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Abstract 

The aim of this paper is to estimate the parameters of exponentiated Burr type XII distribution (EBXII) based on 

ranked set sampling (RSS) technique, and also simple random sampling(SRS) is provided by the method of 

maximum likelihood. Fisher information matrix for both (SRS) and (RSS) for the unknown parameters are derived. 

Simulation study compared between the estimators of both methods in terms of their biases, mean square 

errors, and efficiencies. It is shown that the estimators based on RSS are more efficient than those of SRS. 

Keywords: Exponentiated Burr typeXII ,Fisher information matrix , Maximum likelihood estimation , Ranked set 

sampling. 

Introduction  

The Exponentiated Burr XII (EBXII) is an extended distribution to Burr type XII distribution . this model is an 

important model for several areas such as actuarial sciences , economic ,survival analysis. Al-Hussaini and 

Hussain(2011) paid a great concern to Exponentiated models in general and Exponentiated Burr type XII in 

particular. They estimated the parameters of  EBXII distribution using type II Censoring, Bayes estimators are 

also provided under complete samples and censored type II samples. furthermore ranked set sampling (RSS) is 

a statistical technique for data collection that generally leads to more efficient estimators than those based on 

simple random sampling (SRS). The RSS method was first proposed by McIntyre (1952) as a cost-effective and 

more structural alternative approach to SRS. In RSS procedure , without any certain measurement ,sampling 

units can be ranked easily and cheaply with respect to characteristic of interest. The efficiency of RSS according 

to SRS has been investigated by several researchers, Takahashi and Wakimato (1968) showed that RSS mean is 

an unbiased estimator for the population mean with smaller variance compared to SRS mean. Dell and 

clutter(1972) showed that RSS is more efficient than SRS even with an error in ranking. RSS method has been 

modified to yield new sampling methods. Several modifications for RSS were introduced by several authors 

Samawi et al(1996) suggested using extreme ranked set samples to estimate the population mean. 

Muttlak(1997) introduced median ranked set sampling to estimate the population mean. AL-Saleh and AL-Kadiri 

(2000) considered double ranked set sample (DRSS) as a two-stage sampling technique that increase the 

efficiency of RSS estimator without increasing set size it is shown that double ranked set sampling  is more  

efficient than RSS.  Beside these studies ,Several authors have considered the estimation of the parameters of 

well-known distribution using RSS or modification of it for example  , the estimation of unknown parameter of 

exponential and logistic distribution was estimated by lam et al (1994). Abu-Dayyeh and Assrhani (2011) 

estimate the shape and location parameters of the Pareto distribution based on RSS and SRS and compare 

between the two methods .the estimation of  unknown parameters of normal ,the exponential and gamma 

distributions using median and extreme ranked set sample was studied by Shaibu and Muttlak (2004). Al-Omari 

and Al-Hadhrami (2011) estimate the parameters of the modified Weibull distribution using extreme ranked set 

sample (ERSS). Hassan (2013) derived the maximum likelihood and Bayes estimators of the shape and scale 

parameters of exponentiated exponential based on SRS and RSS. Khamnei and Mayan (2016) estimated the 

parameters of exponentiated  gumbel based on simple random sample and ranked set sample and compare 

between two methods. Gurler  and Esemen (2017)estimated the parameters of generalized Rayleigh distribution 

based on simple random sampling and ranked set sampling.  

In this paper, the parameters of exponentiated BurrXII (EBXII) distribution will be estimated under both SRS and 

RSS methods, also fisher information matrix will be provided  for both methods. The probability density function 

(pdf) and cumulative density function (cdf) of exponentiated BurrXII (EBXII) are given respectively 

𝑓(𝑥) = 𝛽𝜃𝛼 𝑥𝛽−1 (1 + 𝑥𝛽)−𝜃−1[1 − (1 + 𝑥𝛽)−𝜃]
𝛼−1

   𝛼 , 𝛽, 𝜃, 𝑥 > 0    (1)  
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𝐹(𝑥) = [    1 − (1 + 𝑥𝛽)−𝜃]
𝛼
  𝛼 , 𝛽, 𝜃, 𝑥 > 0                 (2)     

Materials and Methods 

1. Parameter Estimation and Fisher information matrix for  EBXII Based on( SRS)  Samples:    

In this section we will deal with the point estimation of the unknown parameters of the exponentiated Burr XII 

distribution from simple random sample by the methods of maximum likelihood which is one of the most 

commonly used for the most theoretical distributions .also the ML estimators has desirable properties of being 

consistent and asymptotically normal for large sample under appropriate conditions. Let  𝑥1, 𝑥2 , … , 𝑥𝑛  be a 

random sample of size n from EBXII ,then the likelihood function  can be written as: 

𝐿𝑆𝑅𝑆 = (𝛽𝜃𝛼)𝑛  ∏𝑥𝑖
𝛽−1

𝑛

𝑖=1

∏(1 + 𝑥𝑖
𝛽

𝑛

𝑖=1

)−𝜃−1 ∏ [1 − (1 + 𝑥𝑖
𝛽
)
−𝜃

]
𝛼−1

    (3)

𝑛

𝑖=1

 

the log – likelihood function , log𝐿𝑆𝑅𝑆 ,denoted by  ln 𝐿𝑆𝑅𝑆 determined by taking  the log of both sides. 

ln 𝐿𝑆𝑅𝑆 = 𝑛 ln 𝛽 + 𝑛 ln 𝜃 + 𝑛 ln 𝛼 + (𝛽 − 1)∑ ln 𝑥𝑖

𝑛

𝑖=1

− (𝜃 + 1)∑ ln(1 + 𝑥𝑖
𝛽
) + (𝛼 − 1)∑ 𝑙𝑛 [1 − (1 + 𝑥𝑖

𝛽
)
−𝜃

]

𝑛

𝑖=1

𝑛

𝑖=1

 

For all unknown parameters, the maximum likelihood estimates of β,θ,α denoted by 𝛼𝑆𝑅𝑆 , 𝛽𝑆𝑅𝑆  , 𝜃𝑆𝑅𝑆are obtained 

by setting the first partial derivatives of log L to be zero with respect to β,θ,α respectively. 

𝜕 𝑙𝑜𝑔𝐿𝑆𝑅𝑆

𝜕𝛼
=

𝑛

𝛼
+ ∑ ln [1 − (1 + 𝑥𝑖

𝛽)
−𝜃

]

𝑛

𝑖=1

= 0                                                                                        (4)   

𝜕 𝑙𝑜𝑔𝐿𝑆𝑅𝑆

𝜕𝛽
=

𝑛

𝛽
+ ∑ ln 𝑥𝑖

𝑛

𝑖=1

− (𝜃 + 1)∑
𝑥𝑙

𝛽
ln 𝑥𝑖

1 + 𝑥𝑖
𝛽

𝑛

𝑖=1

+ (𝛼 − 1) ∑
𝜃𝑥𝑖

𝛽
𝑙𝑛𝑥𝑖(1 + 𝑥𝑖

𝛽)
−𝜃−1

[1 − (1 + 𝑥𝑖
𝛽)−𝜃]

= 0

𝑛

𝑖=1

       (5)   

 

𝜕 𝑙𝑜𝑔𝐿𝑆𝑅𝑆

𝜕𝜃
=

𝑛

𝜃
+ ∑ ln(1 + 𝑥𝑖

𝛽)

𝑛

𝑖=1

+ (𝛼 − 1)∑
(1 + 𝑥𝑖

𝛽)
−𝜃

𝑙𝑛(1 + 𝑥𝑖
𝛽)

[1 − (1 + 𝑥𝑖
𝛽)−𝜃]

𝑛

𝑖=1

= 0                                 (6)      

It is not easy to obtain a closed form solution to this system  of equations  (4),(5) and (6) therefore, an iterative 

method  must be applied to solve these  equations numerically to obtain 𝛼𝑆𝑅𝑆 , 𝛽𝑆𝑅𝑆  , 𝜃𝑆𝑅𝑆 

The fisher information matrix of the EBXII distribution of the simple random sample can be obtained by 

differentiating   
𝜕 ln 𝑙𝑆𝑅𝑆

𝜕𝛽
 ,

𝜕 ln 𝑙𝑆𝑅𝑆

𝜕𝜃
 ,

𝜕 ln 𝑙𝑆𝑅𝑆

𝜕𝛼
  with respect to β ,θ and α to get the second partial derivative.  And 

equate the result to zero.  Then the fisher information matrix is a matrix its elements are the second  partial 

derivatives as follows  

𝜕2 ln 𝐿𝑆𝑅𝑆

𝜕𝛽2
= 𝑣𝑎𝑟 (𝛽𝑆𝑅𝑆) =

−𝑛

𝛽2
− (𝜃 − 1)∑

𝑥𝑖
𝛽(ln 𝑥𝑖)

2

(1 + 𝑥𝑖
𝛽
)
2

𝑛

𝑖=1

                               

+(𝛼 − 1)𝜃 ∑

[
 
 
 𝑥𝑖

𝛽(ln 𝑥𝑖)
2(1 + 𝑥𝑖

𝛽
)
−𝜃−2

[(1 − 𝜃𝑥𝑖
𝛽
) − (1 + 𝑥𝑖

𝛽
)
−𝜃

]

[1 − (1 + 𝑥𝑖
𝛽
)
−𝜃

]
2

−
 𝑥𝑖

2𝛽
 𝜃2(ln 𝑥𝑖)

2(1 + 𝑥𝑖
𝛽
)
−2𝜃−2

[1 − (1 + 𝑥𝑖
𝛽
)
−𝜃

]
2

]
 
 
 𝑛

𝑖=1

(7) 
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ln 𝐿𝑆𝑅𝑆

𝜕𝛽𝜕𝜃
= 𝑐𝑜𝑣(𝛽𝑆𝑅𝑆, 𝜃𝑆𝑅𝑆)

= −∑
𝑥𝑖

𝛽
ln 𝑥𝑖

(1 + 𝑥𝑖
𝛽
)

𝑛

𝑖=1

+ (𝛼 − 1) ∑
𝑥𝑖

𝛽
ln 𝑥𝑖(1 + 𝑥𝑖

𝛽
)
−𝜃−1

[(1 − (1 + 𝑥𝑖
𝛽
)
−𝜃

) − (𝜃 ln(1 + 𝑥𝑖
𝛽
))]

[1 − (1 + 𝑥𝑖
𝛽
)
−𝜃

]
2

𝑛

𝑖=1

+ (𝛼 − 1)∑
𝑥𝑖

𝛽
ln 𝑥𝑖 (1 + 𝑥𝑖

𝛽
)
−2𝜃−1

[𝜃 ln(1 + 𝑥𝑖
𝛽
)]

[1 − (1 + 𝑥𝑖
𝛽
)
−𝜃

]
2

                                      (8)

𝑛

𝑖=1

 

ln 𝐿𝑆𝑅𝑆

𝜕𝛽𝜕𝛼
= 𝑐𝑜𝑣(𝛽𝑆𝑅𝑆, 𝛼𝑆𝑅𝑆) = ∑

𝜃(1 + 𝑥𝑖
𝛽
)
−𝜃

𝑥𝑖
𝛽

ln 𝑥𝑖

[1 − (1 + 𝑥𝑖
𝛽
)
−𝜃

]

      (9)

𝑛

𝑖=1

 

𝜕2 ln 𝑙𝑆𝑅𝑆

𝜕 𝛼2
= 𝑣𝑎𝑟(𝛼𝑆𝑅𝑆) = −

𝑛

𝛼2
    (10) 

𝜕2 ln 𝑙𝑆𝑅𝑆

𝜕 𝛼𝜕𝜃
= 𝑐𝑜𝑣(𝛼𝑆𝑅𝑆, 𝜃𝑆𝑅𝑆) =

(1 + 𝑥𝑖
𝛽
)
−𝜃

ln(1 + 𝑥𝑖
𝛽
)

[1 − (1 + 𝑥𝑖
𝛽
)
−𝜃

]
          (11) 

𝜕2 ln 𝑙𝑆𝑅𝑆

𝜕 𝜃2
= 𝑣𝑎𝑟(𝜃𝑆𝑅𝑆) = −

𝑛

𝜃2
+ (𝛼 − 1)∑

(1 + 𝑥𝑖
𝛽
)
−𝜃

ln(1 + 𝑥𝑖
𝛽
)
2

[1 − (1 + 𝑥𝑖
𝛽
)
−𝜃

]
2

(12)

𝑛

𝑖=1

 

2. Parameter Estimation  and Fisher information matrix for EBXII Based on( RSS)  Samples: 

In this section we will deal with the point estimation of the unkown  parameters of the exponentiated Burr XII 

distribution from ranked set sample by the methods of  maximum likelihood. The technique of ranked set 

sampling can be described in the following steps: 

Step 1: selecting an independent m simple random samples from the population of interest. 

Step 2:  Each sample is of size m  units and drawn without replacement, where the total initial sample size is 𝑚2  

and we call each simple random sample a set. 

Step 3: Within each of m set, the sampled item are ranked (without yet knowing any values for the variable of 

interest, for example, visually) 

Step4: After ranking the m items in each of the m sets, a subsample is drawn for measurement. This subsamples 

consist of the smallest ranked unit is chosen from the first set, the second smallest ranked units is chosen from 

the second set, continuing this process until the largest unit is chosen from the last set .so that the subsamples 

contains m units, each representing a different rank  from the m sets . This entire process is referred to as a cycle 

and the number of observations in each random sample, m is called the set size.                                                           

Step 5: Repeating steps 1 through 4 for r cycles (times) until a total of 𝑟𝑚2units have been drawn from the 

population and actually the desired sample size(rm) have been measured. The(rm)  measured observations from 

the ranked set sampling. 

Suppose that 𝑋𝑖𝑗  , i = 1, … , m , j = 1, … r is is a ranked set sample from (EBXII) With a sample size = 𝑟𝑚 , m is the 

set size and r is the number of cycle Where , 𝑋𝑖𝑗 represents  the  ranked unit in the ith set and jth cycle for simplicity 

we denote 𝑌𝑖𝑗 = 𝑋𝑖𝑗 then𝑌𝑖𝑗 are independent with PDF given by 

𝑔(𝑦𝑖𝑗) =
𝑚!

(𝑖 − 1)! (𝑚 − 𝑖)!
[𝐹(𝑦𝑖𝑗)]

𝑖−1
𝑓(𝑦𝑖𝑗)[1 − 𝐹(𝑦𝑖𝑗)]

𝑚−𝑖
  𝑦𝑖𝑗 > 0         (13) 

 The likelihood function of the ranked set sample  𝑦1𝑟  , 𝑦2𝑟 , … , 𝑦𝑚𝑟                
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𝐿𝑅𝑆𝑆 = ∏∏ (
𝑚!

 (𝑖 − 1)! (𝑚 − 𝑖)!
) (𝛽𝜃𝛼)𝑦𝑖𝑗

𝛽−1(1 + 𝑦𝑖𝑗
𝛽
)
−𝜃−1

𝑚

𝑖=1

𝑟

𝑗=1

[(1 − (1 + 𝑦𝑖𝑗
𝛽
)
−𝜃

)
𝛼𝑖−1

] 

[1 − (1 − (1 + 𝑦𝑖𝑗
𝛽
)
−𝜃

)
𝛼

]
𝑚−𝑖

(14) 

The  log-likelihood function , denoted by   ln 𝐿𝑅𝑆𝑆   is given by:  

𝑙𝑜𝑔𝐿𝑅𝑆𝑆 = 𝐶 + 𝑟𝑚 𝑙𝑛(𝛽𝜃𝛼) + (𝛽 − 1)∑∑ 𝑙𝑛𝑦𝑖𝑗 −

𝑚

𝑖=1

𝑟

𝑗=1

(𝜃 + 1)∑∑ 𝑙𝑛

𝑚

𝑖=1

𝑟

𝑗=1

(1 + 𝑦𝑖𝑗
𝛽
)
−𝜃

 

+(𝛼𝑖 − 1) ∑∑ ln (1 − (1 + 𝑦𝑖𝑗
𝛽
)
−𝜃

)

𝑚

𝑖=1

𝑟

𝑗=1

+ (𝑚 − 𝑖) ∑∑ ln (1 − (1 − (1 + 𝑦𝑖𝑗
𝛽
)
−𝜃

)
𝛼

)   (15)

𝑚

𝑖=1

𝑟

𝑗=1

 

Differentiate the ln Likelihood with respect to α ,β ,θ and equating to zero.                                    

𝜕𝐿𝑛 𝐿𝑅𝑆𝑆

𝜕𝛼
=

𝑟𝑚

𝛼
+ ∑∑ 𝑖 ln (1 − (1 + 𝑦𝑖𝑗

𝛽
)
−𝜃

)

𝑚

𝑖=1

𝑟

𝑗=1

+ 

(𝑚 − 𝑖) ∑∑
(1 − (1 + 𝑦𝑖𝑗

𝛽
)
−𝜃

)
𝛼

ln (1 − (1 + 𝑦𝑖𝑗
𝛽
)
−𝜃

)

[1 − (1 − (1 + 𝑦𝑖𝑗
𝛽
)

−𝜃

)
𝛼

]

𝑚

𝑖=1

𝑟

𝑗=1

    (16) 

𝜕𝐿𝑛 𝐿𝑅𝑆𝑆

𝜕𝜃
=

𝑟𝑚

𝜃
− ∑ ∑ ln(1 + 𝑦𝑖𝑗

𝛽
) + (𝛼𝑖 − 1)∑∑

(1 + 𝑦𝑖𝑗
𝛽
)
−𝜃

ln(1 + 𝑦𝑖𝑗
𝛽
)

[1 − (1 + 𝑦𝑖𝑗
𝛽
)

−𝜃

]

𝑚

𝑖=1

𝑟

𝑗=1

𝑚

𝑖=1

𝑟

𝑗=1

 

+(𝑚 − 𝑖)∑ ∑
𝛼 (1 − (1 + 𝑦𝑖𝑗

𝛽
)
−𝜃

)
𝛼−1

(1 + 𝑦𝑖𝑗
𝛽
)
−𝜃

ln(1 + 𝑦𝑖𝑗
𝛽
)

[1 − (1 − (1 + 𝑦𝑖𝑗
𝛽
)

−𝜃

)
𝛼

]

𝑚

𝑖=1

𝑟

𝑗=1

    (17) 

𝜕𝐿𝑛 𝐿𝑅𝑆𝑆

𝜕𝛽
=

𝑟𝑚

𝛽
+ ∑∑ ln 𝑦𝑖𝑗

𝑚

𝑖=1

− (𝜃 + 1)∑ ∑
𝑦𝑖𝑗

𝛽
ln 𝑦𝑖𝑗

(1 + 𝑦𝑖𝑗
𝛽
)

𝑚

𝑖=1

𝑟

𝑗=1

𝑟

𝑗=1

 

−(𝛼𝑖 − 1)∑∑
𝜃(1 + 𝑦𝑖𝑗

𝛽
)
−𝜃−1

𝑦𝑖𝑗
𝛽

ln 𝑦𝑖𝑗

[1 − (1 + 𝑦𝑖𝑗
𝛽
)

−𝜃

]

𝑚

𝑖=1

𝑟

𝑗=1

 

−(𝑚 − 𝑖) ∑∑
𝛼 (1 − (1 + 𝑦𝑖𝑗

𝛽
)
−𝜃

)
𝛼−1

𝜃(1 + 𝑦𝑖𝑗
𝛽
)
−𝜃−1

𝑦𝑖𝑗
𝛽

ln 𝑦𝑖𝑗

[1 − (1 − (1 + 𝑦𝑖𝑗
𝛽
)

−𝜃

)
𝛼

]

𝑚

𝑖−1

𝑟

𝑗=1

    (18) 

The estimators of ML of α , θ , β say  𝛼𝑅𝑆𝑆 , 𝛽𝑅𝑆𝑆 , 𝜃𝑅𝑆𝑆  are the solution of the above non-linear equations  as it 

seems it is difficult to find a closed form  solution of the parameters so numerical technique is needed to solve 

them.  

  The fisher information matrix of the EBXII distribution of the ranked set sample can be obtained by 

differentiating   
𝜕 ln 𝑙𝑅𝑆𝑆

𝜕𝛽
 ,

𝜕 ln 𝑙𝑅𝑆𝑆

𝜕𝜃
 ,

𝜕 ln 𝑙𝑅𝑆𝑆

𝜕𝛼
  with respect to β ,θ and α to get the second partial derivative. And equate 

the result to zero.                      
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𝜕2 ln 𝑙𝑅𝑆𝑆

𝜕 𝛼2
= 𝑣𝑎𝑟(𝛼𝑅𝑆𝑆) = −

𝑟𝑚

𝛼2
+ (𝑚 − 𝑖) ∑∑

(1 − (1 + 𝑦𝑖𝑗
𝛽
)
−𝜃

)
𝛼

ln (1 − (1 + 𝑦𝑖𝑗
𝛽
)
−𝜃

)

[1 − (1 − (1 + 𝑦𝑖𝑗
𝛽
)

−𝜃

)
𝛼

]

2
  (19)

𝑚

𝑖=1

𝑟

𝑗=1

 

𝜕2 ln 𝑙𝑅𝑆𝑆

𝜕 𝜃2
= 𝑣𝑎𝑟(𝜃𝑅𝑆𝑆) =

−𝑟𝑚

𝜃2
+ (𝛼𝑖 − 1)

(1 + 𝑦𝑖𝑗
𝛽
)
−𝜃

(ln(1 + 𝑦𝑖𝑗
𝛽
))

2

(1 − (1 + 𝑦𝑖𝑗
𝛽
)

−𝜃

)
2

+ (𝑚 − 𝑖) 

∑∑
𝛼(1 + 𝑦𝑖𝑗

𝛽
)
−𝜃

(ln(1 + 𝑦𝑖𝑗
𝛽
))

2
(1 − (1 + 𝑦𝑖𝑗

𝛽
)
−𝜃

) [1 − 𝛼(1 + 𝑦𝑖𝑗
𝛽
)
−𝜃

− (1 − (1 + 𝑦𝑖𝑗
𝛽
)
−𝜃

)
𝛼

]

[1 − (1 − (1 + 𝑦𝑖𝑗
𝛽
)

−𝜃

)
𝛼

]

2

𝑚

𝑖=1

𝑟

𝑗=1

 

−(𝑚 − 𝑖) ∑∑
𝛼2 (1 − (1 + 𝑦𝑖𝑗

𝛽
)
−𝜃

)
2𝛼−2

(1 + 𝑦𝑖𝑗
𝛽
)
−2𝜃

ln(1 + 𝑦𝑖𝑗
𝛽
)

[1 − (1 − (1 + 𝑦𝑖𝑗
𝛽
)

−𝜃

)
𝛼

]

2

𝑚

𝑖=1

𝑟

𝑗=1

   (20) 

𝜕2 ln 𝑙𝑅𝑆𝑆

𝜕 𝛽2
= 𝑣𝑎𝑟(𝛽𝑅𝑆𝑆) =

−𝑟𝑚

𝛽2
− (𝜃 + 1) ∑∑

𝑦𝑖𝑗
𝛽
(ln 𝑦𝑖𝑗)

2

(1 + 𝑦𝑖𝑗
𝛽
)
2

𝑛

𝑖=1

𝑚

𝑐=1

 

−(𝛼𝑖 − 1) ∑∑
𝜃(1 + 𝑦𝑖𝑗

𝛽
)
−2𝜃

𝑦𝑖𝑗
𝛽
(ln 𝑦𝑖𝑗)

2
[1 − 𝜃𝑦𝑖𝑗

𝛽
− (1 + 𝑦𝑖𝑗

𝛽
)
−𝜃

]

(1 − (1 + 𝑦𝑖𝑗
𝛽
)

−𝜃

)
2

𝑚

𝑖=1

𝑟

𝑗=1

 

−(𝛼𝑖 − 1)∑ ∑
𝜃2(1 + 𝑦𝑖𝑗

𝛽
)
−2𝜃−2

𝑦𝑖𝑗
2𝛽

(ln 𝑦𝑖𝑗)
2

(1 − (1 + 𝑦𝑖𝑗
𝛽
)

−𝜃

)
2

𝑚

𝑖=1

𝑟

𝑗=1

 

−(𝑚 − 𝑖)∑∑
𝜃𝛼(𝛼 − 1)(1 + 𝑦𝑖𝑗

𝛽
)
−𝜃

𝑦𝑖𝑗
𝛽
ln 𝑦𝑖𝑗 (1 − (1 + 𝑦𝑖𝑗

𝛽
)
−𝜃

)
𝛼−2

[1 − (1 − (1 + 𝑦𝑖𝑗
𝛽
)

−𝜃

)
𝛼

]

2

𝑚 

𝑖=1

𝑟

𝑗=1

 

−(𝑚 − 𝑖)∑ ∑
𝜃(1 + 𝑦𝑖𝑗

𝛽
)
−𝜃−2

𝑦𝑖𝑗
𝛽
(ln 𝑦𝑖𝑗)

2
[1 − 𝜃𝑦𝑖𝑗

𝛽
− (1 − (1 + 𝑦𝑖𝑗

𝛽
)
−𝜃

)
𝛼

]

[1 − (1 − (1 + 𝑦𝑖𝑗
𝛽
)

−𝜃

)
𝛼

]

2

𝑚

𝑖=1

𝑟

𝑗=1

 

−(𝑚 − 𝑖)∑ ∑

𝜃2𝛼(1 + 𝑦𝑖𝑗
𝛽
)
−2𝜃−2

𝑦𝑖𝑗
2𝛽

(ln 𝑦𝑖𝑗)
2
[(1 − (1 + 𝑦𝑖𝑗

𝛽
)
−𝜃

)
𝛼−1

]

[1 − (1 − (1 + 𝑦𝑖𝑗
𝛽
)

−𝜃

)
𝛼

]

2
   (21)

𝑚

𝑖=1

𝑟

𝑗=1

 

𝜕2 ln 𝑙𝑅𝑆𝑆

𝜕 𝛽𝜕𝜃
= 𝑐𝑜𝑣(𝛽𝑅𝑆𝑆 , 𝜃𝑅𝑆𝑆) 

= −∑ ∑
𝑦𝑖𝑗

𝛽
ln 𝑦𝑖𝑗

(1 + 𝑦𝑖𝑗
𝛽
)

𝑚

𝑖=1

𝑟

𝑗=1

− (𝛼𝑖 − 1)∑ ∑
𝜃(1 + 𝑦𝑖𝑗

𝛽
)
−𝜃−1

ln(1 + 𝑦𝑖𝑗
𝛽
)𝑦𝑖𝑗

𝛽
ln 𝑦𝑖𝑗

(1 − (1 + 𝑦𝑖𝑗
𝛽
)

−𝜃

)
2

𝑚

𝑖=1

𝑟

𝑗=1
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−(𝑚 − 𝑖) ∑∑
𝜃(1 + 𝑦𝑖𝑗

𝛽
)
−𝜃−1

𝑦𝑖𝑗
𝛽

ln 𝑦𝑖𝑗 (ln(1 + 𝑦𝑖𝑗
𝛽
) + 1) [1 − (1 − (1 + 𝑦𝑖𝑗

𝛽
)
−𝜃

)
𝛼

]

[1 − (1 − (1 + 𝑦𝑖𝑗
𝛽
)

−𝜃

)
𝛼

]

2

𝑚

𝑖=1

𝑟

𝑗=1

 

+(𝑚 − 𝑖)∑ ∑
𝜃𝛼 (1 − (1 + 𝑦𝑖𝑗

𝛽
)
−𝜃

)
𝛼−1

(1 + 𝑦𝑖𝑗
𝛽
)
−2𝜃−1

ln(1 + 𝑦𝑖𝑗
𝛽
) 𝑦𝑖𝑗

𝛽
ln 𝑦𝑖𝑗

[1 − (1 − (1 + 𝑦𝑖𝑗
𝛽
)

−𝜃

)
𝛼

]

2

𝑚

𝑖=1

𝑟

𝑗=1

 

+(𝑚 − 𝑖)∑ ∑
𝛼(𝛼 − 1)(1 + 𝑦𝑖𝑗

𝛽
)
−𝜃

ln(1 + 𝑦𝑖𝑗
𝛽
) (1 − (1 + 𝑦𝑖𝑗

𝛽
)
−𝜃

)
𝛼−2

[1 − (1 − (1 + 𝑦𝑖𝑗
𝛽
)

−𝜃

)
𝛼

]

2
    (22)

𝑚

𝑖=1

𝑟

𝑐=1

 

𝜕2 ln 𝑙𝑅𝑆𝑆

𝜕 𝛽𝜕𝛼
= 𝑐𝑜𝑣(𝛽𝑅𝑆𝑆, 𝛼𝑅𝑆𝑆) = 𝑖 ∑∑

𝜃(1 + 𝑦𝑖𝑗
𝛽
)
−𝜃−1

𝑦𝑖𝑗
𝛽

ln 𝑦𝑖𝑗

[1 − (1 + 𝑦𝑖𝑗
𝛽
)

−𝜃

]

𝑚

𝑖=1

𝑟

𝑗=1

− (𝑚 − 𝑖) 

∑∑
(1 − (1 + 𝑦𝑖𝑗

𝛽
)
−𝜃

)
𝛼−1

[1 + 𝛼 ln (1 − (1 + 𝑦𝑖𝑗
𝛽
)
−𝜃

) − (1 − (1 + 𝑦𝑖𝑗
𝛽
)
−𝜃

)
𝛼

] 𝜃(1 + 𝑦𝑖𝑗
𝛽
)
−𝜃−1

𝑦𝑖𝑗
𝛽

ln 𝑦𝑖𝑗

[1 − (1 − (1 + 𝑦𝑖𝑗
𝛽
)

−𝜃

)
𝛼

]

2
 (23)

𝑚

𝑖=1

𝑟

𝑗=1

 

𝜕2 ln 𝑙𝑅𝑆𝑆

𝜕 𝜃𝜕𝛼
= 𝑐𝑜𝑣(𝜃𝑅𝑆𝑆, 𝛼𝑅𝑆𝑆) = −𝑖 ∑∑

(1 + 𝑦𝑖𝑗
𝛽
)
−𝜃

ln(1 + 𝑦𝑖𝑗
𝛽
)

[1 − (1 + 𝑦𝑖𝑗
𝛽
)

−𝜃

]

𝑚

𝑖=1

𝑟

𝑗=1

+ (𝑚 − 𝑖) 

∑∑
(1 − (1 + 𝑦𝑖𝑗

𝛽
)
−𝜃

)
𝛼−1

[1 + 𝛼 ln (1 − (1 + 𝑦𝑖𝑗
𝛽
)
−𝜃

) − (1 − (1 + 𝑦𝑖𝑗
𝛽
)
−𝜃

)
𝛼

] 𝜃(1 + 𝑦𝑖𝑗
𝛽
)
−𝜃

ln(1 + 𝑦𝑖𝑗
𝛽
)

[1 − (1 − (1 + 𝑦𝑖𝑗
𝛽
)

−𝜃

)
𝛼

]

2
(24)

𝑚

𝑖=1

𝑟

𝑗=1

 

 

Simulation study: 

To investigate the properties of the maximum likelihood estimators of the parameters of EBXII , a simulation 

study is conducted .in some situations , the whole procedure to generate an RSS of size n is repeated r times 

throughout in this paper we consider the case r=1. A Monto – carlo simulation is applied for different sample  

sizes  n=(6,10,14,20,30) with four sets values of parameters  were  selected set 1(𝛼 = 0.75 , 𝛽 = 0,5 , 𝜃 = 1.5 ) and 

set 2 (𝛼 = ,75 , 𝛽 = 2 , 𝜃 = 1.5 ) set 3 (𝛼 = 3 , 𝛽 = 2 , 𝜃 = 1.5 ) , set 4 (𝛼 = 3 , 𝛽 = 2 , 𝜃 = 3 ). The estimators 𝛼, 𝛽, 𝜃 

based on SRS and RSS are obtained by solving equations (4,5,6) and (16,17,18) by the R  package. This will be 

repeated 1000 times for each sample size and for selected sets of parameters. Then, the biases and MSES of 

estimators of the unknown parameters are computed. also the relative efficiency is calculated  

Numerical results are reported in Tables (4.1) to (4.4). from these tables, the following Results can be observed 

on the properties of estimated parameters from the EBXII distribution . 

Results and conclusion: 

Based on numerical study the following results can be observed 

1) As the sample size increases, the bias and the mean square error decrease for all estimates based on SRS 

and RSS. 

2) The mean square error for ML estimates based on RSS are usually better than that of SRS 
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3) The RSS estimates are usually more efficient than those estimates of SRS.(see tables from (1.1) to table 

(1.4). 

4) As β increases the MSE of both Ө and α decreases in SRS but in RSS the MSE of both Ө and α increases  

5) As α increases MSE of both Ө and β increases in SRS. But in RSS the MSE of β increases while the MSE of 

Ө is usually decreases. 

6) As Ө increases the MSE of α increases but the MSE of β decreases in SRS. But in RSS the MSE of both α 

and β increase as Ө increases.  

  

 

 

 

Tables 

Table (4.1): Biases, MSEs and Efficiencies for estimators Based on SRS and RSS when(𝛼 = 0.75 , 𝛽 = 0,5 , 𝜃 =
1.5) 

 

      SRS                                                              RSS 

 Sample size 

m 

Parameter                       Bias MSE Bias MSE RE 

  

6 

 

 

10 

 

 

14 

 

 

20 

 

 

30 

α 

β 

 θ   

 α 

 β 

 θ 

 α 

β 

θ 

α 

β 

θ 

α 

β 

θ 

1.2970 

0.1006 

0.8745 

0.4914 

0.0985 

0.2036 

0.1923 

0.0363 

0.1368 

0.0519 

0.0264 

0.0301 

0.0301 

0.0062 

0.0255 

 

4.3207 

0.2700 

4.6928 

1.0362 

0.1482 

1.0168 

0.4195 

0.0618 

0.4571 

0.0929 

0.0295 

0.1914 

0.0383 

0.0073 

0.0851 

0.1563 

0.1983 

0.3039 

0.0932 

0.0734 

0.1077 

0.0212 

0.0403 

0.0307 

0.0149 

0.0455 

-0.0012 

-0.0130 

0.0172 

-0.0227 

0.2918 

0.2627 

0.7590 

0.1452 

0.0691 

0.3250 

0.0444 

0.0301 

0.0919 

0.0611 

0.0276 

0.1421 

0.0116 

0.0059 

0.0281 
 

14.8071 

1.02779 

6.18277 

7.13636 

2.14472 

3.12862 

9.4482 

2.05316 

4.97388 

1.52046 

1.06884 

1.34694 

3.30172 

1.23729 

3.02847 
 

        

 

Table 4.2: Biases, MSEs and Efficiencies for estimators Based on SRS and RSS when (𝛼 = ,75 , 𝛽 = 2 , 𝜃 = 1.5 ) 

 

      SRS                                            RSS  

 Sample size 

m 

Parameter                       Bias  MSE Bias MSE RE 

  

6 

 

 

10 

 

 

14 

α 

β 

 θ   

 α 

 β 

 θ 

 α 

β 

0.0930 

0.4702 

0.9588 

0.4954 

0.3036 

0.2352 

0.1844 

0.1366 

3.9786 

4.9399 

4.3807 

0.9612 

0.9938 

0.9916 

0.5350 

0.7712 

0.8863 

0.0776 

0.9972 

0.3548 

0.0638 

0.3539 

0.2664 

-0.0376 

2.2244 

1.4202 

2.3452 

0.7021 

0.5862 

0.7405 

0.3466 

0.3684 

1.78862 

3.47831 

1.86794 

1.36904 

1.69533 

1.33910 

1.54357 

2.09338 
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20 

 

 

30 

θ 

α 

β 

θ 

α 

β 

θ 

0.1253 

0.1488 

-0.0618 

0.1077 

0.1149 

-0.0567 

0.1356 

0.4529 

0.1530 

0.1390 

0.2158 

0.0825 

0.1389 

0.446 

0.1129 

0.0786 

0.0719 

0.0536 

0.0327 

0.0184 

0.0297 

0.4077 

0.1247 

0.1163 

0.2011 

0.0346 

0.1089 

0.0810 

1.11087 

1.22694 

1.19518 

1.0731 

2.38439 

1.27548 

1.78519 

 

 

 

 

 

Table 4.3 : Biases, MSEs and Efficiencies for estimators Based on SRS and RSS when (𝛼 = 3 , 𝛽 = 2 , 𝜃 = 1.5 ) 

 

      SRS                                            RSS  

 Sample size 

m 

Parameter                             Bias  MSE Bias MSE RE 

  

6 

 

 

10 

 

 

14 

 

 

20 

 

 

30 

 

α 

β 

 θ   

 α 

 β 

 θ 

 α 

β 

θ 

α 

β 

θ 

α 

β 

θ 

1.3872 

0.3329 

1.6058 

1.0253 

0.0741 

1.0503 

0.8916 

0.0292 

0.3726 

0.6948 

0.0644 

0.2407 

0.1050 

-0.0246 

0.0630 

4.3504 

4.6847 

3.9517 

2.2148 

1.7379 

1.6492 

1.6209 

1.0908 

0.6270 

0.9170 

0.7079 

0.4723 

0.3144 

0.3970 

0.1883 

0.4720 

0.3244 

0.0738 

0.1719 

0.1288 

0.0311 

0.1980 

0.0705 

0.0331 

0.0825 

0.0481 

0.0059 

0.0139 

0.0277 

-0.0014 

1.1008 

0.9630 

0.1990 

0.2693 

0.2312 

0.0628 

0.5933 

0.2007 

0.0800 

0.2901 

0.0794 

0.0444 

0.0325 

0.0243 

0.0067 

2.7630 

5.3323 

7.0946 

4.8530 

8.0720 

8.8371 

1.4908 

5.5675 

6.1835 

1.5330 

9.1317 

9.3488 

9.3861 

16.8780 

27.3434 

 

Table 4.4: Biases, MSEs and Efficiencies for estimators Based on SRS and RSS when(𝛼 = 3 , 𝛽 = 2 , 𝜃 = 3) 

 

      SRS                                            RSS  

 Sample size 

m 

Parameter                       Bias MSE Bias MSE RE 

  

6 

 

 

10 

 

 

14 

 

 

20 

α 

β 

 θ   

 α 

 β 

 θ 

 α 

β 

θ 

α 

β 

0.6293 

0.6040 

0.1706 

0.5254 

0.2305 

0.3182 

0.4743 

0.0885 

0.2249 

0.2886 

0.0183 

4.6658 

2.3119 

1.3156 

4.6718 

2.2099 

1.0514 

1.9326 

0.6324 

0.9249 

0.9252 

0.2131 

0.5806 

0.3148 

0.0494 

0.5323 

0.3647 

0.0770 

0.1038 

0.2085 

-0.0381 

0.0374 

0.0477 

4.2503 

1.0813 

0.9866 

4.1929 

1.0123 

0.8069 

1.5132 

0.4309 

0.4152 

0.2504 

0.0672 

1.0911 

1.9825 

1.3073 

1.1244 

2.4529 

1.0546 

1.1367 

1.6118 

2.1134 

3.3807 

3.2780 
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30 

θ 

α 

β 

θ 

0.1368 

0.1315 

0.0007 

0.0656 

 

0.5940 

0.5461 

0.0875 

0.2234 

0.0117 

-0.0039 

0.0567 

-0.0107 
 

0.0757 

0.2922 

0.0620 

0.0814 

 

7.6134 

1.8096 

1.4876 

2.6947 
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