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Abstract 

In this paper, we suggest and analyze a technique by combining the Shehu transform method and the homotopy 

perturbation method. This method is called the Shehu transform homotopy method (STHM). This method is 

used to solve the time-fractional partial differential equations (TFPDEs) with proportional delay. The fractional 

derivative is described in Caputo's sense. The solutions proposed in the series converge rapidly to the exact 

solution. Some examples are solved to show the STHM is easy to apply. 

Keywords: Shehu transforms method, Homotopy perturbation method, time-fractional partial differential 

equations TFPDEs with proportional delay. 

1. Introduction  

Due to its broad  variety of applications in various practical fields such as fluid dynamics, signal processing, 

electrical grids, diffusion, reaction processes and others in science and engineering [5, 12, 18], fractional 

differential equation has become very important among researchers. Of these, nonlinear earthquake oscillations 

may be modeled on fractional derivatives [7], with fractional derivatives in the fluid-dynamic traffic model [8]. 

Indeed, an exact solution of a broad class of the differential equation is too difficult to find. Different types of 

vigorous techniques have been developed recent years to find an approximate solution to this type of fractional 

model differential equations, such as general differential transform method [13], Variational iteration method 

[21, 24], Adomian decomposition method [20], Homotopy  perturbation method [19, 25], Homotopy 

perturbation Sumudu transform method [14, 28], Homotopy analysis method [23], Local fractional variational 

iteration method [37], Variaitional homotopy perturbation method [15]  and Fractional reduced differential 

transform method [26, 31, 32, 33]. In the recent, vigourous techniques eith Shehu transform has been developed, 

among them, see [11,34,39]. The partial functional differential equations with proportional delays, a special class 

of delay partial differential equation, arise specially in the field of  biology medicine, population ecology, control 

systems and climate methods [36], and complex economic macrodynamics [10]. In this paper, we get the 

numerical solution of the initial valued autonomous system of  TFPDEs  with proportional delay [25,29 ,30] 

defined by 

( ) 0 0 1 1( , ) , , ( , ), ( , ), , ( , ) ,

( ,0) ( ).
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Where ( ), 0,1i ia b   for all  0 .i N   k  is initial valued, f is the differential operator and the independent 

variables ( , )x t  ( where t denotes time and x is space variable ) denote the position in space or size of cells 

and maturation level at a time. The solution of (1) can include the voltage, temperature, particle density, type 

instance, chemical substances, cells, and so on. An significant example of the model, Korteweg-devries (KdV) 

equation. Arising in the study of shallow water waves is as follows: 

( )
3

0 0 1 13
( , ) ( , ) ( , ), 0 1,tD x t b a x b t a x b t

x x

     
 

= +  
 

                                                                         (2) 

Where b  is constant. A further well known model, Klein-Gordon time fractional nonlinear equation with 

proportional delay, describes aries in quantum field theory as nonlinear wave interaction. 
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Where b is constant, ( ),g x t  is known analytical function, and F is the nonlinear operator of  ( ),x t . For details 

of various types of models, we refer the reader to [25, 36] and the references therein. To the best of my 

knowledge, a little literature on numerical methods used to solve the TFPDE with proportional delay, among 

them, Chebyshev pseudo spectral method [40], spectral collocation & waveform relaxation methods [41], 

iterated pseudo spectral method [17], Differential transform method  [1, 2], Variational iteration method [6] and 

Homotopy  perturbation method [4, 25, 27, 29].  

The main object of this paper is to suggest by employing STHM anlternative approximate solution of the initial

 valued autonomous method of TFPDE with proportional delay [25, 29, 30]. The remaining sections of this paper 

are arranged as follows. In section 2, we present the new integral transform and some preliminaries of fractional 

calculus. In section 3, we discuss the analysis of the STHM and its convergence. In section 4, applications of the 

STHM are presented. Finally, in section 5 some conclusions are presented. 

2. Definitions and Preliminaries 

In this section, we present the important basic definitions and properties of Shehu transformation and theory of 

fractional calculus. 

Definition 1: [9] A real function ( ), 0,f t t   is considered to be in the space ,C R  if there exists a real 

number ,   so that  ( ) ( ),f t t g t=  where  ( )( ) 0,g t C  . 

Definition 2: [9] A function ( ), 0,f t t   is said to be the space  , 0 ,mC m N    if  ( )mf C= . 

Definition 3: [22, 35] The left side Riemann-Liouville fractional integral of order   for a function , 1f C    −  

is defined as follows 
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Where ( ) is the well-known Gamma function. 

Definition 4: [22, 35] The Riemann-Liouville fractional derivative operator  RD  of order  for a function 

, 1f C    −  is defined as follows 
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Where 1 , .n n n N−     

Definition 5: [16]  The fractional derivative of ( )f t  in the Caputo sense is defined as follows 
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Where 
11 , , .nn n n N f C −−      

Definition 6: [16]  The Shehu transform of the function ( )f t of exponential order  is defined over the set of 

functions: 

 )1 2( ) / , , 0, ( ) exp , ( 1) 0, ,i

j

t
A f t N f t N if t 


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                                                                        (7) 

By the following integral  
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Some special properties of the Shehu transform are as follows: 
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Definition 7: [3]  The Shehu transform  ( )S f t
)

, of the Caputo fractional derivative is given by, 
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3. Shehu transform homotopy method 

In order to explain the basic idea of the technique, we consider the following general fractional partial differential 

equation with the initial condition of the form 

( ) ( ) ( ) ( ), , , , , 0,tD x t L x t N x t g x t t   + + =                                                                                      (10) 

with 1m m−    and subject to the initial condition 

( ) ( ) ( ) ( ), 0 , 0 , 0,1, , 1, .
s
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x x f x s m x R

t
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= = = − 
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K                                                                               (11) 

where ( ),tD x t   is the Caputo fractional derivative of the function ( ), ,x t ( ),g x t  is the source term, L  

is the linear differential operator and N  is the general nonlinear differential operator. Applying the Shehu 

transform (denoted in this paper by S
)

 ) on both sides of Equation (10), we get 
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Using the Shehu transform property and the initial conditions in Equation (11), we have 
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Operating with the Shehu inverse on both sides of Equation (13) gives 
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where ( ),F x t  represent the term arising from the source term and the prescribed initial conditions. Now we 

apply the HPM. 
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Where  0,1p  is the homotopy parameter and the nonlinear term can be decomposed as 
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Where nA  are Adomian’s polynomials  that are given by [38] 
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Substituting Equation (15) and Equation (16) in Equation (14), we get 
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When both sides of equation (18) are compared, we get 
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The approximate solution for 1p =  is given 
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4. Application   

Here, we apply Shehu transform homotopy method to solve time fractional partial differential equations with 

proportional delay. 

Example 1. Consider initial values system of time fractional order, generalized Burgers equation with 

proportional delay as given [ 25, 29, 30 ]  
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Applying the Shehu transform on both sides of Equation (21), we get 
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Using the Shehu transform property and the initial conditions in Equation (22), we have 
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Operating with the Seheu inverse on both sides of Equation (23) gives 
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By applying the homotopy parameter and the nonlinear term can be decomposed as 
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When both sides of equation (25) are compared, we get 
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Using the iteration formulas (26) and (27), we obtain 
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Then the approximate solution of equation (21) for special case 1 = in a closed is given by 
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Table 1 Comparison of fifth-order  STHM solution with exact solution for Example. 1 with α = 1. 

x  t  Exact Sol. STHM ab sE  

0.25  

 

0.25  0.321006354  0.321006266           8.8 08E −  

0.5  0.412180317  0.412174479        5.838 06E −  

0.75  0.529250004  0.529180908       6.9096 05E −  

1  0.679570457  0.679166666     4.03791 04E −  

0.5  0.25  0.642012708  0.642012532           1.76 07 E −  

0.5  0.824360635  0.824348958       1.1677 05E −  

0.75  1.058500008  1.058361816     1.38192 04E −  

1  1.359140914   1.358333333     8.07581 04E −  

0.75  0.25  0.963019062  0.963018798          2.64 07E −  

0.5   1.236540953  1.236523437       1.7516 05E −  

0.75  1.587750012  1.587542724     2.07288 04E −  

1  2.038711371  2.037500000     1.211371 03E −  

 

 



Journal of Advances in Mathematics Vol 19 (2020) ISSN: 2347-1921                 https://rajpub.com/index.php/jam 

64 

     

 

Figure 2: The behavior of the solution of STHM solution   of Example 1 for ( ) ( )0.8; 0.9a b = = ( ); 1.c  =   

Hence, the exact solution of equation (21) is given by ( , ) tx t x e = . The exact solution is in closed agreement 

with the result obtained [1, 25, 29, 30].Also it is clear that form the results given in Table.1 represent a comparison 

between the numerical solution of equation (21) using the STHM with the exact solution when  . Following Fig. 

1 represent the approximate solution of problem (21) using STHM up to five terms for different order of  at 

different time levels   with  , While Figure 2 displays two dimensional plots. 

Example 2. Consider initial values TFPDE with proportional delay as given [ 25, 29, 30  ]:  
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                                                                                               (29) 

Applying the Shehu transform on both sides of Equation (29), we get 
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                                                                                   (30) 

Using the Shehu transform property and the initial conditions in Equation (30), we have 

( ) ( )
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2

2
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2 2
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s s x



   
        

  = + −                  

) )
                                                                 (31) 

Operating with the Shehu inverse on both sides of Equation (31) gives  
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By applying the homotopy parameter and the nonlinear term can be decomposed as 
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When both sides of equation (33) are compared, we get 
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Moreover, if we set ,
2

t
v x

 
=  

 

 and the components of ( )nA   polynomials ( )0,1, 2,n = K , are given by 
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Using the iteration formulas (34) and (35), we obtain 
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Then the approximate solution of equation (29) for special case 1 = in a closed is given by 
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Table 2 Comparison of fifth-order  STHM solution with exact solution for Example. 2 with α = 1. 

x  t  Exact Sol. STHM absE  

0.25  0.25  0.080251588  0.080251566        2.2 08E −  

0.5  0.103045079  0.103043619     1.459 06E −  

0.75  0.132312501 0.132295227    1.7274 05E −  

1  0.169892614  0.169791666   1.00948 04E −  

0.5  0.25  0.321006354  0.321006266         8.8 08E −  

0.5  0.412180317  0.412174479     5.838 06E −  

0.75  0.529250004  0.529180908    6.9096 05E −  

1  0.679570457  0.679166666  4.03790 04E −  

0.75  0.25  0.722264296  0.722264099        1.97 07E −  

0.5  0.927405714  0.927392578    1.3136 05E −  

0.75  1.190812509  1.190657043  1.55466 04E −  

1   1.529033528  1.528125000  9.08528 04E −  
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Figure 4: The behavior of the solution of STHM solution u of Example 2 for ( ) ( )0.8; 0.9a b = = ( ); 1.c  =   

Hence, the exact solution of equation (29) is given by 2( , ) tx t x e = .  The exact solution is in closed agreement 

with the result obtained [1, 25, 29, 30]. Also it is clear that form the results given in Table.2 represent a 

comparison between the numerical solution of equation (29) using the STHM with the exact solution when  . 

Following Fig. 3 represent the approximate solution of problem (29) using STHM up to five terms for different 

order of  at different time levels   with  , While Figure 4 displays two dimensional plots. 

Example 3. Consider initial values TFPDE with proportional delay as given [25, 29, 30 ]  
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Applying the Shehu transform on both sides of Equation (37), we get 
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Using the Shehu transform property and the initial conditions in Equation (38), we have 

( ) ( ) ( )
2

2

2

1
, , , , , .

2 2 2 2 8

u u x t x t
S x t x S x t x t

s s x xx



    
          

  = + − −                   

) )
                                    (39) 

Operating with the Seheu inverse on both sides of Equation (39) gives 
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By applying the homotopy parameter and the nonlinear term can be decomposed as 
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When both sides of equation (41) are compared, we get 
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Moreover, if we set ,
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Using the iteration formulas (42) and (43), we obtain 
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Then the approximate solution of equation (21) for special case 1 = in a closed is given by 
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Table 3 Comparison of fifth-order  STHM solution with exact solution for Example. 3 with α = 1. 

x  t  Exact Sol. STHM absE  

0.25  0.25  0.048675048  0.048675029               1.9 08E −  

0.5  0.037908166  0.037906901           1.265 06E −  

0.75  0.029522909  0.029508972           1.3937 05E −  

1  0.022992465  0.022916667           7.5798 05E −  
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0.5  0.25  0.194700195  0.194700114                8.1 08E −  

0.5  0.151632664  0.151627604              5.06 06E −  

0.75  0.118091638  0.118035889           5.5749 05E −  

1  0.0919698602  0.091666667         3.031932 04E −  

0.75  0.25  0.438075440  0.438075256              1.84 07E −  

0.5  0.341173496  0.341162109           1.1387 05E −  

0.75  0.265706185  0.265580749         1.25436 04E −  

1  0.206932185  0.206250000         6.82185 04E −  
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Figure 6: The behavior of the solution of STHM solution   of Example 3 for ( ) ( )0.8; 0.9a b = = ( ); 1.c  =   

Hence, the exact solution of equation (37) is given by 2( , ) tx t x e −= . The exact solution is in closed agreement 

with the result obtained [1, 25, 29, 30]. Also it is clear that form the results given in Table.3 represent a 

comparison between the numerical solution of equation (37) using the STHM with the exact solution when  . 

Following Fig. 5 represent the approximate solution of problem (37) using STHM up to five terms for different 

order of  at different time levels   with  , While Figure 6 displays two dimensional plots. 

6. Conclusion  

Shehu transform homotopy method is successfully used in this paper for numerical computation of the initial 

valued autonomous time fractional TFPDEs model system with proportional delay, where we use  the fractional 

derivative  in Caputo sense.  There are three test problems carried to validate and illustrate the methods 

efficiency. The solutions proposed obtained excellent agreement with [1, 25, 29, 30]. These approximate 

solutions are obtained without any discretization, perturbation restrictive conditions, which converge very 

quckly. 
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