wherever  ℧̅  represents ℧ closure and  
𝜕𝓌

𝜕𝑣
  indicates the derivative of normal vector 𝑣 on 𝜕℧. 

Then 𝐷𝐷𝑃 − 𝑆𝑦𝑠𝑡𝑒𝑚 remains augmented with the measurement function 

          𝒴 (. , 𝓉) = 𝒞𝓌(. , 𝓉)                                                                                                            (2) 

where, 

• ∆ stays an operator, linear and differential of  second order type,  in which is produced a 𝑆𝐶𝑆 − 𝑔𝑟𝑜𝑢𝑝 

(𝑆∆(𝓉)) 𝓉≥0  on 𝐻𝑆  may be symbolized by 𝕎 = 𝐻1(℧̅)   such that it is self adjoint through resolvent  of compact 

type.  

• So the operators  𝐵 ∈ ℒ(ℛ𝑝,𝕎) and  𝒞 ∈ ℒ(𝕎,ℛ𝑞) be dependent on the of sensors (actuators) construction 

[6]. Thus the reflected  𝐷𝐷𝑃 − 𝑆𝑦𝑠𝑡𝑒𝑚𝑠 (1) possesses a solution of unique kind [1-3] illustrated in the subsequent 

form 

          𝓌( 𝜁, 𝓉 ) = 𝑆∆(𝓉)𝓌0( 𝜁 ) + ∫ 𝑆∆(𝓉 − 𝜏)𝐵𝑢(𝜏)𝑑𝜏
𝓉

0
                                                          (3)  

• The problematic underlies, in what way to realize satisfactory conditions of 𝑅𝐵𝐺𝑆 − 𝑆𝑒𝑛𝑠𝑜𝑟𝑠  on specified sub-

boundary 𝔉. 

•  Thence, the operator is defined  

        𝒦:𝓌 ∈ 𝕎 → 𝒦𝓌 = 𝒞𝑆∆(. )𝓌 ∈  𝕐                      

And, the  adjoint  operator  of  𝒦  indicates  by 𝒦∗ identified by  

       𝒦∗𝒴∗ = ∫ 𝑆∆
∗(𝑠)𝐶∗𝑦∗(𝑠)𝑑𝑠

𝓉

0
   

• Consider the gradient operator  

       {
(℧)𝐻1 ׃∇ → (𝐻1(℧))𝑛      

 𝓌 → ∇𝓌 = (
𝜕𝓌

𝜕𝜁1
, … ,

𝜕𝓌

𝜕𝜁𝑛
)
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and the adjoint of  ∇ indicated by  ∇∗ is given as 

      {
 ∇∗: (𝐻1(℧))

𝑛

→ 𝐻1(℧)

𝓌  →  ∇𝓌
∗ = 𝜐                

     

whereas  𝜐  is a solution of  the Dirichlet  problem 

      {
 ∆𝜐 = −𝑑𝑖𝑣(𝓌)   in  ℧            
 𝜕𝜐 𝜕𝑣⁄ = 0      in  𝜕℧               

 

• Then Operator of Trace type of zero-order is offered by   

          𝛾0: 𝐻
1(℧) → 𝐻1/2  ( 𝜕℧)  

Therefore, the propagation of the trace operator where is described via 

          𝛾: (𝐻1(℧))𝑛 → (𝐻1/2(𝜕℧))𝑛  

with the related Adjoint Operators   𝛾0
∗ and 𝛾∗.  

• On behalf of a sub-boundary  𝔉 ⊂ 𝜕℧, we take into account a gradient restriction operator 

          𝒳𝔉: (𝐻
1/2 ( 𝜕℧ ))𝑛 → (𝐻1/2( 𝔉 ))𝑛  

and  

         𝒳𝔉: 𝐻
1 2⁄ (𝜕℧) → 𝐻1 2⁄ (𝔉) 

where the adjoints are correspondingly presented by 𝒳𝔉
∗, 𝒳𝔉

∗.  

• If ω remains  a subregion of  ℧, then  𝒳𝜔 is an operator specified by 

      𝒳𝜔: {
(𝐻1(℧))𝑛 → (𝐻1(𝜔))𝑛

𝓌 → 𝓍𝜔𝓌 = 𝓌 ∣𝜔          
                                                                                

where 𝓌 ∣𝜔 represented the restriction of the state 𝓌  to 𝜔 [28]. There adjoints are respectively denoted by 𝒳ω
∗   

are defined by 

     𝒳𝜔
∗ : {

(𝐻1(𝜔))𝑛 → (𝐻1(℧))𝑛           

𝓌 → 𝒳𝜔
∗𝓌 = {

𝓌 ∣𝜔       in 𝜔   

0        in  ℧ ∖ 𝜔

 

• Finally, we introduced the operator  𝐻𝔉 = 𝒳𝔉𝛾∇𝒦
∗ from  𝕐  into (𝐻1/2(𝔉))𝑛.   

2.2 Definitions and Descriptions 

This section part presents necessary results about the 𝑅𝐵𝐺 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑖𝑙𝑖𝑡𝑦  notion devoted to a particular 

devoted sensors. On behalf of this objective, one can deliberate the 𝐴𝐷𝐷𝑃 − 𝑆𝑦𝑠𝑡𝑒𝑚𝑠 characterizes (1) in the 

autonomous case via next form. 

          

{
 

 
𝜕𝓌

𝜕𝓉
( 𝜁, 𝓉 ) = ∆𝓌( 𝜁, 𝓉 )                                                   Π𝒯

𝓌(𝜁, 0) = 𝓌0(𝜁)                                                               ℧̅ 
𝜕𝓌

𝜕𝑣
(𝜇, 𝓉) = 0                                                                      Ξ𝒯

                                                 (4) 

The Problem Solution of  𝐴𝐷𝐷𝑃 − 𝑆𝑦𝑠𝑡𝑒𝑚𝑠 (4) is obtainable in the following form 

          𝓌( 𝜁, 𝓉 ) = 𝑆Δ(𝓉)𝓌0(𝜁)    for all  𝓉 ∈ [0, 𝑇]                                                                    (5)  

Definition2.1: 𝐴𝐷𝐷𝑃 − 𝑆𝑦𝑠𝑡𝑒𝑚𝑠 (4)  is increased  with  the  measurement  function (2) is  so-called to  be an 

𝐸𝑅𝐺 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒 in a region ω ⊂ ℧, if  

          𝐼𝑚 𝐻ω = (𝐻1(ω))𝑛  

and 𝐴𝐷𝐷𝑃 − 𝑆𝑦𝑠𝑡𝑒𝑚𝑠 (4)  is increased  with  the  measurement  function (2) is  so-called to  be an 𝑊𝑅𝐺 −

𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑖𝑙𝑒 if 

𝐼𝑚 𝐻ω
̅̅ ̅̅ ̅̅ ̅̅ = (𝐻1(ω))𝑛 ). 
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Definition2.2: 𝐴𝐷𝐷𝑃 − 𝑆𝑦𝑠𝑡𝑒𝑚𝑠 (4) increased with measurement  function (2) is  so-called to  be an 𝐸𝑅𝐵𝐺 −

𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑖𝑙𝑒 in a boundary region 𝔉 ⊂ ∂℧,  if 

          𝐼𝑚 𝐻𝔉 = (𝐻
1/2(𝔉))𝑛   

and 𝐴𝐷𝐷𝑃 − 𝑆𝑦𝑠𝑡𝑒𝑚𝑠 (4) increased with measurement  function (2) is  so-called to  be an 𝑊𝑅𝐵𝐺 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑖𝑙𝑒 

if 

         𝐼𝑚 𝐻𝔉̅̅ ̅̅ ̅̅ ̅̅ = (𝐻1/2(𝔉))𝑛) 

Remark2.3: We conclude that, this equation 

          𝐼𝑚 𝐻𝔉̅̅ ̅̅ ̅̅ ̅̅ = (𝐻1 2⁄ (𝔉))𝑛 ⟺  𝑘𝑒𝑟 𝐻𝔉
∗ = {0}. 

Proposition2.4: 𝐴𝐷𝐷𝑃 − 𝑆𝑦𝑠𝑡𝑒𝑚𝑠 (4) increased with measurement  function (2)  are 𝐸𝑅𝐵𝐺 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑖𝑙𝑒 if  and 

only  if  ∃ 𝑣 > 0, such as that  for all  𝓌∗ ∈ (𝐻1/2(𝔉))𝑛, then, 

          ‖𝒳𝔉 𝓌
∗‖
(𝐻1/2(𝔉))𝑛

≤ 𝑣 ‖𝒦∇∗𝛾∗𝒳𝔉 
∗𝓌∗‖

𝕐
                                                                           (6) 

Proof:  

The proof of Proposition2.4 can be deducted via the next  overall conclusions [1]. Supposing 𝐸, 𝐹 as well as  𝐺 

be a reflexive Banach spaces and  𝑓 ∈ ℒ(𝐸, 𝐺), 𝑔 ∈ ℒ(𝐹, 𝐺), then the following properties are analogous 

(I)  𝐼𝑚𝑓 ⊂ 𝐼𝑚𝑔.  

(II) ∃ 𝑣 > 0, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡   

       ‖𝑓∗𝓌∗‖𝐸∗ ≤ 𝑣 ‖𝑔∗𝓌∗‖𝐹∗ ,  for all 𝓌∗ ∈ 𝐺∗.   

If we apply this outcome, considered 𝐸 = 𝐺 = (𝐻1/2(𝔉))𝑛 , 𝐹 = 𝕐, 𝑓 = 𝐼𝑑(𝐻1/2(𝔉))𝑛 and  𝑔 = 𝒳𝔉γ∇𝒦∗. Therefore, 

we obtain the inequality 

       ‖𝒳𝔉𝓌
∗‖
(𝐻1/2(𝔉))𝑛

≤ 𝑣 ‖𝒦∇∗𝛾∗𝒳𝔉 
∗𝓌∗‖

𝕐
 .∎ 

Now, the following proposition can be arrived at:  

Proposition2.5: If the  𝐴𝐷𝑃𝐷 −  𝑆𝑦𝑠𝑡𝑒𝑚 is 𝐸𝑅𝐵 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒 then it is 𝐸𝑅𝐵𝐺 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒. 

Proof: The 𝐴𝐷𝑃𝐷 − 𝑆𝑦𝑠𝑡𝑒𝑚 is an 𝐸𝑅𝐵 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒. Therefore ∃  𝛾𝔉 > 0, such that for all  𝓌0 ∈ 𝐻
1 2⁄ (𝔉), we 

have 

          ‖𝓌0‖𝐻1 2⁄ (𝔉) ≤ 𝛾𝔉‖𝒦𝛾0 
∗ �̃�𝔉 

∗𝓌0‖ℒ2(0,𝑇,𝕐) 
,  for all  𝛾𝔉 > 0 

Since (𝐻1 2⁄ (𝔉))𝑛 ⊂ 𝐻1 2⁄ (𝔉), then   

    ‖𝛾∇𝓌0‖(𝐻1 2⁄ (∂℧))𝑛 = ‖𝓌0‖(𝐻1 2⁄ (𝔉))𝑛 ≤ ‖𝓌0‖𝐻1 2⁄ (𝔉) , for all  𝓌0 ∈ 𝐻
1 2⁄ (𝔉)  

where, 

    𝐻1 2⁄ (𝔉) = {𝓌0 : ∫ |𝓌0|
2 

𝔉
< ∞}  

and,       

         (𝐻1 2⁄ (𝔉))𝑛 = {∇𝓌0 = 𝑔𝑖 : ∫ |𝑔𝑖|
2 

𝔉
< ∞, 𝑔𝑖 =

𝜕𝓌0

𝜕𝜁𝑖
, for all 𝑖 = 1,2, … }                         (7) 

So to demonstrate  ‖𝓌0‖(𝐻1 2⁄ (𝔉))𝑛 ≤ 𝑣 ‖𝒦∇
∗𝛾∗𝒳𝔉

∗𝓌0‖ℒ2(0,𝑇,𝕐)
, we have, from (7) and since the 𝐴𝐷𝑃𝐷 −  𝑆𝑦𝑠𝑡𝑒𝑚 

is 𝐸𝑅𝐵 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒, then there exists  𝛾𝔉 > 0 and   𝑣 > 0, such that  𝛾𝔉 =
1

𝑣
 , by setting 

           𝑣 =
‖𝒦 𝛾0

∗ 𝒳𝔉 
∗𝓌0‖𝕐

‖𝒦 ∇∗ 𝛾∗𝒳𝔉 
∗𝓌0‖

𝕐

                                                        (8)  

consequently we can get 
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         ‖𝓌0‖(𝐻1 2⁄ (𝔉))𝑛 ≤ ‖𝒦∇∗𝛾∗𝒳𝔉
∗𝓌0‖𝕐

.                                                                                  (9)  

Therefore, 𝐴𝐷𝑃𝐷 −  𝑆𝑦𝑠𝑡𝑒𝑚 is 𝐸𝑅𝐵𝐺 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒 with 𝛾𝔉 = 1. ∎ 

3. Sufficient Conditions For  𝑹𝑩𝑮𝑺 − 𝐒𝐞𝐧𝐬𝐨𝐫𝐬 

For accomplishing the 𝑅𝐵𝐺 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑖𝑙𝑖𝑡𝑦, we must grant the appropriate condition for the characterization 

of in a specified region  𝔉. 

Remark.3.2: 

1- 𝑆𝑒𝑛𝑠𝑜𝑟 (𝒟, 𝑓)[15] may be pointwise if  𝒟 = { 𝔟 }, with  b ∈ ℧̅ and  𝑓 = 𝛿(. −𝔟), whereas 𝛿 is the mass of Dirac 

focused in 𝔟. Then the measurement output function (2) formulated by [1-3]. 

     𝒴(𝓉) = ∫ 𝓌(𝜁, 𝓉)𝛿𝔟(𝜁 − 𝔟)𝑑𝜁 =℧
𝓌 (𝔟, 𝓉)    

2-  So, in the zone circumstance,   𝒟 ⊂ ℧ as well as 𝑓 ∈ ℒ2(𝒟). Hence the measurement function 

      𝒴(𝓉) = ∫ 𝓌(𝜁, 𝓉)𝑓(𝜁)𝑑𝜁
𝒟

. 

Definition3.2: The couple ( 𝒟, 𝑓 ) is 𝑅𝐵𝐺𝑆 − 𝑆𝑒𝑛𝑠𝑜𝑟, if the linked 𝐴𝐷𝑃𝐷 −  𝑆𝑦𝑠𝑡𝑒𝑚 is 𝑊𝑅𝐵𝐺 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒. 

Definition3.3:  𝑆𝑒𝑛𝑠𝑜𝑟𝑠 ( 𝒟𝑖 , 𝑓𝑖 )1 ≤ 𝑖 ≤ 𝑞 are 𝑅𝐵𝐺𝑆 − 𝑆𝑒𝑛𝑠𝑜𝑟, if one of them symbolized by ( 𝒟1, 𝑓1 ) is 𝑅𝐵𝐺𝑆 −

𝑆𝑒𝑛𝑠𝑜𝑟. 

Proposition3.4: The couple ( 𝒟, 𝑓 ) is 𝑅𝐵𝐺𝑆 − 𝑆𝑒𝑛𝑠𝑜𝑟 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦  𝑁𝔉 = 𝐻𝐻
∗ represent a 

positive definite operator. 

Proof: As ( 𝒟, 𝑓 )  is 𝑅𝐵𝐺𝑆 − 𝑆𝑒𝑛𝑠𝑜𝑟 means that the linked 𝐴𝐷𝑃𝐷 −  𝑆𝑦𝑠𝑡𝑒𝑚 is 𝑊𝑅𝐵𝐺 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒. Thus, if  

𝓌∗ ∈ (𝐻1 2⁄ (𝔉))𝑛, achieves the subsequent 

          〈𝑁𝔉 𝓌
∗,𝓌∗〉

(𝐻1/2(𝔉))𝑛 = 0, then  ‖𝐻∗𝓌∗‖𝕐 =  0 

Henceforth  𝓌∗ ∈ ker 𝐻∗, thus  𝓌∗ = 0,  i.e.,  𝑁𝔉 is positive definite. 

Conversely, let  𝓌∗ ∈ (𝐻1/2(𝔉))𝑛, such that 

       𝐻∗𝓌∗ =  0, then  〈𝐻∗𝓌∗, 𝐻∗𝓌∗〉𝕐 =  0 

and thus,  

          〈𝑁𝔉 𝓌
∗,𝓌∗〉

(𝐻1/2(𝔉))𝑛 =  0. 

Thus  𝓌∗ =  0,  therefore, the linked 𝐴𝐷𝑃𝐷 −  𝑆𝑦𝑠𝑡𝑒𝑚 is 𝑊𝑅𝐵𝐺 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒. 

and then, ( 𝒟, 𝑓 ) is 𝑅𝐵𝐺𝑆 − 𝑆𝑒𝑛𝑠𝑜𝑟.□  

Proposition.3.5: The couple ( 𝒟, 𝑓 ) is 𝑅𝐵𝐺𝑆 − 𝑆𝑒𝑛𝑠𝑜𝑟, if the linked 𝐴𝐷𝑃𝐷 −  𝑆𝑦𝑠𝑡𝑒𝑚 is 𝐸𝑅𝐵𝐺 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒. 

Proof : As the 𝐴𝐷𝑃𝐷 −  𝑆𝑦𝑠𝑡𝑒𝑚 is 𝐸𝑅𝐵𝐺 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒. Thus, 

          𝐼𝑚 𝐻𝔉 = (𝐻
1/2(𝔉))𝑛  

As well known (𝐻1/2(𝜕℧))𝑛 is 𝐻𝑆.  So that leads to the form 

          ker 𝒳𝔉 + 𝐼𝑚 𝒳𝔉
∗𝒳𝔉𝛾∇𝒦

∗ = (𝐻1/2(𝜕℧))𝑛  

we obtain that, 

          ker 𝒦(𝓉)∇∗𝛾∗𝒳𝔉
∗ = { 0 }  

and this is equivalent to 

          𝐼𝑚 𝒳𝔉𝛾∇𝒦
∗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = (𝐻1/2(𝔉))𝑛.       

Later, the connected 𝐴𝐷𝑃𝐷 −  𝑆𝑦𝑠𝑡𝑒𝑚 is 𝑊𝑅𝐵𝐺 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒. Consequently, ( 𝒟, 𝑓 ) stays 𝑅𝐵𝐺𝑆 − 𝑆𝑒𝑛𝑠𝑜𝑟.□  

Remark.3.6: As of the preceding outcomes , we can realized the next: 
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(𝐼) An 𝐴𝐷𝑃𝐷 −  𝑆𝑦𝑠𝑡𝑒𝑚 is 𝐸𝐵𝐺 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒, then the 𝐴𝐷𝑃𝐷 −  𝑆𝑦𝑠𝑡𝑒𝑚 is 𝑊𝑅𝐵𝐺 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒. 

 (𝐼𝐼) If a couple ( 𝒟, 𝑓 ) is 𝑅𝐵𝐺𝑆 − 𝑆𝑒𝑛𝑠𝑜𝑟 in 𝔉1 for an 𝐴𝐷𝑃𝐷 −  𝑆𝑦𝑠𝑡𝑒𝑚 , then it is  𝑅𝐵𝐺𝑆 − 𝑆𝑒𝑛𝑠𝑜𝑟  in 𝔉2 subregion 

of 𝔉1.     

3.2.𝐓𝐡𝐞 𝐌𝐚𝐢𝐧 𝐑𝐞𝐬𝐮𝐥𝐭𝐬 

This part concerns with developing the consequences to the concept of  𝑅𝐵𝐺𝑆 − 𝑆𝑒𝑛𝑠𝑜𝑟𝑠 in the corresponding 

𝐴𝐷𝑃𝐷 −  𝑆𝑦𝑠𝑡𝑒𝑚,  and presents the enough conditions for such sensor. So that, it is assumed that there is  

(𝜑𝑛𝑗) 𝑛∈𝐼,   𝑗=1,..,𝑚𝑛
 of  𝛥 in 𝐻1(℧̅)  denoted a set of eigenfunctions [10], associated with eigenvalue 𝜆𝑛 of 

multiplicities 𝑚𝑛 and 𝑚𝑛 = sup
𝑛 ∈ 𝐼

𝑚𝑛 is finite. For  �̅� = (𝓌1, … ,𝓌𝑛−1) and �̅� = ( 𝑛1, … , 𝑛𝑛−1 ). Suppose that the 

function 𝜓�̅�𝑗(�̅�) = 𝒳𝔉𝛾𝛻𝜑𝑛𝑗(𝓌), 𝑛 ∈ 𝐼, is a complete set in (𝐻1/2(𝔉)) 𝑛. If the reflected 𝐷𝐷𝑃 − 𝑆𝑦𝑠𝑡𝑒𝑚 (1) 

where 𝐽 satisfy instability property. Thus, the succeeding outcome can be obtained. 

Theorem3.7: Suppose that sup𝑚𝑛 = 𝑚 < ∞, then the couples ( 𝒟𝑖 , 𝑓 𝑖)1 ≤ 𝑖 ≤ 𝑞 are 𝑅𝐵𝐺𝑆 − 𝑆𝑒𝑛𝑠𝑜𝑟𝑠  𝑖𝑓𝑓 

1. 𝑞 ≥ 𝑚, 

2. rank 𝐺𝑛 = 𝑚𝑛, for all  𝑛 ≥ 1,  where 𝐺𝑛 = (𝐺𝑛)𝑖𝑗 with 1 ≤ 𝑖 ≤ 𝑞, 1 ≤ 𝑗 ≤ 𝑚𝑛, and  

       (𝐺𝑛)𝑖𝑗 = {
∑

𝜕𝜓�̅�𝑗

𝜕𝓌𝒦
(𝔟𝑖)             

𝑛
𝒦=1      point wise  sensor          

∑ 〈
𝜕𝜓�̅�𝑗

𝜕𝓌𝒦
, 𝑓𝑖〉ℒ2(𝒟𝑖)             

𝑛
𝒦=1      zone  sensor           

  

Proof: First, we evoke that the 𝐴𝐷𝑃𝐷 −  𝑆𝑦𝑠𝑡𝑒𝑚 is 𝑊𝑅𝐵𝐺 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒, this means: 

         [𝒦∇∗𝛾∗𝒳𝔉
∗𝓌∗ = 0 ⟹𝓌∗ = 0 ]. 

which allows to state that the couples ( 𝒟𝑖 , 𝑓𝑖 )1 ≤ 𝑖 ≤ 𝑞 are  𝑅𝐵𝐺𝑆 − 𝑆𝑒𝑛𝑠𝑜𝑟𝑠  𝑖𝑓𝑓 

         {𝓌∗ ∈ (𝐻1/2(𝔉))𝑛|〈𝐻𝒴,𝓌∗〉
(𝐻1/2(𝔉))𝑛 = 0 , for all  𝒴 ∈ 𝕐} = { 0 } [12] .                        

By supposing that the couples ( 𝒟𝑖 , 𝑓𝑖 )1 ≤ 𝑖 ≤ 𝑞 are  𝑅𝐵𝐺𝑆 − 𝑆𝑒𝑛𝑠𝑜𝑟𝑠, but for a certain 𝑛 ∈ 𝑁, then, 𝑟𝑎𝑛𝑘 𝐺𝑛  𝑚𝑛, 

𝑖. 𝑒.:  

          ∀ 𝓌𝑛 = (𝓌𝑛1
,𝓌𝑛2

, … ,𝓌𝑛𝑚
)𝑇 ≠  0,  

such that 

        𝐺𝑛𝓌𝑛 =  0, 𝓌0 = ∑ 𝓌𝑛𝑗
𝑚𝑛
𝑗=1 𝜓𝑛𝑗 ∈ 𝐻

1 2⁄ (𝔉) ≠  0 

So, we can rebuild a non-zero  𝓌0 ∈ 𝐻
1/2(𝔉) in  considering 

         〈𝓌0, 𝜓𝑝𝑗〉𝐻1/2(𝔉) = 0. 

If  𝑝 ≠ 𝑛, and  〈𝓌0, 𝜓𝑛𝑗〉𝐻1/2(𝔉) = 𝓌𝑛𝑗 , 1 ≤ 𝑗 ≤ 𝑚𝑛, then 

      〈𝐻𝒴,𝓌0〉(𝐻1/2(𝔉))𝑛 = ∑ 〈�̃�𝔉𝛾0
𝜕

𝜕𝜁𝒦
(𝒦∗𝒴),𝒳𝔉

∗𝓌0〉
𝑛
𝒦=1

𝐻1/2(𝔉)
  

                                    = ∑ 〈
𝜕

𝜕𝜁𝒦
(�̃�(𝑇), 𝛾0�̃�𝔉

∗𝓌0〉
𝑛
𝒦=1

𝐻1 2⁄ (𝜕℧)
  

where  �̃� maybe signifies as a  solution of the ensuing form 

          

{
 

 
𝜕�̃�

𝜕𝓉
( 𝜁, 𝓉 ) = Δ

∗�̃�( 𝜁, 𝓉 ) + ∑ 𝑓𝑖𝒴𝑖(𝑇 − 𝓉)
𝑞
𝑖=1         Π𝒯

�̃�(𝜁, 0) = 0                                                                       ℧̅ 
∂�̃�

∂𝑣
(𝜇, 𝑡) = 0                                                                    Ξ𝒯

                                               (10)  

Now, consider the system 

          

{
 

 
𝜕𝜓

𝜕𝓉
( 𝜁, 𝓉 ) = −Δ𝜑( 𝜁, 𝓉 )                                             Π𝒯

𝜓( 𝜁, 0 ) = 𝛾0
∗𝒳Г

∗𝓌0                                                     ℧̅ 
𝜕𝜓

𝜕𝑣
(𝜇, 𝓉) = 0                                                                  Ξ𝒯

                                          (11) 
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multiply (10) by 
𝜕𝜓

𝜕𝜁𝒦
 and integrate on   Π𝒯 , we get that 

          ∫
𝜕𝜓

𝜕𝜁𝒦
( 𝜁, 𝓉 )

𝜕�̃�

𝜕𝓉
( 𝜁, 𝓉 )𝑑𝜁

Π𝒯
𝑑𝓉 = ∫ Δ

∗�̃�( 𝜁, 𝓉 )
𝜕𝜓

𝜕𝜁𝓉
( 𝜁, 𝓉 )𝑑𝜁

  Π𝒯
𝑑𝓉 

                                                            +∫ (∑ 𝛿𝑏𝑖𝒴𝑖(𝑇 − 𝓉)
𝑞
𝑖=1 )

𝜕𝜓

𝜕𝜁𝒦
( 𝜁, 𝓉 )𝑑𝜁 𝑑𝓉

Π𝒯
 

But, we have 

           ∫
𝜕𝜑

𝜕𝜁𝒦
( 𝜁, 𝓉 )

𝜕�̃�

𝜕𝓉
( 𝜁, 𝓉 )𝑑𝜁

  Π𝒯
𝑑𝓉 = ∫ [

𝜕𝜑

𝜕𝜁𝒦
( 𝜁, 𝓉 )�̃�( 𝜁, 𝓉 )𝑑𝜁]

0

𝑇

𝜕℧
 +                            

∫ Δ
𝜕𝜓

𝜕𝜁𝒦
( 𝜁, 𝓉 )�̃�( 𝜁, 𝓉 )𝑑𝜁

  Π𝒯
𝑑𝓉 ∫  

𝜕𝜓

𝜕𝜁𝒦
( 𝜁, 𝓉 )�̃�( 𝜁, 𝓉 )𝑑𝜁

 

𝜕℧
+ ∫ Π

𝜕𝜓

𝜕𝜁𝒦
( 𝜁, 𝓉 )�̃�( 𝜁, 𝓉 )𝑑𝜁

  Π𝒯
𝑑𝓉. 

then,    

           ∫
𝜕𝜓

𝜕𝜁𝒦
( 𝜁, 𝓉 )�̃�( 𝜁, 𝓉 )𝑑𝜁

𝜕℧ 
= −∫ Π𝒯

𝜕𝜓

𝜕𝜁𝒦
( 𝜁, 𝓉 )�̃�( 𝜁, 𝓉 )𝑑𝜁

  Π𝒯
 

           +∫ Δ
∗�̃�( 𝜁, 𝓉 )

𝜕𝜓

𝜕𝜁𝒦
( 𝜁, 𝓉 )𝑑𝜁

Π𝒯
𝑑𝓉 + ∫ (∑ 𝛿𝑏𝑖𝒴𝑖(𝑇 − 𝓉)

𝑞
𝑖=1 )

𝜕𝜓

𝜕𝜁𝒦
( 𝜁, 𝓉 )𝑑𝜁 𝑑𝓉

Δ
. 

Integrating by parts, we obtain 

           ∫
𝜕𝜓

𝜕𝜁𝒦
( 𝜁, 𝓉 )�̃�( 𝜁, 𝓉 )𝑑𝜁 =

𝜕℧
− ∫

𝜕�̃�(𝜇,𝓉)

𝜕𝑣
Δ
∗Π𝒯
 
𝜕𝜓

𝜕𝜁𝒦
(𝜇, 𝓉)𝑑 

                                                     + ∫
𝜕

𝜕𝑣
Δ
∗
(
𝜕𝜓

𝜕𝜁𝒦
( 𝜇, 𝓉 )𝑑𝜇𝑑𝑡)

Π𝒯
�̃�( 𝜇, 𝓉 ) 

                                                     +∫ (∑ 𝛿𝑏𝑖𝒴𝑖(𝒯 − 𝓉) 
𝑞
𝑖=1 )

𝜕𝜓

𝜕𝜁𝒦
( 𝜁, 𝓉 )𝑑𝜁 𝑑𝓉.

Π𝒯
 

the boundary conditions give 

          ∫
𝜕𝜓

𝜕𝜁𝒦
( 𝜁, 𝓉 )�̃�( 𝜁, 𝓉 )𝑑𝜁 =

𝜕℧ 
∫ (∑ 𝛿𝑏𝑖𝒴𝑖(𝑇 − 𝓉)

𝑞
𝑖=1 )

𝜕𝜓

𝜕𝜁𝒦
( 𝜁, 𝓉 )𝑑𝜁 𝑑𝓉

Π
. 

Thus, 

          ∫ 𝜓( 𝜁, 𝓉 )
𝜕�̃�

𝜕𝜁𝒦
(𝜁, 𝑇)𝑑𝜁

𝜕℧
= −∑ ∫

𝜕𝜓

𝜕𝜁𝒦
(𝔟𝑖 , 𝓉)

𝑇

0

𝑞
𝑖=1 𝒴𝑖(𝒯 − 𝑡)𝑑𝓉. 

and, we have 

          〈𝒳𝔉𝛾∇𝒦
∗,𝓌0〉

(𝐻
1
2(𝔉)𝑛)

= ∑ ∫
𝜕�̃�

𝜕𝜁𝒦
( 𝜁, 𝓉 )𝜓( 𝜁, 𝓉 )𝑑𝜁

℧
𝑛
𝒦=1 = 

                                                 −∑ ∫ ∑
𝜕𝜓

𝜕𝜁𝒦
(𝔟𝑖 , 𝓉)

𝑛
𝒦=1

𝑇

0

𝑞
𝒦=1 𝒴𝑖(𝒯 − 𝓉)𝑑𝓉 

but, 

           𝜓( 𝜁, 𝓉 ) = ∑ 𝑒−𝜆𝑝(𝒯−𝓉)∞
𝑝=1 ∑ 〈𝓌0, 𝜓𝑝𝑗〉ℒ2(𝜔)

𝑚𝑝

𝑗=1
𝜓𝑝𝑗 

Then, 

         ∑
𝜕𝜓

𝜕𝜁𝒦
(𝔟𝑖 , 𝓉)

𝑛
𝒦=1 = ∑ 𝑒−𝜆𝑝(𝒯−𝑡)∞

𝑝=1 ∑ 〈𝓌0, 𝜑𝑝𝑗〉ℒ2(𝜔)

𝑚𝑝

𝑗=1
∑

𝜕𝜓

𝜕𝜁𝒦

𝑛
𝒦=1 (𝔟𝑖)  

                                    = ∑ 𝑒𝜆𝑝(𝒯−𝓉)(𝐺𝑝𝓌𝑝)𝑖
∞
𝑝=1  

therefore, 

          〈𝒳𝔉𝛾∇𝒦
∗𝒴,𝓌0〉(𝐻1/2(𝔉))𝑛 = −∑ ∫ ∑ 𝑒𝜆𝑝(𝒯−𝓉)(𝐺𝑝𝓌𝑝)

∞
𝑝=1

𝑇

0

𝑞
𝒦=1 𝓌𝑖(𝒯 − 𝓉)𝑑𝓉 

thus, 

          〈𝒳𝔉𝛾∇𝒦
∗𝒴,𝓌0〉(𝐻1/2(𝔉))𝑛 = −∑ ∫ 𝑒𝜆𝑛(𝒯−𝓉)(𝐺𝑛𝓌𝑛)𝑖 

𝑇

0

𝑞
𝑖=1 𝒴𝑖  ( 𝒯 − 𝓉) 𝑑𝓉 =  0, 

∀ 𝒴 ∈ ℒ2 (0, 𝒯, 𝑅𝑞).  
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Subsequently, 𝓌0 ∈ 𝑘𝑒𝑟  H𝔉 
∗

 this is conflicted to the hypotheses. Thus, ( 𝒟𝑖 , 𝑓 𝑖)1 ≤ 𝑖 ≤ 𝑞 are 𝑅𝐵𝐺𝑆 − 𝑆𝑒𝑛𝑠𝑜𝑟𝑠 for 

the 𝐴𝐷𝑃𝐷 −  𝑆𝑦𝑠𝑡𝑒𝑚 (4).∎ 

3.3.Internal and 𝑹𝑩𝑮-Reconstruction via  Internal Region 

    𝑅𝐵𝐺𝑆 − 𝑆𝑒𝑛𝑠𝑜𝑟𝑠 problem for 𝐴𝐷𝑃𝐷 −  𝑆𝑦𝑠𝑡𝑒𝑚 may be seen as  internal 𝑅𝐺𝑆 − 𝑆𝑒𝑛𝑠𝑜𝑟𝑠, if we deliberate �̅�𝑟 ⊂

℧̅ [27 ].  

• Let ℜ is an linear operator of extension continuous type which is represented via   

         ℜ: (𝐻1/2(𝜕℧))𝑛 → (𝐻1(℧))𝑛, such that  

           𝛾∇ℜℎ( 𝜁, 𝓉 ) = ℎ( 𝜁, 𝓉 ), for all  ℎ( 𝜁, 𝓉 ) ∈ (𝐻1/2(𝜕℧))𝑛                                               (12) 

• For  𝓇 > 0 any real number such that satisfactorily small we can define 

        𝐸 = ⋃ 𝐵( 𝓌,𝓇 )𝓌∈𝔉 ,  �̅�𝓇 = 𝐸 ∩ ℧ and  𝔉 = �̅�𝓇 ∩ 𝜕℧ ,   

where 𝐵(𝓌,𝓇) is a ball radius 𝓇 focused in 𝓌( 𝜁, 𝓇 ), so  𝔉 is a subregion  of �̅�𝓇 (𝐅𝐢𝐠𝐮𝐫𝐞. 𝟐).  

 

Fig.2: Internal region 𝜔𝓇 and boundary 𝔉. 

In the next consequences, we demonstrate that the link between the 𝑅𝐵𝐺𝑆 − 𝑆𝑒𝑛𝑠𝑜𝑟𝑠 problem  and �̅�𝓇𝐺𝑆 −

𝑆𝑒𝑛𝑠𝑜𝑟𝑠. 

Proposition 3.8:  

(I) If the couples ( 𝒟𝑖 ,  𝑓𝑖)1 ≤ 𝑖 ≤ 𝑞 are �̅�𝓇𝐺𝑆 − 𝑆𝑒𝑛𝑠𝑜𝑟𝑠 in 𝐴𝐷𝑃𝐷 −  𝑆𝑦𝑠𝑡𝑒𝑚, then, there are 𝑅𝐵𝐺𝑆 − 𝑆𝑒𝑛𝑠𝑜𝑟𝑠. 

(II) If the 𝐴𝐷𝑃𝐷 −  𝑆𝑦𝑠𝑡𝑒𝑚 is 𝐸�̅�𝓇𝐺 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒 then, the couples ( 𝒟𝑖 ,  𝑓𝑖)1 ≤ 𝑖 ≤ 𝑞 then, there are 𝑅𝐵𝐺𝑆 −

𝑆𝑒𝑛𝑠𝑜𝑟𝑠. 

Remark.3.9: As of the preceding outcomes, then, we have: 

(I) If the 𝐴𝐷𝑃𝐷 −  𝑆𝑦𝑠𝑡𝑒𝑚 is 𝐸�̅�𝓇𝐺 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒, then it is 𝐸𝑅𝐵𝐺 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒 , 𝑖. 𝑒., ∃ 𝒳�̅�𝓇𝛻𝒦
∗: 𝕐 → (𝐻1(𝜔𝓇))

𝑛 

an operator given by  

          𝐻�̅�𝓇 𝒴(. , 𝓉) = 𝒳�̅�𝓇𝛻𝒦
∗𝒴(. , 𝓉) = 𝒳�̅�𝓇ℜ�̅�( 𝜁, 𝓉 ).  

Hence,  

          𝒳𝔉 (𝛾𝒳�̅�𝓇𝛻𝒦
∗𝒴(. , 𝓉)) = 𝓌( 𝜁, 𝓉 ). 

where 𝓌( 𝜁, 𝓉 ) ∈ (𝐻1/2(𝔉))𝑛 and  �̅�( 𝜁, 𝓉 ) be an extension to (𝐻1/2(𝜕℧))𝑛. 

(II) If the 𝐴𝐷𝑃𝐷 −  𝑆𝑦𝑠𝑡𝑒𝑚 is 𝑊�̅�𝓇𝐺 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒, then it is 𝑊𝑅𝐵𝐺 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒. 

(III) An development of the outcomes can be employed for diverse issues of 𝑅𝐺- 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑖𝑙𝑖𝑡𝑦 [5, 29], and to 

the 𝑅𝐵𝐺 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ) of asymptotic reduced case in 𝐴𝐷𝑃𝐷 −  𝑆𝑦𝑠𝑡𝑒𝑚s [7].   

4.Applications Of Some Sensor Locations  

This part is devoted to the application of these outcomes for 𝐴𝐷𝑃𝐷 −  𝑆𝑦𝑠𝑡𝑒𝑚 described in ℧ =

] 0,  𝒶 1[ × ] 0, 𝒶2 [, via the form 
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{
 
 

 
 
𝜕𝓌

𝜕𝓉
(𝜁1, 𝜁2, 𝓉) =

𝜕2𝓌

𝜕𝜁1
2 (𝜁1, 𝜁2, 𝓉) +

𝜕2𝓌

𝜕𝜁2
2 (𝜁1, 𝜁2, 𝓉) +𝓌(𝜁1, 𝜁2, 𝓉)        Π𝒯

𝓌(𝜁1, 𝜁2, 0) = 𝓌0(𝜁1, 𝜁2)                                                                            ℧̅
𝜕𝓌

𝜕𝑣
(𝜇1, 𝜇2, 𝓉) = 0                                                                                         Ξ𝒯

                        (13) 

where 𝔉 = ] 0, 𝒶2 [ ,   × { 𝒶2 } or 𝔉 = { 𝒶1 } × ] 0, 𝒶2 [, the eigenfunctions  of the system (13) is given by 

          𝜑𝑛𝑚( 𝜁1, 𝜁 2) =
2

√𝒶1𝒶2
cos𝑛𝜋

𝜁1

𝒶1
cos𝑚𝜋

𝜁2

𝒶2
                                                                        (14) 

associated with eigenvalues 

          𝜆𝑛𝑚 = −
𝑛2𝜋2

𝒶1
2 −

𝑚2𝜋2

𝒶2
2  , 𝑛,𝑚 ≥ 1                                                                                      (15) 

If we assume that  𝒶1
2 𝒶2

2⁄ ∉ 𝒬, and hence 𝜆𝑛𝑚 is the multiplicity of 𝑟𝑛𝑚 = 1. Consequently the couple ( 𝒟, 𝑓 ) may 

be enough to realize  𝑅𝐵𝐺 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑖𝑙𝑖𝑡𝑦  of the observed 𝐴𝐷𝑃𝐷 −  𝑆𝑦𝑠𝑡𝑒𝑚 as in [3-6] . Now, in the following 

outcomes give information on the location of (pointwise and zone) 𝑅𝐵𝐺𝑆 − 𝑆𝑒𝑛𝑠𝑜𝑟𝑠.                                                                                                     

 𝟒. 𝟏 Sensor of Zone Type 

This sub-section will be devoted to study the subsequent cases. 

 𝟒. 𝟏. 𝟏. Case Figure3 

Take into consideration the 𝐴𝐷𝑃𝐷 −  𝑆𝑦𝑠𝑡𝑒𝑚 (13) with the measurement equation (2) which is formulated via  

          𝒴(𝓉) = ∫ 𝓌
𝒟

(𝜁1, 𝜁2, 𝓉)𝑓(𝜁1, 𝜁2)𝑑𝜁1𝑑𝜁2                                                                         (16)          

with the couple ( 𝒟, 𝑓 )  sensor of type zone is placed in the domain ℧, done the supports 

𝒟 = ]𝜁1 − ℓ1, 𝜁1 + ℓ1[  ×  ]𝜁2 − ℓ2, 𝜁2 + ℓ2[ ∈ ℧  as in (𝐅𝐢𝐠𝐮𝐫𝐞𝟑). 

 

𝐅𝐢𝐠. 𝟑: Internal zone sensor 𝒟. 

Then, we have the subsequent consequence.  

Proposition 4.1׃ If 𝑓 satisfies symmetry property with around to 𝜁 = ( 𝜁1, 𝜁2 ), so the couple ( 𝒟, 𝑓 ) is 𝑅𝐵𝐺𝑆 −

𝑆𝑒𝑛𝑠𝑜𝑟 in 𝔉 = ] 0, 𝒶2 [ × { 𝒶2 } for the 𝐴𝐷𝑃𝐷 −  𝑆𝑦𝑠𝑡𝑒𝑚 (13− 16) , if  

          
𝑛0𝜁1

𝒶1
  and  

𝑚0𝜁2

𝒶2
∈ 𝒬, for all  𝑛0, 𝑚0 = { 1, … , 𝐽 }.  

 𝟒. 𝟏. 𝟐 Boundary Zone Case 

We discuss this case as the follows ׃ 

 𝟏.Case of Figure3 

In this case, where 𝔉0 = [ 𝜇10 − ℓ1, 𝜇10 + ℓ1 ] × { 𝒶2 }  is the support of the boundary sensor and 𝑓 ∈ ℒ2(𝔉0) as in 

(Figure4),  
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𝐅𝐢𝐠. 𝟒: One side boundary zone sensor 𝔉0. 

The measurements are shown by the output function 

          𝒴(𝓉) = ∫
𝜕𝓌

𝜕𝑣𝔉0
(𝜇1, 𝜇2, 𝓉)𝑓(𝜇1, 𝜇2)𝑑𝜇1𝜇2                                                                   (17)  

Then, we arrive to the result׃  

Proposition 4.2:  

Assume that the sensors ( 𝔉0, 𝑓 ) are located on  𝔉0 ⊂ 𝜕℧ and 𝑓 is symmetric with respect to 𝜇1 = 𝜇10 , then the 

couple ( 𝔉0, 𝑓 ) is 𝑅𝐵𝐺𝑆 − 𝑆𝑒𝑛𝑠𝑜𝑟 in 𝔉 = {𝑎1} ×]0, 𝑎2[ ⊂ 𝜕℧ for the 𝐴𝐷𝑃𝐷 −  𝑆𝑦𝑠𝑡𝑒𝑚 (13 − 17) ,, if 

          
𝑛𝜇10

𝒶1
∉ 𝒬, for all  𝑛 = { 1, … , 𝐽 } . 

 𝟐.Figure5 case 

In this case, where  �̅� ⊂ 𝜕℧ is the support of the boundary sensor and 𝑓 ∈ ℒ2(�̅�)  as in (𝐅𝐢𝐠𝐮𝐫𝐞𝟓).  

 

𝐅𝐢𝐠. 𝟓: Both sides boundary zone sensor 𝔉.̅ 

Now, 𝔉 = {𝑎1} ×]0, 𝑎2[ ⊂ 𝜕℧  is the observed region and the measurements are shown by the output 

         𝒴(𝓉) = ∫
𝜕𝓌

𝜕𝑣�̅�
(𝜇1, 𝜇2, 𝓉)𝑓(𝜇1, 𝜇2)𝑑𝜇1𝜇2                                                                         (18)  

Then, we reach to the subsequent consequence.   

Proposition4.3:  

Suppose that ( �̅�, 𝑓 )  to be the situated sensors on  �̅� = �̅�1 ∪ �̅�2 = [ 0,  �̅�10 + ℓ1 ] × { 0 } ∪ { 0 } × [ 0, �̅�20 + ℓ2 ] ⊂

𝜕℧ and 𝑓|�̅�1
 is symmetric around to  �̅�1 = �̅�10  and 𝑓|�̅�2

 is symmetric around to �̅�2 = �̅�20,, then the couple  ( �̅�, 𝑓 ) 

is 𝑅𝐵𝐺𝑆 − 𝑆𝑒𝑛𝑠𝑜𝑟 on  �̅� for the 𝐴𝐷𝑃𝐷 −  𝑆𝑦𝑠𝑡𝑒𝑚 (13 − 18), if 

          
𝑛�̅�10

𝒶1
  and  

𝑚�̅�20

𝒶2
∉ 𝒬, for all  𝑛,𝑚 = { 1, … , 𝐽 }, 

This indicates that the (𝑅𝐵𝐺 − 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑖𝑙𝑖𝑡𝑦) relies on the sensors support shape and measurements equation.  

 𝟒. 𝟐 Sensor of Pointwise type 

This sub-section is devoted for discussing and describing the  𝑅𝐵𝐺𝑆 − 𝑆𝑒𝑛𝑠𝑜𝑟 on 𝔉 for the 𝐴𝐷𝑃𝐷 − 𝑆𝑦𝑠𝑡𝑒𝑚 

indifferent situations. 

 𝟒. 𝟐. 𝟏.Internal Pointwise Sensor 

In this situation, we have two cases: 
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 (𝐈) Pointwise case: 

The output equation described by  

          𝒴(𝓉) = ∫ 𝓌
℧

( 𝜁1, 𝜁2, 𝓉 )𝛿( 𝜁1 − 𝔟1, 𝜁2 − 𝔟2 )𝑑𝜁1𝑑𝜁2                      (19) 

where 𝔟 = (𝔟1, 𝔟2) is the sensor pointwise position in ℧ = [ 0, 𝒶1 ] × [ 0, 𝒶2 ]  as defined in (𝐅𝐢𝐠𝐮𝐫𝐞𝟔). 

 

𝐅𝐢𝐠. 𝟔: Internal pointwise sensor b. 

Proposition 4.4: If  𝑛𝔟1 𝒶1⁄   and  𝑚𝔟2 𝒶2⁄ ∉ 𝒬, for all  𝑛,𝑚 = { 1, … , 𝐽 }, then the couple  (𝔟, 𝛿𝔟) is 𝑅𝐵𝐺𝑆 − 𝑆𝑒𝑛𝑠𝑜𝑟 

on 𝔉 = ] 0, 𝒶2 [ × { 𝒶2 } for the 𝐴𝐷𝑃𝐷 − 𝑆𝑦𝑠𝑡𝑒𝑚 (13− 19).  

(𝑰𝑰) Filament case: 

Deliberate the case where the measurement information is given via the curve  𝛽 = 𝐼𝑚 (𝜌) such that 𝜌 𝜖 ℂ1(0, 1) 
(𝐅𝐢𝐠𝐮𝐫𝐞𝟕). 

 

𝐅𝐢𝐠. 𝟕: Internal filament sensor β. 

Proposition 4.5: Assume that the 𝛽 satisfy summitry property around  line filament   𝔟 = ( 𝔟1, 𝔟2 ),  if 

 𝑛𝔟1 𝒶1⁄  and   𝑚𝔟2 𝒶2⁄ ∉ 𝒬, for all  𝑛,𝑚 = { 1, … , 𝐽 }, then the couple (𝛽, 𝛿𝜌)  is 𝑅𝐵𝐺𝑆 − 𝑆𝑒𝑛𝑠𝑜𝑟 on 𝔉 =

] 0, 𝒶2 [ × { 𝒶2 } for the 𝐴𝐷𝑃𝐷 − 𝑆𝑦𝑠𝑡𝑒𝑚 (13 − 19).   

 𝟒. 𝟐. 𝟐.Boundary Pointwise Sensor 

Assume  that  the  sensor (𝔟,  𝛿𝔟 )  is placed  on  𝔟,  where  𝔟 = ( 𝔟1, 𝔟2 ) ∈ 𝜕℧  such that 

 𝔟 = ( 0, 𝔟2 ) by way of (𝐅𝐢𝐠𝐮𝐫𝐞𝟖 ). 

 

𝐅𝐢𝐠. 𝟖: Boundary pointwise sensor 𝔟. 

The output function is got by   

          𝒴(𝓉) = ∫ 𝓌( 𝜇1, 𝜇2, 𝓉 )𝛿( 0, 𝜇2 − 𝔟2 ) 𝑑𝜇1𝑑𝜇2𝜕℧
                                                           (20) 

Therefore, we acquire the subsequent outcomes.  
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Proposition 4.6:  

The couple (𝛽, 𝛿𝜌)  is 𝑅𝐵𝐺𝑆 − 𝑆𝑒𝑛𝑠𝑜𝑟 on 𝔉 = ] 0, 𝒶2 [ × { 𝒶2 } for the 𝐴𝐷𝑃𝐷 − 𝑆𝑦𝑠𝑡𝑒𝑚 (13 − 20), if   
𝑚𝔟2

𝒶2
∉ 𝒬, for 

all  𝑚 = { 1, … , 𝐽 }. 

Conclusions 

This work has been tackled RBGS- sensors concept  for the ADPD-System under which situation accomplishes 

the unknown gradient of the initial state. Additionally the associations of WRBG- observability and ERBG- 

observability notions have been deliberated and examined in a region 𝔉. So, for DDP-Systems in HS, many 

remarkable consequences concerning the choice of sensor constructing which are demonstrated  in discreet 

results. Finally, we have specified that there is a linking between the RBGS- sensor with number, sensors 

characters and related domains. Many complications are not treated, the likelihood to develop these outcomes 

to the case of HS in quasi forms. 
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