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Abstract

In this paper, we introduce the notion of generalized symmetric (f, g)-biderivations on lattices, also some
properties of generalized symmetric (f, g)- biderivations we studies.
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1. Introduction

Lattices play an important role in many different domains such as information theory, information retrieval,
information access controls and cryptanalysis [see1,2,5,11].

In ring theory, the properties of derivations are very consequential topic to studying, many researchers study
the derivation theory on different algebraic structures, lately the notion of derivations displayed in ring and near
rings has been studies by various researchers in contextually of lattices [see 1,7,9,10,13,15].

The notion of symmetric bi-derivations, generalized symmetric bi — derivations, symmetric f-biderivations and
symmetric (f, g) — biderivations in latticesare studies and proved some results [3,6,7], Y. ceven introduced the
notion of symmetric bi-derivations and generalized symmetric bi derivations of lattices [ see 14,15] .

In this paper , we introduce the notion of generalized symmetric (f, g)- biderivations ,which more commonalty
than the notion of generalized symmetric bi- derivations and symmetric (f, g)- biderivations in lattices which
is introduced in [see 3,6] , also we give some interesting results about generalized symmetric (f, g)-
biderivations of lattices , we apply the notions to lattices and looking for some related properties which are
discussed in [ see 6, 8] .

2. Preliminaries

Definition 2.1[6]: Let L be anon-empty set endowed with operations A andv , then (L ,A,V) is called a lattice
if it satisfying the following conditions for all x,y,z € L

(MDxAx=x,xVx=x

({DxAy=yAx ,xVy=yVx

(i) (xAYAz=xAyAz) ,(xVy)Vz=xV (yV2)
((v)xAY)Vx=x ,(xVY)Ax =x

Definition 2.2[4]: A lattice (L ,A,V) is called distributive lattice if one of the following identities hold for all (L ,A
,V)

W) xANYV2)=xXAY)V(xA2)
i) xviynz)=(xVy)A(xVz)

Remark 2.3 [8]: In any lattice , the properties (v) and (vi) are equivalent .
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Definition 2.4[4]: let (L ,A,V) be a lattice, a binary relation < on L is defined by

x<yifandonlyifxAy=xandxvy=y

Definition 2.5 [6]: A lattice (L ,A,V) is called modular if for x,y,z € L satisfies the following condition :
(ii) if x <yimplies xV(yAz)=(xVy)Az

Lemma 2.6 [8]: let (L ,A,V) be a lattice, let the binary relation < be as in definition 2.4, then (L, <) is partially
ordered set (poset) and forany x,y € L , x Ay is the g.l.b of {x,y}and x vy is the L.u b. of {x,y}.

Definition 2.7[15] : let (L ,A,V) be a lattice , a mapping D(.,.):L XL — L is called symmetric if D(x,y) =
D(y,x) forallx,yelL.

Definition 2.8[15]: let (L ,A,V) be a lattice, a mapping d: L — L defined by d(x) = D(x, x) is
called the trace of D(..,.) .where D(.,.): L X L — L is symmetric mapping .

Definition 2.9[15] : let (L ,A,V) be a lattice , a mapping D(.,.): L X L — L is called symmetric bi derivation
onlL if

D(xAy,z) = (D(x,2)Ay)V (x AD(y,2))
forallx,y,z€eL.
obviously, a symmetric biderivation on L satisfies the relation
D(x,yA z) =([D(x,y)Az)V (y AD(x,2))
forallx,y,z€L.

Definition 2.10[14]: let (L ,A,V) be a lattice, be symmetric biderivation D(.,.):L XL — Land V(. ,.)LXL —
L be a symmetric mapping , we call V a generalized symmetric biderivation related to D, if it satisfies the
following condition

VxAy,z) = (V(x,2) Ay)V (x AD(y,2))
forallx,y € L.

Definition 2.11[6] : let (L ,A,V) be a lattice and D(.,.):L XL — L be a symmetric mapping, D is called
symmetric (f , g) — biderivation on L if there exist two functions f, g: L — L such that

DxAy,z)=D(x,2)Af(¥)V(gx)AD(,2))
forallx,y,z€ L.

proposition 2.12[ 7]: let (L ,A,V) be a lattice and f:L — L be a mapping . Let d be the trace of symmetric f-
biderivation D, then the following hold for all x,y € L :

(i) D(x,y) < f(x) and D(x,y) < f(¥)
(if) DC,y) = fINf()
(i) dx) < f)

Theorem2.13 [ 8] : let (L ,A,V) be a lattice and f:L — L be a mapping satisfying f(x Ay) = f(x) A f(y) for all
x,y € L. Let A be a generalized symmetric f-biderivation related to a symmetric f-biderivation D, § be the trace
of D. Then

(i) D(x,y) <A (x,y) forallx,y €L
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(i) A(xy) < f(x)and A (x,y) < f(y)
(iif) AQ,y) S fe) AfO)
(iv) dx) <6(x) < f(x)

3. Generalized symmetric (f, g)-biderivations

Definition 3.1: let (L,A,v) be a lattice , be symmetric (f,g)- biderivation D(.,.):LxL — L and
V(.,.):LXL — L be asymmetric mapping , we call V a generalized symmetric (f, g)- biderivation related
to D, if it satisfies the following condition

VixAy,z)=(V(x2) Af(y)V(g(x) AD(y,2))
forall x,y,z€L.

Definition 3.2 : let (L ,A,V) be a latticeand V(. ,.): L X L — L be a generalized symmetric (f, g)- biderivation
on L.The mapping 6:L — L defined by §(x) = V(x,x) is called the trace of generalized symmetric (f, g)-
biderivation V .

It is clear that a generalized symmetric (f, g)-biderivation V satisfies the following relations
Vx,y Az) = (V(x,y) A f(2)V(g(y) AD(x,2))
forallx,y,z€eL.

Example 3.3: let (L ,A,V) be a lattice with least element 0 and f: L — L and g:L — L are mappings satisfying
fAny)=f)Af()and g(x A y) = g(x) = g(y) forall x,y € L(respectively )

The mapping D(.,.):L XL — L defined by D(x,y) = 0 for all x,y € L is symmetric(f, g)- biderivation on L,
then the mapping V(x,y):LxL — L defined by V(x,y)= f(x)Af(y) for all x,y € L is generalized
symmetric(f, g)- biderivation on L

Remarks 3.3:

1) If f=1and g =1 the identity on L, then generalized symmetric (1,1)-biderivation is generalized
symmetric bi derivation on L.
2) If V=D then V is symmetric (f, g) — biderivation .

Proposition 3.4 : Let V be a generalized symmetric (f, g)-biderivation on a lattice(L ,A,v) related to a
symmetric (f, g)-biderivation D, then the mappings §;:L — L and §,:L — L defined by 6;(x) = V(x,z) and
6,(y) = V(x,y) are generalized (f, g)- derivationon L .

Proof :
51 (xAy)=V(x Ay, 2)
=V Af()V(X) AD(y,2)
= GAfO)V (X)) Adi(y))

Where d;: L — L defined by d;(y) = D(y,2) is (f, g)- derivation on L and D is symmetric (f, g)- biderivation
onlL.

Hence §; is generalized (f, g) — derivation .

Proposition 3.5 : let (L,A,V) be a lattice and V(. ,.):LxL — L be a generalized symmetric (f,g)-
biderivation on L related with symmetric (f, g)- biderivation D , then

S(x)<f(x)vgx) forallx el
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where § is the trace of V.
Proof :since  V(x,x)Af(x) < f(x)and D(x,x)Ag(x) < g(x)
Thensince (V(x,x)Af(x)V(D(x,x)Agx) <fl)Vg)
Hence V(x Ax,x)) < f(x) VvV g(x)
since x Ax = x then
§(x ) =V(xx) = V(xAx,x)

Proposition 3.6 : let (L,A,V) be a lattice and V(.,.):L XL — L be a generalized symmetric (f,g)-
biderivation on L related with symmetric (f, g)- biderivation D , then

V(x,y) s f(x)vgx) and V(x,y)<f(y)Vvgy) foralxy L.
Proof: sincexAx=x forallx €L
Then forallx €L
V(x,y )= V(xAX,y)
= (V(x,y )Af))V(g(x) AD(x,y)
And since V(x,y)Af(x) < f(x)and D(x,y)Ag(x) < g(x)
We can conclude that V(x,y) < f(x) V g(x)
Similarly V(x,y) < f(»)Vg(y) forallx, y€eL

Corollary 3.7 : let (L ,A,V) be a lattice and V(. ,.): L Xx L — L be a generalized symmetric (f, g)- biderivation
on L related with symmetric (f, g)- biderivation D , then when g(x) < f(x) for all x € L, we have .

V(x,y)<f(x) and V(x,y)<f(y) forallx,y €L.

Proposition 3.8: let (L ,A,V) be a latticeand V(. ,.): L X L — L be a generalized symmetric (f, g)- biderivation
on L related with symmetric (f, g)- biderivation D , if L has a least element 0 such that f(0) = 0 and g(0) =0
then V(0,y) = 0.

Proof : by proposition 3.6 we have
V(x,y) < fx)VvygX)
And sine 0 is the least element of , then
0 <V(0,y) <f(0)vg(0)=0
Hence V(0,y)=0 .

Theorem 3.9: let (L ,A,V) be a lattice and V(. ,.): L X L — L be a generalized symmetric (f, g)- biderivation
on L related with symmetric (f, g)- biderivation D , then when g(x) < f(x) for all x € L, then the following
identities are holds Vx,y,w € L.

I) V(x,y)AV(w,y) <V(xAw,y) <V(x,y)VV(w,y).
i) V(xAw,y) < fx)V f(w).

Proof:
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i) Forall x,y,w € L, we have
V(xAw,y) = (x,y)AfW))V (g(x) ADw,y))

Which implies that

V(x,y)Af(w) SV(xAW,y)
And since V(w,y ) < f(w) forall € L, we have

V(x,y)AV(w,y) SV(x,y)Af(w)
So ,we get

V(x,y)AV(w,y) <V(xAw,y) (1)
Now

V(x,y) Af(w) < V(x,y)
and since g(x) AD(w,y) <D(w,y) , D(w,y) <V(w,y)
we get g(x) AD(w,y) <V(w,y)
hence  (V(x,y)Afw)) Vv (g(x) AD(w,y)) <V(w,y) vVV(w,y)
V(ixAw,y) <V(x,y)VV(w,y) ..(2)
From (1) and (2)
V(x,y)AV(w,y) SV(xAw,y) <V(x,y)VV(w,y)
(i) since V(x,y) A f(w) < f(w)
and since g(x) AD(w,y) < f(x) AD(w,y) < f(x)
hence (V(x,y)Afw))V (gx) AD(w,y)) < f(x)V f(w)
so that VixAw,y) S fx)Vfw)

Proposition 3.10: let (L,A,V) be a lattice and V(. ,.):LxXL — L be a generalized symmetric (f,g)-
biderivation on L related with symmetric (f, g)- biderivation D , if L has a greatest element 1 such that f(1) =
1and g(x) < D(1,y) then V(x,y) = D(1,y).

Proof :
Forall x,y € L
V(x,y) =V(xAl,y)
=(Ve,y)AfA) V(g AD,y)
=V(x,y)vD(@,y)
Hence V(x,y) = D(1,y).

Theorem 3.11: let (L ,A,V) be a modular lattice and f,g:L — L are mappings . Let V(.,.):LXL — L bea
generalized symmetric (f, g)- biderivation on L related with symmetric (f, g)- biderivation D, § be the trace
of V and d be the trace of D . Then

SxAY)=(BCAFD) VG ADX Y AFG)V (g(x) Ad(y))
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Forall x,y € L.
Proof :
S(xAy)=V(xAy,xAy)
= (Ve x AV Af()) V (g(x) AD(, x A Y))
= {[(V& ) AfD)) V(g ADY))] A fG)}
VLG A (DG ) AfD))V (gx) ADG, )]}
Since (L ,A,V) is a modular lattice , then
Ay =[(6CIAfO) V(g AD(,Y) Af()]
V(g ADCL) A )V (g() Ad()]

Hence
SxAy) = (BN V(g ADEY) AFO))V (g() Ad(y))
Forall x,y € L

Corollary 3.12:: let (L ,A,V) be a modular lattice and f, g:L — L are mappings . Let V(.,.:LxL — L bea
generalized symmetric (f, g)- biderivation on L related with symmetric (f, g)- biderivation Dwith traces & and
d respectively ,then for all x,y € L

1) g)ADLY)Af(Y) < S(xAy)
2) g Ady) < 5(xAy)
3) SINf@Y) < 6(xAy).

Proof : (1), (2) and (3) are easly proved from theorem 3.11.

Theorem 3.13: let (L ,A,V) be a distributive lattice, V, and V, are generalized symmetric (f, g)- biderivations
related to same symmetric (f, g)- biderivation D. Then V; AV, defined by (V; AV,)(x,y) = Vi(x,y) AV, (x,y)
generalized symmetric (f, g)- biderivation related to symmetric (f, g)- biderivation Don L.

Proof :
(ViAV)(xAY,Z) = Vi(x Ay, z) AV, (x Ay, z)
= {(Vi(x,2)Af(¥) V(g(x) AD(y,2))}

MV (x,2) Af() V (g(x) AD(y,2))}
={Vi D AfONA (V2 (,2) AfN}V (9(x) AD(y,2))
= {(V1(x, 2) A (V2 (2, 2)) A f (D} V (g(x) AD(y,2))
={(V1 AV)(x,2) Af()}V (g(x) AD(y,2))

Hence V, AV, is ageneralized symmetric (f, g)- biderivation related to symmetric (f, g)- biderivation D on a
lattice L.

Theorem 3.14: let (L,A,V) be a distributive lattice, V, and V, are generalized symmetric (f, g)- biderivations
related to same symmetric (f, g)- biderivation D. Then V, vV, defined by (V; VV,)(x,y) = V,(x,y) V V,(x,y)
generalized symmetric (f, g)- biderivation related to symmetric (f, g)- biderivation D on L.

Proof :

@ @ 112




Journal of Advances in Mathematics Vol 19 (2020) ISSN: 2347-1921 https://rajpub.com/index.php/jam

(ViVV)(x Ay, z) = Vi(x Ay, Z2) VV,(x Ay, Z)
= Vi, 2) Af(¥) V(g(x) AD(y, 2))}
VA2, 2) Af(¥)) V (g(x) AD(y, 2))}
= (Vi) AfODV (V2 (6, 2) Af(Y}V (9(x) AD(y, 2))
= {1, 2) V (V2 (2, 2) A f(1}V (g(x) AD(y, 2)
={(VL vV, 2) Af(YNIV (9(x) AD(,2))

Hence V,VV,is ageneralized symmetric (f, g)- biderivation related to symmetric (f, g)- biderivation D on a
lattice L.
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