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Abstract:

This article is devoted to the study of pointwise product vector measure duality. The properties of Hilbert function
space of integrable functions and pointwise sections of measurable sets are considered through the application of integral
representation of product vector measures, inner product functions and products of measurable sets.
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1 Introduction

Over the years, mathematics scholars have studied inner product functions in Banach spaces. In previous results, many
theories on integration of vector valued functions with respect to vector measure duality have been proved. This paper
explores pointwise projections and sections of measurable sets. The study proves the existence of integral representation
of pointwise product vector measure duality with values in a Hilbert space. Throughout this paper, (µi)i∈I and (νi)i∈I

denote families of set functions indexed by a finite set I. The functions (µi)i∈I and (νi)i∈I defined on sigma rings ρ
and ε with values in Hilbert spaces X and Y respectively i.e µi : ρ→ X and νi : ε→ Y for each i ∈ I, are called vector
measures. The function µi × νi : ρ× ε→ X × Y denotes the product of vector measures µi : ρ→ X and νi : ε→ Y

. The function (Ttµi×νi)i∈I denotes a family of non-negative vector measures in M(ρ × ε,X × Y ), where Tt is an
integrable vector valued function with respect to a vector measure νi for each i ∈ I. There exists a vector measure
function gti for t ∈ R in M(ρ× ε,X × Y ), where M(ρ× ε,X × Y ) is a set of X × Y valued vector measures defined on
ρ× ε.

2 Basic concepts

Definition 1 (Okada et al.,2008, Otanga et al., 2015a, Yaogan, 2013)

If gti ≤ Ttµik
×νik for i < ki is an increasingly directed family of vector

measures, we define the function gti by

gti(A×B) = LUBikTtµik
×νik (A×B)

where i, ik ∈ I, t ∈ R and A×B is a fixed measurable set with respect
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to ρ× ε.

If ψ(A×B) is a vector valued function, where A×B ∈ ρ× ε is a fixed set,

then the product of ψ(A×B) and Ttµik
×νik is given by

ψ(A×B) ∗ Ttµik
×νik = Ttµik

×νik (A×B) ∈ X × Y

If b ∈ B is a fixed element, then the set (A×B)b is measurable with

respect to ρ. Therefore,

LUBikψ
(A×B)b ∗ Ttµik

= gti((A×B)b) = LUBikTtµik(A×B)b ∈ X

For each i ∈ I and G ⊂ X × Y , we define

νi ∗ Ttµi((A×B)b) =
∫
T tµi((A×B)b)δνi ∈ G.

Definition 2 (Dorlas, 2010 and Otanga, 2015a)

If Q ∈ ρ× ε, then the set Qb = (A ∈ ρ : A×B ⊂ Q) where b ∈ B and A

is a fixed set of finite measure, is called a fixed segment of the set Q.

Definition 3 (Rodriguez, 2006)

If Ttµi × νi : ρ× ε→ X × Y is a product vector measure, then the

integral of the function Tt with respect to the pointwise product vector

measure duality is given by <
∫
Ttµi((A×B)b)δνi, g

∗ >, where A×B is

a fixed measurable set with respect to ρ× ε, b ∈ B, g∗ is an element in

G∗, the dual space of the Hilbert space G.
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Definition 4 (Otanga et al., 2015b and Sanchez, 2004)

Let Ttµi × νi ∈M(ρ× ε,X × Y ). Consider a fixed element b ∈ B and the

integral map ψ(A×B)
g∗ where g∗ ∈ G∗. The pointwise integral of the

function Tt generated by ψ(A×B)
g∗ is given by

ψ
(A×B)b

g∗ (νi ∗ Ttµi) =<
∫
Ttµi((A×B)b)δνi, g

∗ >

3 Results

The following propositions are devoted to analyse pointwise integral repre-

sentation of the product vector measure νi ∗ Ttµi and its relationship with

the inner product vector measure duality denoted by

<
∫
Ttµi((A×B)b)δνi, g

∗ > for each i ∈ I, where t ∈ R, A×B is a

measurable set with respect to ρ× ε, b ∈ B is a fixed element and g∗ is

an element in G∗, the dual space of the Hilbert space G.

Proposition 1

Let (Φ, ρ× ε, µi × νi) for each i ∈ I be a measure space, where Φ is a

non-empty two dimensional set and ψ(µi×νi) ∈M(ρ× ε,X × Y ). Then

∫
ψ(Ttµi)δνi = ψ(νi ∗ Ttµi) for each i ∈ I and t ∈ R

Proof
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Let ψ(A×B)b

g∗ be an integral function, where A×B ∈ ρ× ε, g∗ ∈ G∗ and

b ∈ B is a fixed element. As a consequence of integral representation of

the product vector measure νi ∗ Ttµi as illustrated in (Otanga et al., 2015a

and Yaogan, 2013), we obtain

∫
ψ
(A×B)b

g∗ (Ttµi)δνi =<
∫

(Ttµi)(A×B)bδνi, g
∗ >=< (νi ∗ Ttµi(A×B)b, g∗ >

= ψ
(A×B)b

g∗ (νi ∗ Ttµi)

Therefore,
∫
ψ(Ttµi)δνi = ψ(νi ∗ Ttµi) for each i ∈ I and t ∈ R

Proposition 2

Let (µi)
pj
pi = Ts(µi)

pj
pi s ∈ R. Then νi ∗ (Tt(µi)

pj
pi ) = Tt(νi ∗ µpii ), where

pi and pj are measurable sets of finite measure, pi ⊂ pj for each i, j ∈ I,

i 6= j and s, t ∈ R.

Proof

Let A×B be a measurable set with respect to ρ× ε and g∗ ∈ G∗. For a

fixed element b ∈ B, the set (A×B)b is measurable with respect to ρ. It

follows that

< νi ∗ (Tt(µi)
pj
pi )(A×B)b , g∗ >=<

∫
Tt+sµ

pj
i (pi ∩ (A×B)b)δνi, g

∗ > for s, t ∈ R

Applying the results in (Otanga, 2015b and Otanga et al., 2015b) on

contraction of a vector measure µi by pi for each i ∈ I , we obtain
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<
∫
Tt+sµi(pi ∩ pj ∩ (A×B)b)δνi, g

∗ >=<
∫
Tt+sµi(pi ∩ (A×B)b)δνi, g

∗ >

=<
∫
Tt+s(µi)

pi(A×B)b)δνi, g
∗ >=

∫
ψ
(A×B)b

g∗ (Tt(Tsµ
pi
i )δνi

=
∫
Ttψ

(A×B)b

g∗ (Tsµ
pi
i )δνi. Since

∫
Tsµ

pi
i δνi = νi ∗ Tsµpii , it follows that

∫
Ttψ

(A×B)b

g∗ (Tsµ
pi
i )δνi = Tt(ψ

(A×B)b

g∗ )(νi ∗ Tsµpii )). On application of the

relation Tsµ
pi
i = µpii for i ∈ I and s ∈ R, we obtain

Tt(ψ
(A×B)b

g∗ )(νi ∗ Tsµpii )) = ψ
(A×B)b

g∗ (Tt(νi ∗ µpii ))

=< Tt(νi ∗ µpii )(A×B)b, g∗ >.

In general, νi ∗ (Tt(µi)
pj
pi ) = Tt(νi ∗ µpii ).

Proposition 3

Let ψg∗ represent an integral function with respect to vector measure

duality and µi × νi × αi for each i ∈ I, be a vector measure defined on

ρ× ε× τ . If <
∫

(Ttµi)δνi, g
∗ >= ψg∗(νi ∗ Ttµi) for each g∗ ∈ G∗, then

(αi ∗ νi) ∗ Ttµi = αi ∗ (νi ∗ Ttµi) for t ∈ R

Proof

Let A×B × C ∈ ρ× ε× τ and g∗ ∈ G∗. Application of the Integral function

(ψg∗)(A×B×C) as illustrated in (Campo et al., 2010), gives

(ψg∗)(A×B×C)(αi × νi) ∗ Ttµi =<
∫ ∫

(Ttµi)(A×B × C)δαiδνi, g
∗ >

Suppose (b, c) ∈ B × C is a fixed point. The set (A×B × C)(b,c) is
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measurable with respect to Ttµi. It follows that

(ψg∗)(A×B×C)(b,c)(αi × νi) ∗ Ttµi =<
∫ ∫

(Ttµi)(A×B × C)(b,c)δαiδνi, g
∗ >

=<
∫ ∫

(Ttµi)(A)(b,c)δαiδνi, g
∗ >

If b ∈ B is a fixed element, then the set A×B × C is projected onto A× C.

Therefore,

(ψg∗)(A×B×C)(b,c)(αi × νi) ∗ Ttµi =<
∫

(αi ∗ Ttµi)(A× C)bδνi, g
∗ >

= (ψg∗)(A×B×C)(b,c)(νi ∗ (αi ∗ Ttµi))

If c ∈ C is a fixed element, then the set A×B × C is projected onto

A×B (Dorlas, 2010). Therefore,

(ψg∗)(A×B×C)(b,c)(αi × νi) ∗ Ttµi =<
∫

(νi ∗ Ttµi)(A×B)cδαi, g
∗ >

= (ψg∗)(A×B×C)(b,c)(αi ∗ (νi ∗ Ttµi))

Hence, the above relation gives (αi × νi) ∗ Ttµi = αi ∗ (νi ∗ Ttµi)

Proposition 4

For a fixed b ∈ B and for all t ∈ R, let gti(A×B)b ∈ X such that

gti ≤ Ttµik for i < ik and each i, ik ∈ I. If P (X×Y ) : R → M(ρ× ε,X × Y )

is an integrable function with respect to µi × νi, then for a fixed element

x ∈ X, P (X×Y )x

t ∗ gti = LUBikP
y
t ∗ Ttµik for ∀ y ∈ Y

Proof
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Let A×B ∈ ρ× ε, fix b ∈ B and x ∈ X. For every element y ∈ Y , we have

ψ
(A×B)b

g∗ (νi ∗ P (X×Y )x

t ∗ gti) = ψ
(A×B)b

g∗ (νi ∗ P yt ∗ gti) ∀ y ∈ Y (*)

The product of vector measures (νi ∗ P yt ) and gti in M(ρ× ε,X × Y ) and

the application of the integral function ψ(A×B)b

g∗ (Rodriguez, 2006 and

Yaogan, 2013), implies that

ψ
(A×B)b

g∗ (νi ∗ P yt ∗ gti) =<
∫
gti(A×B)bP tyδνi, g

∗ > (**)

Since gti ≤ Ttµik for i < ik and t ∈ R, then by the property of increasingly

directed vector measure duality, we obtain

< gti(A×B)bP yt δνi, g
∗ >= LUBik <

∫
Ttµik(A×B)bP yt δνi, g

∗ >

= LUBikψ
(A×B)b

g∗ (νi ∗ (P yt ∗ Ttµik)) (***)

Comparing equations (*),(**) and (***), we obtain

P
(X×Y )x

t ∗ gti = LUBikP
y
t ∗ Ttµik

Proposition 5

Let to and t be real numbers. Let B be a measurable set with respect to

ε such that B ↓ ∅. Let P νi(B) ∗ gtoi = gtoi as νi(B) ↓ 0 and gtoi ≤ Ttoµik × νik

for i < ik. If Tt−tOTtoµik × νik = Ttµik × νik , then

Tt−tO (gtoi ) = LUBikP
νi(B) ∗ Ttµik × νik as νi(B) ↓ 0

Proof
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Since P νi(B) ∗ gtoi = gtoi as νi(B) ↓ 0 by hypothesis, it follows that

Tt−tO (gtoi ) = Tt−tO (P νi(B) ∗ gtoi ) as νi(B) ↓ 0). Since gtoi ≤ Ttoµik × νik

for i < ik, by the property of increasingly directed vector measure duality,

it follows that Tt−tO (gtoi ) = Tt−tO (P νi(B) ∗ gtoi ) as νi(B) ↓ 0)

= LUBikTt−tO (P νi(B) ∗ Ttoµik × νik) as νi(B) ↓ 0 (*)

On application of the relation Tt−tOTtoµik × νik = Ttµik × νik (By hypoth-

esis), equation (*) becomes

LUBikP
νi(B) ∗ Tt−tOTtoµik × νik = LUBikP

νi(B) ∗ Ttµik × νik as νi(B) ↓ 0

Hence, Tt−tO (gtoi ) = LUBikP
νi(B) ∗ Ttµik × νik as νi(B) ↓ 0

Proposition 6

Let to and t be real numbers, A×B ∈ ρ× ε and µi × νi ∈M(ρ× ε,X × Y ). If

P νi(B) ∗ Ttµi × νi(A×B) = Ttµi × νi(A×B) and P νi(B) ∗ gtoi = gtoi as

νi(B) ↓ 0, then P νi(B) ∗ µi × νi = µi × νi as νi(B) ↓ 0

Proof

By hypothesis, P νi(B) ∗ Ttµi × νi(A×B) = Ttµi × νi(A×B) as νi(B) ↓ 0 for

A×B ∈ ρ× ε.

Also Tt−tO (gtoi ) = LUBiP
νi(B) ∗ Ttµi × νi as νi(B) ↓ 0 ( By Theorem 5).
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Comparing the two relations, we obtain

LUBiTtµi × νi(A×B) = Tt−tO (gtoi (A×B))

Suppose t = (µi × νi)(C ×D), where C ×D ∈ ρ× ε. Let C = ∅ or D = ∅ or

both C and D be empty sets. Considering all the three cases, it follows

that t = 0. Therefore,

LUBiµi × νi(A×B) = T−tO (gtoi (A×B)) (*)

Applying P νi(B) to the above relation, we obtain

LUBiP
νi(B) ∗ µi × νi = T−tO (P νi(B) ∗ gtoi )

By hypothesis, P νi(B) ∗ gtoi = gtoi as νi(B) ↓ 0. Therefore,

LUBiP
νi(B) ∗ µi × νi = T−tO (gtoi ). (**)

Comparing equations (*) and (**), we obtain

P νi(B) ∗ µi × νi = µi × νi as νi(B) ↓ 0

Corollary

Let (pi) be a finite measure defined on ρ× ε such that

(pi)(A×E) = (µi × νi)(A×E) − LUBikTtµik ≥ 0

for each i ∈ I, t ∈ R, where (pi)(A×E) and (µi × νi)(A×E) is the

contraction of pi and µi × νi by a measurable set A× E ∈ ρ× ε of finite

measure. Given ε > 0, if ε(µi × νi)A×E ≤ (pi)A×E and
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Qνi(E) ∗ gti = LUBikTtµik as νi(E) ↓ 0 for a fixed a ∈ A, then gti ≤ (µi)A

Proof

By hypothesis, (pi)(A×E) = (µi × νi)(A×E) − LUBikTtµik . For a fixed

element e ∈ E, let (pi)A = (µi)A − LUBikTtµik . Since

Qνi(E) ∗ gti = gti as νi(E) ↓ 0 (by proposition 5) and

Qνi(E) ∗ gti = LUBikTtµik as νi(E) ↓ 0 (by hypothesis), it follows that

gti = LUBikTtµik . For each ε > 0, let gti = νi ∗ LUBikTtµik + ε(µi)A, where

A is a measurable set of finite measure. Consider the function ψMg∗ defined

by ψMg∗ (gti) =< gti(M), g∗ > where M ∈ ρ and g∗ ∈ G∗, the dual space of

G. Therefore, ψMg∗ (gti) =< gti(M), g∗ >

= LUBik <
∫
Ttµik(M)δνi , g

∗ > + < ε(µi)A(M), g∗ >

≤ LUBik <
∫
Ttµik(M)δνi , g

∗ > + < (pi)A(M), g∗ >

= LUBik [<
∫
Ttµik(M)δνi , g

∗ > +

(< (µi)A(M), g∗ > − <
∫
Ttµik(M)δνi , g

∗ >)]

=< (µi)A(M), g∗ >

In general gti ≤ (µi)A for each i ∈ I, t ∈ R and A ∈ ρ
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4 Conclusion

The results obtained in this paper is a clear demonstration of the existence of integral representation of pointwise
product vector measure duality co-domained in a Hilbert space. To this end, the relationship between pointwise integral
representation of the product vector measure with the inner product vector measure duality has been revealed.
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