DOI https://doi.org/10.24297/jam.v18i.8774

Some Inclusion Properties for Meromorphic Functions Defined by New Generalization of Mittag-Leffler Function

S. M. Madian¹, S. Horrigue² and Abdeljabbar GHANMI³

¹ Basic Sciences Department, Higher Institute of Engineering and Technology, New Damietta , Egypt
^{1,2,3}Department of Mathematics, Faculty of Science and Arts, University of Jeddah, Khulais, Kingdom of Saudi Arabia
^{2,3}Department of Mathematics, Faculty of Science Tunis, University of Tunis El Manar ,Tunisia
¹samar_math@yahoo.com ²samah.horrigue@fst.rnu.tn, ³abdeljabbar.ghanmi@lamsin.rnu.tn

Abstract

In this paper, we introduce $\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}$, which is a new operator by using generalized Mittag-Leffler function. Also, we defined meromorphic subclasses associated $\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}$. Finally, we calculated inclusion relations by using $\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}$ and integral operator F_{μ}

Keywords: Meromorphic functions, Hadamard product, Mittag-Leffler function, inclusion.

1. Introduction

rst, we prepared a definition of \sum as follows:

$$f(z) = z^{-1} + \sum_{n=0}^{\infty} a_n z^n, \tag{1.1}$$

which is analytic in the punctured unit disk $\mathbb{U}^* = \mathbb{U} \setminus \{0\}$ where $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$. For f given by (1.1) and g given by

$$g(z) = z^{-1} + \sum_{n=0}^{\infty} b_n z^n, \tag{1.2}$$

the Hadamard product (or convolution) of f and g is defined by

$$(f * g)(z) = z^{-1} + \sum_{n=0}^{\infty} a_n b_n z^n = (g * f)(z).$$
(1.3)

A function $f(z) \in \Sigma$ is said to meromorphically starlike function of order δ in \mathbb{U}^* , if and only if

$$\Re\left\{\frac{zf'(z)}{f(z)}\right\} < -\delta \quad (0 \le \delta < 1; z \in \mathbb{U}^*). \tag{1.4}$$

We denote by $\Sigma S^*(\delta)$ the class of all meromorphically starlike functions of order δ . A function $f(z) \in \Sigma$ is said to be meromorphically convex function of order δ in \mathbb{U}^* , if and only if

$$\Re\left\{1 + \frac{zf''(z)}{f'(z)}\right\} < -\delta \quad (0 \le \delta < 1; z \in \mathbb{U}^*). \tag{1.5}$$

We denote by $\Sigma C(\delta)$ the class of all meromorphically convex functions of order δ . It is easy to observe from (1.4) and (1.5) that

$$f(z) \in \Sigma C(\delta) \iff -zf'(z) \in \Sigma S^*(\delta).$$
 (1.6)

A function $f(z) \in \Sigma$ is said to be meromorphically close-to-convex function of order σ and type δ in \mathbb{U}^* , if there exists a function $g \in \Sigma S^*(\delta)$ such that

$$\Re\left\{\frac{zf'(z)}{g(z)}\right\} < -\sigma \quad (0 \le \delta, \sigma < 1; z \in \mathbb{U}^*). \tag{1.7}$$

We denote by $\Sigma K(\sigma, \delta)$ the class of all meromorphically close-to-convex function of order σ and type δ . A function $f(z) \in \Sigma$ is said to be meromorphically quasi-convex functions of order σ and type δ in \mathbb{U}^* , if there exists a function $g \in \Sigma C(\delta)$ such that

$$\Re\left\{\frac{\left(zf'\left(z\right)\right)'}{g'\left(z\right)}\right\} < -\sigma \quad (0 \le \delta, \sigma < 1; z \in \mathbb{U}^*). \tag{1.8}$$

We denote by $\Sigma K^*(\sigma, \delta)$ the class of all meromorphically quasi-convex functions of order σ and type δ . It follows from (1.7) and (1.8) that

$$f(z) \in \Sigma K^*(\sigma, \delta) \Longleftrightarrow -zf'(z) \in \Sigma K(\sigma, \delta).$$
 (1.9)

Let the Mittag-Leffler function $E_{\alpha}(z)$ (see [14], see also [2], [8], [9], [12], [13] and [18]) defined as follows:

$$E_{\alpha}(z) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(\alpha n + 1)} \quad (\alpha \in \mathbb{C}, Re(\alpha) > 0).$$
 (1.10)

A more general function $E_{\alpha}(z)$ is $E_{\alpha,\beta}(z)$ was introduced by Wiman (see [15, 16]) and given by

$$E_{\alpha,\beta}(z) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(\alpha n + \beta)} \quad (z \in \mathbb{C}).$$
 (1.11)

For $\alpha, \beta, \gamma \in \mathbb{C}$, $Re(\alpha) > \max\{0, Re(k) - 1\}$ and Re(k) > 0 Srivastava and Tomovski [17] introduced the function $E_{\alpha,\beta}^{\gamma,k}(z)$ in the form

$$E_{\alpha,\beta}^{\gamma,k}(z) = \sum_{n=0}^{\infty} \frac{(\gamma)_{nk} z^n}{\Gamma(\alpha n + \beta) n!} \quad (z \in \mathbb{C}).$$
 (1.12)

Now, by using (1.12) we define the function $\mathfrak{K}_{\alpha,\beta}^{\gamma,k}(z)$ as follows:

$$\mathfrak{K}_{\alpha,\beta}^{\gamma,k}(z) = \Gamma(\beta)z^{-1}E_{\alpha,\beta}^{\gamma,k}(z).$$

It follows that, for $\alpha, \beta, \gamma \in \mathbb{C}$, $Re(\alpha) > \max\{0, Re(k) - 1\}$ and Re(k) > 0 that

$$\mathfrak{K}_{\alpha,\beta}^{\gamma,k}(z) = z^{-1} + \sum_{n=0}^{\infty} \frac{(\gamma)_{(n+1)k} \ \Gamma(\beta)z^n}{\Gamma[\alpha(n+1) + \beta](n+1)!} (z \in \mathbb{C}). \tag{1.13}$$

By using the convolution, we can define the function $\mathbb{K}_{\alpha,\beta}^{\gamma,k}(f)(z)$ as follows:

$$\mathbb{K}_{\alpha,\beta}^{\gamma,k}(f)(z) = \mathfrak{K}_{\alpha,\beta}^{\gamma,k}(z) * f(z),$$

$$= z^{-1} + \sum_{n=0}^{\infty} \frac{\Gamma[\gamma + k(n+1)] \Gamma(\beta)}{\Gamma(\gamma)\Gamma[\alpha(n+1) + \beta](n+1)!} a_n z^n.1.14$$
(1)

For $\alpha, \beta, \gamma \in \mathbb{C}$, $Re(\alpha) > \max\{0, Re(k) - 1\}$, Re(k) > 0, $\eta \ge 0$, $m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$ and $\mathbb{N} = \{1, 2, ...\}$, we define a new linear operator $\mathbb{I}_{\alpha, \beta, \eta}^{\gamma, k, m}(f)(z) : \sum \to \sum$ as follows:

$$\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,0}(f)(z) = \mathbb{K}_{\alpha,\beta}^{\gamma,k}(f)(z),$$

$$\begin{split} \mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,1}(f)(z) &= (1-\eta)\mathbb{K}_{\alpha,\beta}^{\gamma,k}(f)(z) + \eta z^{-1}[z^2\mathbb{K}_{\alpha,\beta}^{\gamma,k}(f)(z)]' \\ &= z^{-1} + \sum_{n=0}^{\infty} \frac{\Gamma[\gamma + k(n+1)] \ \Gamma(\beta)}{\Gamma(\gamma)\Gamma[\alpha(n+1) + \beta](n+1)!} \ [1 + \eta(n+1)] a_n z^n, \end{split}$$

$$\begin{split} \mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,2}(f)(z) &=& \mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,1}[\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,1}(f)(z)] = (1-\eta)\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,1}(f)(z) + \eta z^{-1}[z^2\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,2}(f)(z)]' \\ &=& z^{-1} + \sum_{n=0}^{\infty} \frac{\Gamma[\gamma + k(n+1)] \ \Gamma(\beta)}{\Gamma(\gamma)\Gamma[\alpha(n+1) + \beta](n+1)!} \ [1 + \eta(n+1)]^2 a_n z^n. \end{split}$$

By induction we prove that

$$\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}(f)(z) = z^{-1} + \sum_{n=0}^{\infty} \frac{\Gamma[\gamma + k(n+1)] \ \Gamma(\beta)}{\Gamma(\gamma)\Gamma[\alpha(n+1) + \beta](n+1)!} \ [1 + \eta(n+1)]^m a_n z^n. \tag{1.15}$$

Note that by taking m = 0 in (1.15), we get (1.14)

Remark 1:

(i)
$$\mathbb{I}_{0,\beta,n}^{1,1,0}(f)(z) = f(z);$$

(ii)
$$\mathbb{I}_{0,\beta,\eta}^{2,1,0}(f)(z) = 2f(z) + zf'(z);$$

(iii)
$$\mathbb{I}_{1,1,\eta}^{1,1,0}(\frac{1}{z(1-z)}) = z^{-1}e^z$$

(iv)
$$\mathbb{I}_{2,1,\eta}^{1,1,0}(\frac{1}{z(1-z)}) = z^{-1}\cosh(\sqrt{z})$$

(v)
$$\mathbb{I}^{1,1,0}_{2,2,\eta}(\frac{1}{z(1-z)}) = \frac{\sinh\left(\sqrt{z}\right)}{\sqrt{z^3}}$$

Observe that:

(a)
$$\mathbb{I}_{0,\beta,\eta}^{1,1,m}(f)(z) = D_{\eta}^m f(z)$$
 (see [1], ([4-6]) with $l = p = 1$ and [3] with $p = 1$);

(b)
$$\mathbb{I}_{0,\beta,1}^{1,1,m}(f)(z) = D_{1,1}^m f(z)$$
 (see [1]);

(c)
$$\mathbb{II}_{\alpha,\beta,\eta}^{\gamma,k,0}(f)(z)=M_{1,\beta,\eta}^{\gamma,k}f(z)$$
 (see [11] with p=1)

2. Materials and Methods

Lemma 1. Let $f \in \sum$, then the operator $I_{\alpha,\beta,\eta}^{\gamma,k,m}(f)(z)$ achieve the following relations

$$(i) \quad z[\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}(f)(z)]' = \frac{\gamma}{k} \mathbb{I}_{\alpha,\beta,\eta}^{\gamma+1,k,m}(f)(z) - \left(\frac{\gamma+k}{k}\right) \mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}(f)(z), \tag{2.1}$$

$$(ii) \quad z\alpha[\mathbb{I}_{\alpha,\beta+1,\eta}^{\gamma,k,m}(f)(z)]' = \beta\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}(f)(z) - (\alpha+\beta)\mathbb{I}_{\alpha,\beta+1,\eta}^{\gamma,k,m}(f)(z), \tag{2.2}$$

$$(iii) \quad z[\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}(f)(z)]' = \frac{1}{\eta} \mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m+1}(f)(z) - \left(1 + \frac{1}{\eta}\right) \mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}(f)(z), \tag{2.3}$$

$$(\alpha, \beta, \gamma \in \mathbb{C}, Re(\alpha) > \max\{0, Re(k) - 1\}, Re(k) > 0, \eta \ge 0, m \in \mathbb{N}_0).$$

Next, by using the operator $\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}$, the classes $\Sigma S^*(\delta)$, $\Sigma C(\delta)$, $\Sigma K(\delta,\sigma)$ and $\Sigma K^*(\delta,\sigma)$ which defined, respectively, by relations (1.4), (1.5), (1.7) and (1.8), we introduce the following new classes of meromorphic functions for $0 \le \delta, \sigma < 1$:

$$\begin{split} &\Sigma S_{\alpha,\beta,\eta}^{*,\gamma,k,m} = \left\{ f \in \Sigma : \mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m} f \in \Sigma S^*(\delta) \right\}, \\ &\Sigma C_{\alpha,\beta,\eta}^{\gamma,k,m} = \left\{ f \in \Sigma : \mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m} f \in \Sigma C(\delta) \right\}, \\ &\Sigma K_{\alpha,\beta,\eta}^{\gamma,k,m} = \left\{ f \in \Sigma : \mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m} f \in \Sigma K(\delta,\sigma) \right\}. \end{split}$$

and

$$\Sigma K_{\alpha,\beta,\eta}^{*,\gamma,k,m} = \left\{ f \in \Sigma : \mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m} f \in \Sigma K^*(\delta,\sigma) \right\}.$$

We can see that:

$$f(z) \in \Sigma C_{\alpha,\beta,\eta}^{\gamma,k,m} \iff -zf'(z) \in \Sigma S_{\alpha,\beta,\eta}^{*,\gamma,k,m}$$
(2.4)

and

$$f(z) \in \Sigma K_{\alpha,\beta,\eta}^{*,\gamma,k,m} \iff -zf'(z) \in \Sigma K_{\alpha,\beta,\eta}^{\gamma,k,m}. \tag{2.5}$$

Lemma 2 [7]. Let $\varphi(u,v)$ be complex-valued function such that,

$$\varphi: D \longrightarrow \mathbb{C}, \ (D \subset \mathbb{C} \times \mathbb{C})$$

 \mathbb{C} being (as usual) the complex plane and let $u = u_1 + iu_2$, $v = v_1 + iv_2$. Suppose that $\varphi(u, v)$ satisfies the following conditions:

- i) $\varphi(u,v)$ is continuous in D;
- *ii*) $(1,0) \in D$ and $\Re{\{\varphi(1,0)\}} > 0$;
- iii) $\Re\{\varphi(iu_2, v_1)\} \le 0$ for all $(iu_2, v_1) \in D$ and such that $v_1 \le -\frac{(1+u_2^2)}{2}$.

Let

$$h(z) = 1 + h_1 z + h_2 z^2 + \dots, (2.6)$$

be regular in \mathbb{U} such that $(h(z), zh'(z)) \in D$ for all $z \in \mathbb{U}$. If

$$\Re\{\varphi(h(z), zh'(z))\} > 0 \ (z \in \mathbb{U}),$$

then

$$\Re\{h(z)\} > 0 \ (z \in \mathbb{U}).$$

Lemma 3 [9]. Let the (nonconstant) function w(z) be analytic in $\mathbb{U} = \{z : |z| < 1\}$, with w(0) = 0. If |w(z)| attains its maximum value on the circle |z| = r < 1 at a point $z_0 \in \mathbb{U}$, then

$$z_0 w'(z_0) = \xi w(z_0) \,,$$

where ξ is a real number and $\xi \geq 1$.

In the following section, we will get inclusion properties which associate the operator $\mathbb{I}^{\gamma,k,m}_{\alpha,\beta,\eta}$ with the classes $\Sigma S^{*,\gamma,k,m}_{\alpha,\beta,\eta}$, $\Sigma C^{\gamma,k,m}_{\alpha,\beta,\eta}$, $\Sigma K^{\gamma,k,m}_{\alpha,\beta,\eta}$ and $\Sigma K^{*,\gamma,k,m}_{\alpha,\beta,\eta}$.

3. Results and Discussion

Unless otherwise mentioned, we assume throughout this paper that $\alpha, \beta, \gamma \in \mathbb{C}$, $Re(\alpha) > \max\{0, Re(k) - 1\}, Re(k) > 0, \eta > 0$ and $m \in \mathbb{N}_0$.

Theorem 1. If $f(z) \in \Sigma$, $Re(\beta) > 1$, $Re(\frac{\gamma}{k}) > 0$, then

$$\Sigma S_{\alpha,\beta,\eta}^{*,\gamma+1,k,m} \subset \Sigma S_{\alpha,\beta,\eta}^{*,\gamma,k,m} \subset \Sigma S_{\alpha,\beta+1,\eta}^{*,\gamma,k,m}, \tag{3.1}$$

and

$$\Sigma S_{\alpha,\beta,\eta}^{*,\gamma,k,m+1} \subset \Sigma S_{\alpha,\beta,\eta}^{*,\gamma,k,m}. \tag{3.2}$$

Proof. To prove the first part of (3.1), let $f \in \Sigma S^{*,\gamma+1,k,m}_{\alpha,\beta,\eta}$ and

$$\frac{z\left(\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}f(z)\right)'}{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}f(z)} = -\delta - (1-\delta)h(z) , \qquad (3.3)$$

where h is given by (2.6). Applying (2.1) in (3.3), we obtain

$$\frac{\gamma}{k} \frac{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma+1,k,m} f(z)}{\mathbb{I}_{\alpha,\beta,n}^{\gamma+1,k,m} f(z)} = -\delta - (1-\delta)h(z) + \frac{k+\gamma}{k}.$$
(3.4)

Differentiating (3.4) logarithmically with respect to z, we have

$$\frac{z(\mathbb{I}_{\alpha,\beta,\eta}^{\gamma+1,k,m}f(z))'}{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma+1,k,m}f(z)} = \frac{z\left(\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}f(z)\right)'}{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}f(z)} + \frac{(1-\delta)zh'(z)}{(1-\delta)h(z) + \delta - \left(\frac{k+\gamma}{k}\right)} \ (z \in \mathbb{U}),$$

which, by (3.3), we get

$$\frac{z(\mathbb{I}_{\alpha,\beta,\eta}^{\gamma+1,k,m}f(z))'}{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma+1,k,m}f(z)} = -\delta - (1-\delta)h(z) + \frac{(1-\delta)zh'(z)}{(1-\delta)h(z) + \delta - \left(\frac{k+\gamma}{k}\right)}.$$
(3.5)

Let

$$\varphi(u,v) = (1-\delta)u - \frac{(1-\delta)v}{(1-\delta)u + \delta - \left(\frac{k+\gamma}{k}\right)},\tag{3.6}$$

with $h(z) = u = u_1 + iu_2$, $zh'(z) = v = v_1 + iv_2$. Then

- $i) \ \varphi(u,v) \ is \ continuous \ in \ D = \mathbb{C}\backslash \left\{1+\tfrac{(\gamma/k)}{1-\delta}\right\}\times \mathbb{C},$
- ii) $(1,0) \in D$ and $\Re{\{\varphi(1,0)\}} = 1 \delta$,
- iii) $\Re\{\varphi(iu_2, v_1)\} \le 0$ for all $(iu_2, v_1) \in D$ and such that $v_1 \le -\frac{(1+u_2^2)}{2}$,

$$\begin{split} \Re\{\varphi(iu_2,v_1)\} &= \Re\left\{\frac{-(1-\delta)v_1}{(1-\delta)iu_2+\delta-\left(\frac{k+\gamma}{k}\right)}\right\} \\ &= \frac{(1-\delta)\left[\left(\frac{k+\gamma}{k}\right)-\delta\right]v_1}{\left[\delta-\left(\frac{k+\gamma}{k}\right)\right]^2+(1-\delta)^2u_2^2} \\ &\leq -\frac{(1-\delta)(1+u_2^2)\left[\left(\frac{k+\gamma}{k}\right)-\delta\right]}{2\left[\left[\delta-\left(\frac{k+\gamma}{k}\right)\right]^2+(1-\delta)^2u_2^2\right]} \\ &< 0 \end{split}$$

Therefore, the function $\varphi(u,v)$ satisfies the conditions in Lemma 2. Thus, we have $Re\{h(z)\} > 0$, that is, $f \in \Sigma S_{\alpha,\beta,\eta}^{*,\gamma,k,m}$. By using the similar arguments to those details above with (2.2) instead of (2.1), we can see that the conditions of Lemma 2 are satisfied for the second part in (3.1) with $\mathcal{D} = \mathbb{C} \setminus \left\{1 + \frac{\alpha + \beta - 1}{1 - \delta}\right\} \times \mathbb{C}$.

We can prove (3.2) by using the similar arguments to those detailed above with (2.3) instead of (2.1) with $\mathbf{D} = \mathbb{C} \setminus \left\{1 + \frac{1/\eta}{1-\delta}\right\} \times \mathbb{C}$, so we omitted the proof of (3.2). Therefore, the proof of Theorem 1 is completed.

Theorem 2. If $f(z) \in \Sigma$, then

$$\sum C_{\alpha,\beta,n}^{\gamma+1,k,m} \subset \sum C_{\alpha,\beta,n}^{\gamma,k,m} \subset \sum C_{\alpha,\beta+1,n}^{\gamma,k,m}, \tag{3.7}$$

and

$$\Sigma C_{\alpha,\beta,\eta}^{\gamma,k,m+1} \subset \Sigma C_{\alpha,\beta,\eta}^{\gamma,k,m}. \tag{3.8}$$

Proof. To prove (3.7) applying (2.4) and using Theorem 1, we observe that

$$f(z) \in \Sigma C^{\gamma+1,k,m}_{\alpha,\beta,\eta} \iff -zf'(z) \in \Sigma S^{*,\gamma+1,k,m}_{\alpha,\beta,\eta}$$

$$\implies -zf'(z) \in \Sigma S^{*,\gamma,k,m}_{\alpha,\beta,\eta} \iff f(z) \in \Sigma C^{\gamma,k,m}_{\alpha,\beta,\eta}.$$

Also

$$= f(z) \in \Sigma C^{\gamma,k,m}_{\alpha,\beta,n} \iff -zf'(z) \in \Sigma S^{*,\gamma,k,m}_{\alpha,\beta,n}$$

$$\implies -zf'(z) \in \Sigma S^{*,\gamma,k,m}_{\alpha,\beta+1,\eta} \iff f(z) \in \Sigma C^{\gamma,k,m}_{\alpha,\beta+1,\eta}$$

By the same manner we can prove (3.8) which evidently completes Theorem 2.

Theorem 3. If $f(z) \in \Sigma$, then

$$\Sigma K_{\alpha,\beta,\eta}^{\gamma+1,k,m} \subset \Sigma K_{\alpha,\beta,\eta}^{\gamma,k,m} \subset \Sigma K_{\alpha,\beta+1,\eta}^{\gamma,k,m}, \tag{3.9}$$

and

$$\Sigma K_{\alpha,\beta,\eta}^{\gamma,k,m+1} \subset \Sigma K_{\alpha,\beta,\eta}^{\gamma,k,m}. \tag{3.10}$$

Proof. To prove the first inclusion, let $f(z) \in \Sigma K_{\alpha,\beta,\eta}^{\gamma+1,k,m}$. Then, there exists a function $g(z) \in \Sigma S_{\alpha,\beta,\eta}^{*,\gamma+1,k,m}$ such that

$$\Re\left(\frac{z(\mathbb{I}_{\alpha,\beta,\eta}^{\gamma+1,k,m}f(z))'}{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma+1,k,m}g(z)}\right)<-\sigma.$$

Let

$$\frac{z(\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}f(z))'}{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}g(z)} = -\sigma - (1-\sigma)h(z),\tag{3.11}$$

where h(z) is given by (2.6). Using (2.1), we have

$$\begin{split} \frac{z(\mathbb{I}_{\alpha,\beta,\eta}^{\gamma+1,k,m}f(z))^{'}}{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma+1,k,m}g(z)} &= \frac{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma+1,k,m}\left(zf^{\prime}(z)\right)}{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma+1,k,m}g(z)} \\ &= \frac{z\left(\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}(zf^{\prime}(z))\right)^{'} + \left(\frac{k+\gamma}{k}\right)\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}\left(zf^{\prime}(z)\right)}{z\left(\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}g(z)\right)^{'} + \left(\frac{k+\gamma}{k}\right)\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}g(z)} \\ &= \frac{z\left(\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}(zf^{\prime}(z))\right)^{'}}{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}g(z)} + \left(\frac{k+\gamma}{k}\right) \frac{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}\left(zf^{\prime}(z)\right)}{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}g(z)} \\ &= \frac{z\left(\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}g(z)\right)^{'}}{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}g(z)} + \left(\frac{k+\gamma}{k}\right) \frac{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}g(z)}{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}g(z)}. \end{split}$$

Since $g(z) \in \Sigma S_{\alpha,\beta,\eta}^{*,\gamma+1,k,m} \subset \Sigma S_{\alpha,\beta,\eta}^{*,\gamma,k,m}$, from Theorem 1, we have

$$\frac{z(\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}g(z))'}{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}g(z)} = -\delta - (1-\delta)\chi(z),\tag{3.12}$$

where $\chi(z) = g_1(x, y) + ig_2(x, y)$ and $\Re \{\chi(z)\} = g_1(x, y) > 0$ in \mathbb{U} . Then, by using (3.11), we have

$$\frac{z(\mathbb{I}_{\alpha,\beta,\eta}^{\gamma+1,k,m}f(z))'}{\mathbb{I}_{\alpha+1,k,m}^{\gamma+1,k,m}g(z)} = \frac{\frac{z(\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}(zf'(z)))'}{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}g(z)} - (\frac{k+\gamma}{k})[\sigma + (1-\sigma)h(z)]}{-\delta - (1-\delta)\chi(z) + (\frac{k+\gamma}{k})}.$$
(3.13)

Differentiating (3.11) with respect to z, we have

$$\frac{z\left(z\left(\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}f(z)\right)'\right)'}{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}g(z)} = -(1-\sigma)zh'(z) + \left[\delta + (1-\delta)\chi(z)\right]\left[\sigma + (1-\sigma)h(z)\right]. \tag{3.14}$$

By substituting (3.14) into (3.13), we have

$$\frac{z(\mathbb{I}_{\alpha,\beta,\eta}^{\gamma+1,k,m}f(z))^{'}}{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma+1,k,m}g(z)}+\sigma=-\left\{(1-\sigma)h(z)-\frac{(1-\sigma)zh'(z)}{(1-\delta)\,\chi(z)+\delta-\left(\frac{k+\gamma}{k}\right)}\right\}.$$

Let

$$\varphi(u,v) = (1-\sigma)u - \frac{(1-\sigma)v}{(1-\delta)\chi(z) + \delta - \left(\frac{k+\gamma}{k}\right)},$$

with $h(z) = u = u_1 + iu_2$, $zh'(z) = v = v_1 + iv_2$. Then

i) $\varphi(u,v)$ is continuous in $\mathring{D} = \mathbb{C} \backslash D^* \times \mathbb{C}$, where

$$D^* = \{z : z \in \mathbb{C} \text{ and } \Re\{\chi(z)\} = g_1(x, y) > 1 + \frac{\gamma}{k(1 - \delta)}\},\$$

- *ii*) $(1,0) \in D$ and $\Re{\{\varphi(1,0)\}} = (1-\sigma)$,
- iii) $\Re\{\varphi(iu_2, v_1)\} \le 0$ for all $(iu_2, v_1) \in D$ and such that $v_1 \le -\frac{(1+u_2^2)}{2}$,

$$\Re\{\varphi(iu_{2}, v_{1})\} = \Re\left\{\frac{-(1-\sigma)v_{1}}{(1-\delta)\chi(z) + \delta - \left(\frac{k+\gamma}{k}\right)}\right\} \\
= \frac{(1-\sigma)\left[\left(\frac{k+\gamma}{k}\right) - \delta - (1-\delta)g_{1}(x,y)\right]v_{1}}{\left[(1-\delta)g_{1}(x,y) + \delta - \left(\frac{k+\gamma}{k}\right)\right]^{2} + \left[(1-\delta)g_{2}(x,y)\right]^{2}} \\
\leq -\frac{(1-\sigma)(1+u_{2}^{2})\left[\left(\frac{k+\gamma}{k}\right) - \delta - (1-\delta)g_{1}(x,y)\right]}{2\left\{\left[(1-\delta)g_{1}(x,y) + \delta - \left(\frac{k+\gamma}{k}\right)\right]^{2} + \left[(1-\delta)g_{2}(x,y)\right]^{2}\right\}} \\
\leq 0$$

Therefore, the function $\varphi\left(u,v\right)$ satisfies the conditions of Lemma 2. Thus we have $Re\{h(z)\} > 0$, that is, $f \in \Sigma K_{\alpha,\beta,\eta}^{\gamma,k,m}$. By using the similar arguments to those details above with (2.2) instead of (2.1), we can see that the conditions of Lemma 2 are satisfied for the second part of (3.9) with $Q = \mathbb{C}\backslash Q^* \times \mathbb{C}$, where $Q^* = \{z : z \in \mathbb{C} \text{ and } \Re\{\chi(z)\} = g_1(x,y) > 1 + \frac{\alpha+\beta-1}{1-\delta}\}$.

We can prove (3.10) by using the similar arguments to these precedent details with (2.3) instead of (2.1) with $B = \mathbb{C}\backslash B^* \times \mathbb{C}$, where $B^* = \{z : z \in \mathbb{C} \text{ and } \Re\{\chi(z)\} = g_1(x,y) > 1 + \frac{1/\eta}{1-\delta}\}$, so we omitted the proof of (3.10). Therefore, the proof of Theorem 3 is completed.

Theorem 4. If $f(z) \in \Sigma$, then

$$\Sigma K_{\alpha,\beta,\eta}^{*,\gamma+1,k,m} \subset \Sigma K_{\alpha,\beta,\eta}^{*,\gamma,k,m} \subset \Sigma K_{\alpha,\beta+1,\eta}^{*,\gamma,k,m},$$

and

$$\Sigma K_{\alpha,\beta,\eta}^{*,m+1,k,m} \subset \Sigma K_{\alpha,\beta,\eta}^{*,\gamma,k,m}$$

Proof. Just as we derived Theorem 2 as a consequence of Theorem 1 by using the equivalence (2.4), we can also prove Theorem 4 by using Theorem 3 in conjunction with the equivalence (2.5).

Let F_{μ} be the integral operator

$$F_{\mu}(f)(z) = \frac{\mu}{z^{\mu}} \int_{0}^{z} t^{\mu} f(t) dt = (z^{-1} + \sum_{k=0}^{\infty} \frac{\mu}{\mu + k + 1} z^{k}) * f(z)$$
$$(f \in \Sigma; \mu > 0; z \in \mathbb{U}^{*}).$$

$$z(\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}F_{\mu}(f)(z))' = \mu \mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}(f)(z) - (\mu+1)\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}F_{\mu}(f)(z) \quad (\mu > 0).$$
(3.15)

In the following theorems we will get inclusion properties which associate the operator F_{μ} with the classes $\Sigma S_{\alpha,\beta,\eta}^{*,\gamma,k,m}$, $\Sigma C_{\alpha,\beta,\eta}^{\gamma,k,m}$, $\Sigma K_{\alpha,\beta,\eta}^{\gamma,k,m}$.

Theorem 5. If $f(z) \in \Sigma$, $\mu > 0$ and $f(z) \in \Sigma S_{\alpha,\beta,\eta}^{*,\gamma,k,m}$, then $F_{\mu}(f)(z) \in \Sigma S_{\alpha,\beta,\eta}^{*,\gamma,k,m}$.

Proof. Let $f \in \Sigma S_{\alpha,\beta,\eta}^{*,\gamma,k,m}$ and set

$$\frac{z\left(\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}F_{\mu}(f)(z)\right)'}{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}F_{\mu}(f)(z)} = -\frac{1 + (1 - 2\delta)w(z)}{1 - w(z)},$$
(3.16)

where w(0) = 0. Using (3.15) in (3.16), we obtain

$$\frac{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}f(z)}{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}F_{\mu}(f)(z)} = \frac{\mu - (\mu + 2 - 2\delta)w(z)}{\mu \left[1 - w(z)\right]}.$$
(3.17)

Differentiating (3.17) logarithmically with respect to z, we have

$$\frac{z(\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}f(z))'}{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}f(z)} = -\frac{1 + (1 - 2\delta)w(z)}{1 - w(z)} + \frac{zw'(z)}{1 - w(z)} - \frac{(\mu + 2 - 2\delta)zw'(z)}{\mu - (\mu + 2 - 2\delta)w(z)},$$
(3.18)

so that

$$\frac{z(\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}f(z))'}{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}f(z)} + \delta = \frac{(1-\delta)(1+w(z))}{1-w(z)} + \frac{zw'(z)}{1-w(z)} - \frac{(\mu+2-2\delta)zw'(z)}{\mu-(\mu+2-2\delta)w(z)}.$$
(3.19)

Let $\max_{|z|\leq |z_0|}|w(z)|=|w(z_0)|=1,\ z_0\in\mathbb{U}$ and applying Lemma 3, we have

$$z_0w'(z_0) = \zeta w(z_0) \ \zeta \ge 1.$$

If we set $w(z_0) = e^{i\theta}$, $\theta \in \mathbb{R}$ in (3.19) and observe that

$$\Re\left\{\frac{(1-\delta)(1+w(z_0))}{1-w(z_0)}\right\} = 0,$$

then, we have

$$\Re \left\{ \frac{z(\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m} f(z_0))'}{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m} f(z_0)} + \delta \right\} = \Re \left\{ \frac{z_0 w'(z_0)}{1 - w(z_0)} - \frac{(\mu + 2 - 2\delta)z_0 w'(z_0)}{\mu - (\mu + 2 - 2\delta)w(z_0)} \right\} \\
= \Re \left\{ -\frac{2(1 - \delta)\zeta e^{i\theta}}{(1 - e^{i\theta})(\mu - (\mu + 2 - 2\delta)e^{i\theta})} \right\} \\
= \frac{2\zeta(1 - \delta)(\mu + 1 - \delta)}{\mu^2 - 2\mu(\mu + 2 - 2\delta)\cos\theta + (\mu + 2 - 2\delta)^2} \\
> 0,$$

which obviously contradicts the hypothesis $f(z) \in \Sigma S_{\alpha,\beta,\eta}^{*,\gamma,k,m}$. Consequently, we can deduce that |w(z)| < 1 for any $z \in \mathbb{U}$, which, in view of (3.16), proves the integral-preserving property asserted by Theorem 5.

 $\textbf{Theorem 6.} \ \ \textit{If} \ \ f(z) \in \Sigma, \ \ \mu > 0 \ \ \textit{and} \ \ f(z) \in \Sigma C_{\alpha,\beta,\eta}^{\gamma,k,m}, \ \ \textit{then} \ \ F_{\mu}(f)(z) \in \Sigma C_{\alpha,\beta,\eta}^{\gamma,k,m}.$

Proof. Applying (2.4) and using Theorem 5, we observe that

$$f(z) \in \Sigma C^{\gamma,k,m}_{\alpha,\beta,\eta} \iff -zf'(z) \in \Sigma S^{*,\gamma,k,m}_{\alpha,\beta,\eta} \implies F_{\mu}\left(-zf'(z)\right) \in \Sigma S^{*,\gamma,k,m}_{\alpha,\beta,\eta}$$

$$\iff -z\left(F_{\mu}f(z)\right)' \in \Sigma C^{\gamma,k,m}_{\alpha,\beta,\eta} \implies F_{\mu}(f)(z) \in \Sigma C^{\gamma,k,m}_{\alpha,\beta,\eta}$$

which evidently proves Theorem 6.

Theorem 7. If $f(z) \in \Sigma$, $\mu > 0$ and $f(z) \in \Sigma K_{\alpha,\beta,\eta}^{\gamma,k,m}$, then $F_{\mu}(f)(z) \in \Sigma K_{\alpha,\beta,\eta}^{\gamma,k,m}$.

Proof. Let $f(z) \in \Sigma K_{\alpha,\beta,\eta}^{\gamma,k,m}$. Then, there exists a function $g(z) \in \Sigma S_{\alpha,\beta,\eta}^{*,\gamma,k,m}$ such that

$$\Re\left(\frac{z(\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}f(z))'}{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}g(z)}\right)<-\sigma.$$

Let

$$\frac{z(\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}F_{\mu}(f)(z))'}{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}F_{\mu}(g)(z)} = -\sigma - (1-\sigma)h(z),\tag{3.20}$$

where h(z) is given by (2.6). Using (3.15), we have

$$\begin{split} \frac{z(\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}f(z))^{'}}{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}g(z)} &= -\frac{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}\left(-zf^{\prime}(z)\right)}{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}g(z)} \\ &= -\frac{z(\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}F_{\mu}\left(-zf^{\prime}(z)\right))^{'} + (\mu+1)\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}F_{\mu}\left(-zf^{\prime}(z)\right)}{z(\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}F_{\mu}(g)(z))^{'} + (\mu+1)\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}F_{\mu}(g)(z)} \\ &= -\frac{z(\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}F_{\mu}\left(-zf^{\prime}(z)\right))^{'}}{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}F_{\mu}\left(g\right)(z)} + (\mu+1)\frac{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}F_{\mu}\left(-zf^{\prime}(z)\right)}{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}F_{\mu}(g)(z)} \\ &= -\frac{z(\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}F_{\mu}\left(g\right)(z))^{'}}{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}F_{\mu}\left(g\right)(z)} + (\mu+1)\frac{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}F_{\mu}\left(g\right)(z)}{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}F_{\mu}\left(g\right)(z)} + \mu+1 \end{split}$$

Since $g(z) \in \Sigma S_{\alpha,\beta,\eta}^{*,\gamma,k,m}$, then from Theorem 5, we have $F_{\mu}(f)(z) \in \Sigma S_{\alpha,\beta,\eta}^{*,\gamma,k,m}$, we set

$$\frac{z(\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}F_{\mu}g(z))'}{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}F_{\mu}g(z)} = -\delta - (1-\delta)\chi(z),\tag{3.21}$$

where $\chi(z) = g_1(x, y) + ig_2(x, y)$. Then

$$\frac{z(\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}f(z))'}{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}g(z)} = \frac{\frac{z(\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}F_{\mu}(-zf'(z)))'}{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}F_{\mu}(g)(z)} + (\mu+1)[\sigma+(1-\sigma)h(z)]}{\delta+(1-\delta)\chi(z)-\mu-1}.$$
(3.22)

Differentiating (3.20) with respect to z, we have

$$\frac{z\left(z\left(\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}F_{\mu}f(z)\right)'\right)'}{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}F_{\mu}g(z)} = -(1-\sigma)zh'(z) + \left[\delta + (1-\delta)\chi(z)\right]\left[\sigma + (1-\sigma)h(z)\right]. \tag{3.23}$$

By substituting (3.23) into (3.22), we have

$$\frac{z(\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}f(z))^{'}}{\mathbb{I}_{\alpha,\beta,\eta}^{\gamma,k,m}g(z)}+\sigma=-\left\{(1-\sigma)h(z)-\frac{(1-\sigma)zh'(z)}{(1-\delta)\,\chi(z)+\delta-\mu-1}\right\}.$$

Let

$$\varphi(u,v) = (1-\sigma)u - \frac{(1-\sigma)v}{(1-\delta)\chi(z) + \delta - \mu - 1},$$

with $h(z) = u = u_1 + iu_2$, $zh'(z) = v = v_1 + iv_2$. We can see that the conditions of Lemma 2 are satisfied with $Q = \mathbb{C} \setminus Q^* \times \mathbb{C}$, where $Q^* = \{z : z \in \mathbb{C} \text{ and } \Re\{\chi(z)\} = g_1(x,y) > 1 + \frac{\mu}{1-\delta}\}$. The remainder of our proof of Theorem 7 is similar to that of Theorem 3, so we choose to omit the analogous details involved. This completes the proof of Theorem 7.

Theorem 8. If $f(z) \in \Sigma$, $\mu > 0$ and $f(z) \in \Sigma K_{\alpha,\beta,\eta}^{*,\gamma,k,m}$, then $F_{\mu}(f)(z) \in \Sigma K_{\alpha,\beta,\eta}^{*,\gamma,k,m}$.

Conclusions

This article have many application in the future we can calculate applications in differential subordination.

References

- [1] F. M. Al-Oboudi, H. A. Al-Zkeri, Applications of Briot Bouquet differential subordination to certain classes of meromorphic functions, Arab J. Math. Sci.,12 (2005) 1-14.
- [2] A.H. Ansari, X. Liu, V.N. Mishra, On Mittag-Leffler function and beyond, Nonlinear Science Letters A, Vol. 8, No. 2, pp. 187-199, June 2017.
- [3] M.K. Aouf and H.M. Hossen, New certeria for meromorphic p-valent starlike functions, Tsukuba J. Math., 17 (1993), no. 2, 481-486.
- [4] M. K. Aouf, A. Shamandy, A.O. Mostafa and S. M. Madian, Properties of some families of meromorphic p-valent functions involving certain dierential operator, Acta Univ. Apulensis, 20 (2009), 7-16.
- [5] R. M. El-Ashwah, A note on certain meromorphic p-valent functions, Appl. Math. Letters, 22 (2009), 1756-1759.
- [6] R. M. El-Ashwah, M. K. Aouf, Some properties of certain subclasses of meromorphically p-valent functions involving extended multiplier transformations, Comput. Math. Appl., 59 (2010) 2111-2120.
- [7] R. M. El-Ashwah, M. K. Aouf, Differential subordination and superordination on p-valent meromorphic function defined by extended multiplier transformations, Europ. J. Pure Appl. Math. 3 (2010) 1070-1085.
- [8] G. Farid, A.U. Rehman, V.N. Mishra, S. Mehmood, Fractional Integral Inequalities of Gruss Type via Generalized Mittag-Leffler Function, Int. J. Anal. Appl., Vol. 17, Issue 4, (2019), pp. 548-558.
- [9] G. Farid, V.N. Mishra, S. Mehmood, Hadamard And Fej\' $\{e\}r-HadamardTypeinequalities for convex and relative convex fundation, International Journal of Analysis and Applications, Vol. 17, No. 5, (2019), pp. 892 903.$
- [9] I.S. Jack, Functions starlike and convex of order α , J. London Math. Soc., 3 (1971), no. 2, 469-474.
- [10] S. S. Miller and P. T. Mocanu, Second differential inequalities in the complex plane, J. Math. Anal. Appl., 65 (1978), 289-305.
- [11] G. M. Mittag-Leffler, Sur la nouvelle fonction E(x), C. R. Acad. Sci. Paris, 137(1903), 554-558.
- [12] E. Mittal, S. Joshi, R.M. Pandey, and V.N. Mishra, Fractional integral and integral transform formulae using generalized Appell hypergeometric function, Nonlinear Science Letters A, Vol. 8, No. 2, pp. 221-227, June 2017.
- [13] V.N. Mishra, D.L. Suthar, S.D. Purohit, Marichev-Saigo-Maeda Fractional Calculus Operators, Srivastava Polynomials and Generalized Mittag-Leffler Function, Cogent Mathematics, (2017), 4: 1320830. DOI: 10.1080/23311835.2017.1320830, pp. 1-11.
- [14] A. O. Mostafa and M.K. Aouf, Some inequalities for meromorphic multivalent functions associated with Mittage-Leffler function, Int. J. Open Problems Complex Analysis, Vol. 10, 1 (2018), 1-8.
- [15] A. Wiman, Über den Fundamental satz in der Theorie der Funcktionen E(x), Acta Math., 29(1905), 191-201.
- [16] A. Wiman, Über die Nullstellun der Funcktionen E(x), Acta Math., 29 (1905), 217-134.
- [17] H.M. Srivastava and Z. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel, Appl. Math. Comp., 211(2009), 198-210.

[18] G. Tomar, V.N. Mishra, Maximum term of the transcendental entire function and Spider's web, Mathematica Slovaca, Vol. 70, No. 1, (2020), pp. 81-86.

Conflicts of Interest

The authors don't have competing for any interests

Funding Statement

Not applying.

Acknowledgments

The authors are grateful to the referees for their valuable suggestions.