DOI: https://doi.org/10.24297/jam.v20i. 8929

Coincidence points in $\boldsymbol{\theta}$-metric spaces

Maha Jawad Mousa I ${ }^{1}$, Salwa Salman Abed II ${ }^{2}$
${ }^{1}$ Ministry of Education, School Shamsalmarifa, Baghdad, Iraq.
${ }^{2}$ Department of mathematics, College of Education for pure science Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq.

Abstract

In this paper, inspired by the concept of metric space, two fixed point theorems for $\boldsymbol{\alpha}$-set-valued mapping $T: A \rightarrow \boldsymbol{C B}(A), \mathrm{h}_{\boldsymbol{\theta}}(T p, T q) \leq \boldsymbol{\alpha}(d \theta(p, q)) d \theta(p, q)$, where $\boldsymbol{\alpha}:(0, \infty) \rightarrow(0,1]$ such that $\left.\boldsymbol{\alpha}(\boldsymbol{r})<1, \forall t \in[0, \infty)\right)$ are given in complete $\boldsymbol{\theta}$-metric and then extended for two mappings with \boldsymbol{R}-weakly commuting property to obtain a common coincidence point.

Keywords: Generalized metric space, non-commuting mappings, coincidence points.

1. Introduction and preliminaries

Bakhtin [1] defined the b-metric space as a generalization of a usual metric space and proved analogue of Banach's contraction principle. Then several articles have contained fixed points results in this space and its generalizations (e.g. see [1-7] and their references). Kamran, Samreen and Ain [8] introduced θ-metric space as an extended to b-metric space and established some fixed points results. Very recent results in this space will appear to the researcher Albundi [9].

Here, the coincidence point results for four mappings. Firstly, start with the following definition [4]:
"Let: $A \neq \emptyset$ and $\theta: A \times A \rightarrow[1, \infty)$ and $d_{\theta}: A \times: A \rightarrow[0, \infty)$ be functions. If the following hold $\forall p, q, \in A$:
$\left(d_{\theta} 1\right) d_{\theta}(p, q)=0$ iff $p=q$
$\left(d_{\theta} 2\right) d_{\theta}(p, q)=d_{\theta}(q, p)$
$\left(d_{\theta} 3\right) d_{\theta}(p, r) \leq \theta(p, r)\left[d_{\theta}(p, q)+d_{\theta}(q, r)\right]$.
Then (A, d_{θ}) is called θ-metric space"
Remark 1.1. If $\theta(p, q)=s$ for $s \geq 1$, then we obtain the definition of a b-metric space.
Example 1.2. If: $A=\{1,2,3\}$, and $\theta: X \times X \rightarrow[1, \infty)$. A function $d_{\theta}: A \times A \rightarrow[0, \infty)$ as:

$$
\theta(p, q)=1+p+q
$$

$d_{\theta}(1,1)=d_{\theta}(2,2)=d_{\theta}(3,3)=0$
$d_{\theta}(1,2)=d_{\theta}(2,1)=80, d_{\theta}(1,3)=d_{\theta}(3,1)=1000, d_{\theta}(2,3)=d_{\theta}(3,2)=600$.
Example 1.3." Let $A=([p, q])$ be the space of all continuous real valued functions define on $[p, q]$. Note that A is complete extended b-metric space by considering $d_{\theta}(p, q)=\sup _{t \in[\mathrm{p}, \mathrm{q}]}|p(t)-q(t)|^{2}$, with $\theta(p, q)=$ $|p(t)-q(t)|+2$, where $\theta: A \times A \rightarrow[1, \infty)^{\prime \prime}[4]$.

Definition 1.4 [8]: "Let $\left(A, d_{\theta}\right)$ is a θ-metric space and a sequence $\left\{p_{n}\right\}$ in A is said to be:
i.Cauchy if and only if $d_{\theta}\left(p_{n}, p_{m}\right) \rightarrow 0$ as $m, n \rightarrow \infty$.
ii.Converges to a point $p \in \notin$ if $d_{\theta}\left(p_{n}, p\right) \rightarrow 0$ as $n \rightarrow \infty$ and we write $\lim _{n \rightarrow \infty} p_{n}=p$.

A θ-metric space is complete if every Cauchy sequence A is convergent to q in $A^{\prime \prime}$.
Let $2^{A}=\{A: \emptyset \neq A \subset \nexists\}$,
$C B(X)=\{A: A$ is a nonempty bounded closed subsets of $A\}$.
"For $p \in A$ and $A \subseteq X, d_{\theta}(p, A)=\inf \left\{d_{\theta}(p, q): q \in A\right\}$. Let h_{θ} be the θ-Hausdorff distance [8] with respect to d_{θ}, that is,

$$
h_{\theta}(A, B)=\max \left\{d_{\theta}(p, B), d_{\theta}(q, A)\right\}^{\prime \prime} .
$$

Immediately, the following is obtained
Lemma 1.5 [8] "If $A, B \in C B(\nexists)$ and $a \in A$, then $\forall \varepsilon>0, \exists b \in B$ such that

$$
d_{\theta}(a, b) \leq h_{\theta}(A, B)+\varepsilon^{\prime \prime} .
$$

Lemma 1.6 [8] "If $\left\{A_{n}\right\}$ is a sequence in $C B(\nexists)$ and $h_{\theta}\left(A_{n}, A\right)=0$ for $A \in C B(\nexists)$. If $p_{n} \in A_{n}$ and $\lim _{n \rightarrow \infty} d_{\theta}\left(p_{n} p\right)=0$, then $p \in A^{\prime \prime}$.

Definition 1.7. "A set valued mapping $T: A \rightarrow 2^{A}$ is called contraction if $\exists k \in(0,1) \ni$

$$
h_{\theta}(T(p), T(q)) \leq k d_{\theta}(p, q), \forall \quad p, q \in A^{\prime \prime}
$$

Definition 1.8. "A point $p \in A$ is called fixed point of set-valued mapping $T: A \rightarrow 2^{A}$ if $p \in T p$ ".
Definition 1.9. "The mappings $T: A \rightarrow 2^{A}$ and $f: A \rightarrow A$ are coincide at p if $f p \in T p$."
Definition 1.10. [9], [10] "Let A be a θ-metric space, $T: A \rightarrow 2^{A}$ and $f: A \rightarrow A$ be two mappings then i. f and T are called commuting if $f T A \subseteq T f A$.
ii. f and T are called weakly commuting if, $\forall p \in A, f T p \in C B(A)$ and $h_{\theta}(f T p, T f p) \leq d_{\theta}(f p, T p)$.
iii. f and Tare R-weakly commuting if $\forall p \in \neq f T p \in C B(\nexists)$, and $\exists R>0$ such that
$h_{\theta}(T f(p), T f(p)) \leq R d_{\theta}(f(p), T(p))^{\prime \prime}$.
Note the commutativity \Rightarrow weak commutativity $\Rightarrow R$-weakly commutativity. But the converse is not true. The following example illustrate this when $R>1$.

Example 1.11. Consider $A=R$, with $d_{\theta}=|\quad|$ (the absolute value) then (A, d_{θ}) is θ-metric space with $\theta(t)=2, \forall t$. If $f, g: A \rightarrow A$, are defined by $T(p)=2 p-1, T(p)=p^{2}$. Then

$$
d_{\theta}(f g p, g f p)=2(p-1)^{2}, \quad d_{\theta}(f p, g p)=(p-1)^{2}, \forall p \in A
$$

That is, $d_{\theta}(f g p, g f p)=2 d_{\theta}(f p, g p)$. So, f and g are 2 -weakly commutating but are not weakly commuting.
In the next section, there are a generalization and an extension of some results in [11] and [12].

2. Main Result

We begin with following theorem.
Theorem 2.1. Let A be a complete θ - metric space and $T: A \rightarrow C B(A)$ such that

$$
h_{\theta}(T(p), T(q)) \leq k\left(d_{\theta}(p, q)\right) d_{\theta}(p, q), p, q \in \notin
$$

where k : $(0, \infty) \rightarrow(0,1]$ is a function $\ni \lim \sup _{r \rightarrow t^{+}} \alpha(r)<1$, for $\forall t \in[0, \infty)$. Then, T has a fixed point in A.
Since a function $k:(0, \infty) \rightarrow(0,1]$ such that $\lim \sup _{r \rightarrow t^{+}}(r)<1, \forall t \in[0, \infty)$ is special case of the function $\alpha:(0, \infty) \rightarrow$ $(0,1]$ such that $\alpha(r)<1$, for $\forall t \in[0, \infty)$, so,
A general case which is included in the result below:
Theorem 2.2. Assume (A, d_{θ}) be a complete θ - metric space, and $T: A \rightarrow C B(A)$.
$h_{\theta}(T(p), T(q)) \leq \alpha\left(d_{\theta}(p, q)\right) d_{\theta}(p, q), \forall p, q \in A$,
where α : $(0, \infty) \rightarrow(0,1]$ is a function with $\alpha(r)<1, \forall t \in[0, \infty)$.
Then T has a fixed point in A.
Proof: Suppose $p_{0} \in A$ and $p_{1} \in T\left(p_{0}\right)$. Choose a $n_{1} \in N \ni$

$$
\alpha^{n_{1}}\left(d_{\theta}\left(p_{0}, p_{1}\right) \leq\left\{1-\alpha\left(d_{\theta}\left(p_{0}, p_{1}\right)\right)\right\} d_{\theta}\left(p_{0}, p_{1}\right) .\right.
$$

Choose $p_{2} \in T\left(p_{1}\right)$ with definition of the θ-Hausdorff distance,

$$
d_{\theta}\left(p_{2}, p_{1}\right) \leq h_{\theta}\left(T\left(p_{1}\right), T\left(p_{0}\right)\right)+\alpha^{n_{1}}\left(d_{\theta}\left(p_{0}, p_{1}\right)\right.
$$

Therefore,

$$
d_{\theta}\left(p_{2}, p_{1}\right) \leq \alpha\left(d_{\theta}\left(p_{1}, p_{0}\right)\right) d_{\theta}\left(p_{1}, p_{0}\right)+\alpha^{n_{1}}\left(d_{\theta}\left(p_{0}, p_{1}\right)<d_{\theta}\left(p_{1}, p_{0}\right) .\right.
$$

Now, choose $n_{2} \in N, n_{2}>n_{1} \ni$

$$
\alpha^{n_{2}}\left(\left(d_{\theta}\left(p_{2}, p_{1}\right)\right)<\left\{1-\alpha\left(d_{\theta}\left(p_{2}, p_{1}\right)\right)\right\} d_{\theta}\left(p_{2}, p_{1}\right) .\right.
$$

Since $T\left(p_{2}\right) \in C B(A)$, choose $p_{3} \in T\left(p_{2}\right)$ so

$$
d_{\theta}\left(p_{3}, p_{2}\right) \leq h_{\theta}\left(T\left(p_{2}\right), T\left(p_{1}\right)\right)+\alpha^{n_{2}}\left(d_{\theta}\left(p_{2}, p_{1}\right)\right) .
$$

Then

$$
\begin{aligned}
d_{\theta}\left(p_{3}, p_{2}\right) & \leq h_{\theta}\left(T\left(p_{2}\right), T\left(p_{1}\right)\right)+\alpha^{n_{2}}\left(d_{\theta}\left(p_{2}, p_{1}\right)\right) . \\
& \leq \alpha\left(d_{\theta}\left(p_{2}, p_{1}\right)\right) d_{\theta}\left(p_{2}, p_{1}\right)+\alpha^{n_{2}}\left(d_{\theta}\left(p_{2}, p_{1}\right)\right) \\
& <d_{\theta}\left(p_{2}, p_{1}\right) .
\end{aligned}
$$

Again, for each k with $T(p) \in C B(\nexists)$. Choose $n_{k} \in N \ni$

$$
\alpha^{n_{k}}\left(\left(d_{\theta}\left(p_{k} p_{k-1}\right)\right)<\left\{1-\alpha\left(d_{\theta}\left(p_{k}, p_{k-1}\right)\right)\right\} d_{\theta}\left(p_{k}, p_{k-1}\right) .\right.
$$

Now choose $p_{k+1} \in T\left(p_{k}\right)$ then

$$
d_{\theta}\left(p_{k+1}, p_{k}\right) \leq h_{\theta}\left(T(p), T\left(p_{k-1}\right)\right)+\alpha^{n_{k}}\left(d_{\theta}\left(p_{k}, p_{k-1}\right)\right) .
$$

So, $d_{\theta}\left(p_{k+1}, p_{k}\right)<d_{\theta}\left(p_{k}, p_{k-1}\right)$ then $d_{k \equiv} d_{\theta}\left(p_{k}, p_{k-1}\right)$ is called a monotone non-increasing sequence of nonnegative number.

Now, the sequence $\left\{d_{k}\right\}$ so generated is Cauchy.
Let $\lim _{k \rightarrow \infty} d_{\theta_{k}}=c \geq 0$. By assumption, $\alpha(t)<1$.
Hence $\exists k_{0} \ni k \geq k_{0} \Rightarrow \alpha\left(d_{\theta_{k}}\right)<h$, if $\alpha(t)<h<1$.
Now,

$$
\begin{aligned}
d_{\theta_{k+1}} & =d_{\theta}\left(p_{k+1}, p_{k}\right) \\
& \leq h_{\theta}\left(T\left(p_{k}\right), T\left(p_{k-1}\right)\right)+\alpha^{n_{k}}\left(d_{\theta_{k}}\right) \\
& \leq \alpha\left(d_{\theta_{k}}\right) d_{\theta_{k}}+\alpha^{n_{k}}\left(d_{\theta_{k}}\right) \\
& \leq \alpha\left(d_{\theta_{k}}\right) \alpha\left(d_{\theta_{k-1}}\right) d_{\theta_{k-1}}+\alpha\left(d_{\theta_{k}}\right) \alpha^{n_{k-1}}\left(d_{\theta_{k-1}}\right) \alpha^{n_{k}}\left(d_{\theta_{k}}\right)
\end{aligned}
$$

$\leq \prod_{i=1}^{k}\left(d_{\theta_{i}}\right) d_{\theta_{1}}+\sum_{m=1}^{k-1} \prod_{i=m+1}^{k} \alpha\left(d_{\theta_{i}}\right) \alpha^{n_{m}}\left(d_{\theta_{m}}\right)+\alpha^{n_{k}}\left(d_{\theta_{k}}\right)$
$\leq \prod_{i=1}^{k}\left(d_{\theta_{i}}\right) d_{\theta_{1}}+\sum_{m=1}^{k-1} \prod_{i=\max \left\{k_{0}, m+1\right\}}^{k} \alpha\left(d_{\theta_{i}}\right) \alpha^{n_{m}}\left(d_{\theta_{m}}\right)+\alpha^{n_{k}}\left(d_{\theta_{k}}\right) \equiv A$.
From above inequality, we benefited by the fact that $\alpha<1$ to delete some α factors from the product.
Now

$$
\begin{aligned}
& \sum_{m=1}^{k-1} \prod_{i=\max \left\{k_{0}, m+1\right\}}^{k} \alpha\left(d_{\theta_{i}}\right) \alpha^{n_{m}}\left(d_{\theta_{m}}\right) \leq\left(k_{0}-1\right) h^{k-k_{0}+1} \sum_{m=1}^{k_{0}-1} \alpha^{n_{m}}\left(d_{\theta_{m}}\right) \\
& \quad+\sum_{m=1}^{k_{0}-1} h^{k-m} \alpha^{n_{m}}\left(d_{\theta_{m}}\right) \\
& \quad \leq\left(k_{0}-1\right) h^{k-k_{0}+1} \sum_{m=1}^{k_{0}-1} \alpha^{n_{m}}\left(d_{\theta_{m}}\right)++\sum_{m=k_{0}}^{k-1} h^{k-m+n_{m}}
\end{aligned}
$$

$$
\begin{aligned}
& \leq C h^{k}+\sum_{m=k_{0}}^{k-1} h^{k-m_{n_{m}}} \\
& \leq C h^{k}+h^{k+n_{k_{0}}-k_{0}}+h^{k+n_{k_{0}-1}-\left(k_{0}-1\right)}+\ldots+h^{k+n_{k-1}-(k-1)} \\
& \leq C h^{k}+\sum_{m=k+n_{k_{0}-k_{0}}^{k+n_{k-1}-(k-1)} h^{m}}^{=C h^{k}+\frac{h^{k+n_{k_{0}}-k_{0}+1}-h^{k+n_{k-1}-k+2}}{1-h}} \\
& =C h^{k}+h^{k} \frac{h^{n_{k_{0}-k_{0}+1}}}{1-h} \\
& =C h^{k}
\end{aligned}
$$

where $C>0$. Now,

$$
\begin{aligned}
A & \leq \prod_{i=1}^{k} \alpha\left(d_{\theta_{i}}\right) d_{\theta_{1}}+C h^{k}+\alpha^{n_{k}}\left(d_{\theta_{k}}\right) \\
& <h^{k-k_{0}+1} \prod_{i=1}^{k_{0}-1} \alpha\left(d_{\theta_{i}}\right) d_{\theta_{1}}+C h^{k}+h^{n_{k}} \\
& <C h^{k}+C h^{k}+h^{k} \\
& =C h^{k},
\end{aligned}
$$

C is a generic constant. If $k \geq k_{0}, m \in N$, so $\left\{x_{k}\right\}$ is Cauchy.

$$
d_{\theta}\left(\mathrm{p}_{k}, \mathrm{p}_{k+m}\right) \leq d_{\theta}\left(\mathrm{p}_{k}, \mathrm{p}_{k+1}\right)+\ldots+d_{\theta}\left(\mathrm{p}_{k+m-1}, \mathrm{p}_{k+m}\right)
$$

$$
\begin{aligned}
& =\sum_{i=k+1}^{k+m} d_{\theta_{i}} \\
& <\sum_{i=k+1}^{k+m} C h^{i-1} \\
& =C \frac{h^{k+1}-h^{k+m}}{1-h} \\
& \leq h^{k},
\end{aligned}
$$

which tends to zero as $k \rightarrow \infty$. Let $p_{k} \rightarrow \in A$, so

$$
\begin{aligned}
d_{\theta}(p, T(p)) & \leq d_{\theta}\left(p, p_{k}\right)+d_{\theta}\left(p_{k}, T(p)\right) \\
& \leq d_{\theta}\left(p, p_{k}\right)+\alpha\left(d_{\theta}\left(p_{k-1}, p\right)\right) d_{\theta}\left(p_{k-1}, p\right) .
\end{aligned}
$$

From above expression, both terms tent to zero as $k \rightarrow \infty$, then $p \in\left(p_{\mathrm{k}}\right)$.

$$
\begin{aligned}
& d_{\theta}(T(p), p) \leq\theta(T(p), p))\left[d_{\theta}\left(T(p), p_{n}\right)+d_{\theta}\left(p_{n} p\right)\right] . \\
& \leq 0 \text { as } k \rightarrow \infty
\end{aligned}
$$

So,

$$
\begin{aligned}
& d_{\theta}(T(p), p) \leq \theta(T(p), p)\left[k d_{\theta}\left(p, p_{n-1}\right)+d_{\theta}\left(p_{n}, p\right)\right] \\
& d_{\theta}(T(p), p)=0
\end{aligned}
$$

Hence p is called a fixed point in T.
Theorem 2.3. Let A be a complete θ-metric space, if $f, g: A \rightarrow A$, and $H, J: A \rightarrow C B(A)$ are continuous mappings $\ni H A \subseteq g A$, and $J A \subseteq f A$ such that

$$
\begin{equation*}
h_{\theta}(H p, J q) \leq \alpha\left(d_{\theta}(g p, f q)\right) d_{\theta}(g p, f q), p, q \in A \tag{1}
\end{equation*}
$$

where $\alpha:(0, \infty) \rightarrow(0,1] \ni \lim \sup _{r \rightarrow t}+\alpha(r)<1$, for $\forall t \in[0, \infty)$. If (g, J) and (f, H) are R-weakly commuting. Then g, H and f, J have a common coincidence point.

Proof: We organize sequences $\left\{p_{n}\right\},\left\{q_{n}\right\}$, and $\left\{A_{n}\right\}$ in X and $C B(X)$. Let $p_{0} \in A$, and $q_{0}=f p_{0}$.
Since $H p_{0} \subseteq g \nsubseteq, \exists p_{1} \in A \ni q_{1}=g p_{1} \in H p_{0}=A_{0}$. Select $n_{1} \in N \ni$
$\alpha^{n_{1}}\left(\left(d_{\theta}\left(q_{0}, q_{1}\right)\right)<\left\{1-\alpha\left(d_{\theta}\left(q_{0}, q_{1}\right)\right)\right\} d_{\theta}\left(q_{0}, q_{1}\right)\right.$.

By Lemma 1.5 and $J A \subseteq f A, \exists q_{2}=f \mathrm{p}_{2} \in J p_{1}=A_{1} \ni$

$$
\begin{equation*}
d_{\theta}\left(q_{2}, q_{1}\right) \leq h_{\theta}\left(A_{1}, A_{0}\right)+\alpha^{n_{1}}\left(\left(d_{\theta}\left(q_{0}, q_{1}\right)\right) .\right. \tag{3}
\end{equation*}
$$

From (1) and (2) $\Rightarrow d_{\theta}\left(q_{2}, q_{1}\right)<d_{\theta}\left(q_{0}, q_{1}\right)$. Now select $n_{2} \in N \ni n_{2}>n_{1}$ such that

$$
\begin{equation*}
\alpha^{n_{2}}\left(\left(d_{\theta}\left(q_{2}, q_{1}\right)\right)<\left\{1-\alpha\left(d_{\theta}\left(q_{2}, q_{1}\right)\right)\right\} d_{\theta}\left(q_{2}, q_{1}\right) .\right. \tag{4}
\end{equation*}
$$

By Lemma 1.5 and $H A \subseteq g A X$, implies that $q_{3}=g p_{3} \in H p_{2}=A_{2} \ni$

$$
\begin{equation*}
d_{\theta}\left(q_{3}, q_{2}\right) \leq h_{\theta}\left(A_{2}, A_{1}\right)+\alpha^{n_{2}}\left(\left(d_{\theta}\left(q_{2}, q_{1}\right)\right) .\right. \tag{5}
\end{equation*}
$$

So, (1) and (4) $\Rightarrow d_{\theta}\left(q_{3}, q_{2}\right)<d_{\theta}\left(q_{2}, q_{1}\right)$.
Now, by induction, getting $\left\{p_{n}\right\},\left\{q_{n}\right\}$ in A and $\left\{A_{n}\right\}$ in $C B(A) \ni$

$$
\begin{align*}
& q_{2 \mathrm{k}+1}=g q_{2 \mathrm{k}+1} \in H p_{2 \mathrm{k}}=A_{2 \mathrm{k},} \quad q_{2 \mathrm{k}}=f p_{2 \mathrm{k}} \in J p_{2 \mathrm{k}-1}=A_{2 \mathrm{k}-1} \tag{6}\\
& d_{\theta}\left(q_{2 \mathrm{k}+1}, q_{2 \mathrm{k}}\right) \leq h_{\theta}\left(A_{2 \mathrm{k},} A_{2 \mathrm{k}-1}\right)+\alpha^{n_{k}}\left(\left(d_{\theta}\left(q_{2 \mathrm{k},} q_{2 \mathrm{k}-1}\right)\right) .\right. \tag{7}
\end{align*}
$$

where

$$
\begin{equation*}
\alpha^{n_{2 k}}\left(\left(d_{\theta}\left(q_{2 \mathrm{k}}, q_{2 \mathrm{k}-1}\right)\right)<\left\{1-\alpha\left(d_{\theta}\left(q_{2 \mathrm{k}}, q_{2 \mathrm{k}-1}\right)\right)\right\} d_{\theta}\left(q_{2 \mathrm{k}}, q_{2 \mathrm{k}-1}\right) .\right. \tag{8}
\end{equation*}
$$

So, $d_{\theta}\left(q_{2 \mathrm{k}+1}, q_{2 \mathrm{k}}\right)<d_{\theta}\left(q_{2 \mathrm{k}}, q_{2 \mathrm{k}-1}\right), \forall k$.
So, the real sequence $\left\{d_{\theta}\left(q_{2 \mathrm{k}+1}, q_{2 \mathrm{k}}\right)\right\}$ is monotone non-increasing.
As proof of Theorem 2.1, $\left\{q_{n}\right\}$ is Cauchy sequence in A.
Moreover, (1) implies that $\left\{A_{n}\right\}$ is a Cauchy sequence in $C B(\nexists)$. If Ais complete then is $C B(\nexists)$. Thus, when $q_{n} \rightarrow r$ and $A_{n} \rightarrow A, \exists r \in X$ and $A \in C B(A)$. So, $g p_{2 \mathrm{k}+1} \rightarrow r$ and $f p_{2 \mathrm{k}} \rightarrow r$. Since

$$
\begin{equation*}
d_{\theta}(r, A)=d_{\theta}\left(q_{n}, A_{n}\right) \leq \lim _{n \rightarrow \infty} h_{\theta}\left(A_{n-1}, A_{n}\right)=0 \tag{9}
\end{equation*}
$$

By Lemma 1.6, $r \in A$. Also

$$
\begin{equation*}
\lim _{k \rightarrow \infty} f p_{2 \mathrm{k}}=r \in A=\lim _{k \rightarrow \infty} H p_{2 \mathrm{k},} \quad \lim _{k \rightarrow \infty} g p_{2 \mathrm{k}+1}=r \in A=\lim _{k \rightarrow \infty} J p_{2 \mathrm{k}-1} \tag{10}
\end{equation*}
$$

By (6) and R-weak commutativity of (g, J) and (f, H), we obtain

$$
\begin{align*}
& d_{\theta}\left(g f p_{2 \mathrm{k}+2,} f g p_{2 \mathrm{k}+1}\right) \leq h_{\theta}\left(g J p_{2 \mathrm{k}+1}, J g p_{2 \mathrm{k}+1}\right) \leq R d_{\theta}\left(g p_{2 \mathrm{k}+1,} J p_{2 \mathrm{k}+1}\right), \\
& d_{\theta}\left(f g p_{2 \mathrm{k}+1}, H f p_{2 \mathrm{k}}\right) \leq h_{\theta}\left(f H p_{2 \mathrm{k},} H f p_{2 \mathrm{k}}\right) \leq R d_{\theta}\left(f p_{2 \mathrm{k},} H p_{2 \mathrm{k}}\right) \tag{11}
\end{align*}
$$

Then, the continuity of f, g, J and H give $\in J r$ and $f r \in H r$. The proof is complete.
If we set $J=H$ and $f=g$ in Theorem (2.2), the following corollary.
Corollary 2.4. If A be a complete θ-metric space and $f: A \rightarrow A, T: A \rightarrow C B(A)$ are continuous mappings $\ni T A \subseteq f A$ such that

$$
h_{\theta}(T p, T q) \leq \alpha\left(d_{\theta}(f p, f q)\right) d_{\theta}(f p, f q), p, q \in A
$$

where $\alpha:(0, \infty) \rightarrow(0,1] \ni \lim \sup _{r \rightarrow t^{+}} \alpha(r)<1, \forall t \in[0, \infty)$ and. If f, T are called R-weakly commuting. Then f, T have a coincidence point.

Our results are generalization and an extension of the results in [11] and [12].

References

1. Bakhtin, I. (1989). The contraction mapping principle in quasimetric spaces. Func. An., Gos. Ped. Inst. Unianowsk, 30, 26-37.
2. George, R., \& Fisher, B. (2013). Some generalized results of fixed points in cone b-metric spaces. Mathematica Moravica, 17(2), 39-50.
3. Aydi, H., Bota, M. F., Karapinar, E., \& Moradi, S. (2012). A common fixed point for weak φ-contractions on bmetric spaces. Fixed Point Theory, 13(2), 337-346.
4. Kamran, T., Samreen, M., \& UL Ain, Q. (2017). A generalization of b-metric space and some fixed point theorems. Mathematics, 5(2), 19.
5. Abed, S. S. (2018). Fixed Point Principles in General b-Metric Spaces and b-Menger Probabilistic spaces. Journal of AL-Qadisiyah for computer science and mathematics, 10(2), Page-42.
6. Abed, S. S., Jabbar, H. A. (2017). Two theorems in general metric space with ρ-distance, JAM, Vol. 12 No . 1 2.
7. Abed, S. S., Jabbar, H. A. (2017). A fixed point theorem via -distance with an application, Conf. 23 College of education, AL-Mustansiriya.
8. Albundi, Sh. S., Iterative function system in \emptyset-metric spaces, accepted in bspm.
9. Joshi, B., Padaliya, S. K., \& Pandey, N. K. (2018). Some common fixed point theorems for contractive maps and applications. Filomat, 32(10), 3751-3758.
10. Shoaib, M., Sarwar, M., \& Abdeljawad, T. (2019). Hybrid Coupled Fixed Point Theorems in Metric Spaces with Applications. Journal of Function Spaces, 2019.
11. Daffer, P. Z., \& Kaneko, H. (1995). Fixed points of generalized contractive multi-valued mappings. Journal of Mathematical Analysis and Applications, 192(2), 655-666.
12. PANTT, R. (1994). Common fixed points of noncommuting mappings.
