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Abstract  

The main idea is to construct a new algebra  and find new  necessary and  sufficient conditions equivalent to  

the existence of fixed point. In this work, an algebra is constructed, called ∆- ordered Banach algebra, we define 

convergent in this new space, Topological structure on ∆ − ordered Banach Algebra and prove this as Housdorff 

space. Also, we define new conditions as ∆ − 𝑙𝑖𝑝𝑠ℎ𝑡𝑖𝑧 , , ∆ − 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛   𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠   in this algebra construct, 

we prove this condition is the existence and uniqueness results of the fixed point. In this paper ,  we prove a 

common fixed point if the self-functions satisfy the new condition which is called  𝜑 − 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 . 

Keywords: Fixed point, Ordered Banach algebra, lipschitz mapping, and contraction mappimg  

Introduction 

It is  known Banach contraction principle and a number of generality in background of metric spaces play a 

fundamental role for several complications of functional analysis, differential and integral equations. 

Gahler (1963) [ 6]  presented the notion of 2-metric spaces as a generalization of an usual metric space. Gahler 

proved that geometrically 𝑑(𝑎, 𝑏, 𝑐) represents the region of a triangle formed by the point 𝑎, 𝑏, 𝑐 𝜖𝑋 equally its 

vertices. 

An usual metric space is a continuous function, but Ha, Cho and While (1988) [15] examined that a 2- metric 

space is not a continuous mapping. Dhage (1984) [5] introduced the notion of a 𝐷- metric space as a generality 

of a 2- metric space; and studied the topological properties of 𝐷- metric space  

Mustafa and Sim (2006) [17] introduced a newfangled metric called 𝐺-metric space .  They show the topological 

constructions of Dhages [4] work unacceptable, after   Sedghi, Shobe and Zhom (2007) [20] presented concept, 

which is named 𝐷∗- metric space, but Fernardcz ,Sle, Saxena, Malviya and Kuman  (2017)[13] generalized an 𝑆- 

metric space to  𝐴-metric space.  

Many researchers have their consideration to generalizing mertic  (see Yan and Shao Yuan  on (2011) [25] , 

Sastry, Srinivas, Chandra and Balaiah (2011) [14], Kim and Soo  (2012)[20],  Dey and Saha (2013) [4],  

Liu and Xu (2013) [8] introduced some concepts of a cone metric space over Banach algebra. Some researchers 

then developed many concepts as,     Nashine and Altun, (2012)[9], Tiwari and Dubey (2013) [22], Arun and 

Zaheer (2014) [3].  But Nashine and Altun (2012) [10] defined cone metric spaces and proved some fixed point 

theorems of contractive maps in such a space using the normality condition. Also,  Rahimi & Soleimani (2014) 

[12] used the notion ordered cone metric space. 

But some scholars have attention about fixed point theorem such as  Badshah, Bhagatand and Shukla(2016)[23]  

how introduced some fixed point theorem for 𝛼-𝜙- metric mapping in 2- metric spaces and Ma, Jiang and 

Hongkaisun (2014) [24] state fixed point theorem on C*-algebra valued metric spaces.  

The point x- that satisfies the equation x = T (x) is called a fixed point of the function T which is considered the 

root of the equation above. To find this root, we first find an initial holding value of x0. Then,  we calculate the 

value of the function T in x0 to get another root called x1 that is  x1 = T (x0) ; and then repeat the process can get 
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a new approximate value x2 = T (x1). Thus, a sequence of root values can be generated by applying the formula 

xn + 1 = T (xn)  for n = 0.1,2, ...  

The fixed point a in the equation above represents the distance of the intersection point of the curves of y = x, 

y = T (x) for each axis x, y . If x0 is the initial fixed point, then T(x0) is the length of the column from x0 on the x 

axis until it intersects the curve of the T- function and since the points on the rectangle y = x are equal to the 

distance from both axes y and x, so the line passing at the point (x0, T (x0)) rectangle the x-axis will intersect the 

line y=x in the x- axis, represent x1 where    

                                          x 1=T(x0) 

In a similar way, we find the remaining points where xn + 1 = T (xn).  Here,  we ask the following question: How do 

we choose the function T to ensure that the generated values are converged from the repeated formula xn + 1 = 

T (xn)? 

To answer the question , we can prove the existence and uniqueness of fixed point under some new conditions 

by constructing a new algebra called ∆ − 𝑜𝑟𝑑𝑒𝑟𝑒𝑑 𝐵𝑎𝑛𝑎𝑐ℎ 𝑎𝑙𝑔𝑒𝑏𝑟𝑎 . 

1- ∆- Ordered Banach  Algebra 

We start this section by a definition of Banach algebra. 

"Definition (2.1)[2] :let  𝐸 is a linear space over field of real numbers .𝐸 is called Banach algebra if 𝐸 is Banach 

space with  an operation of  multiplication is defined as following :for 𝑥, 𝑦, 𝑧 ∈ 𝐴, for all  𝛼 ∈ 𝑅 

1) (𝑥𝑦)𝑧 = 𝑥(𝑦𝑧) 

2) 𝑥(𝑦 + 𝑧) = 𝑥𝑦 + 𝑥𝑧 and (𝑥 + 𝑦)𝑧 = 𝑥𝑧 + 𝑦𝑧 

3) 𝛼(𝑥𝑦) = (𝛼𝑥)𝑦 = 𝑥(𝛼𝑦) 

4) ∥ 𝑥𝑦 ∥≤∥ 𝑥 ∥∥ 𝑦 ∥ 

We consider a Banach algebra has an identity, that is 𝑒𝑥 = 𝑥𝑒 for all 𝑥𝜖𝐸. (Multiplicative identity)  

If there is an element 𝑦𝜖𝐴 such that = 𝑦𝑥 = 𝑒 , 𝑦𝜖𝐸 is called inverse of 𝑥 and denoted by 𝑥−1." 

"Proposition 2.2 [19]: Let 𝐸 be Banach algebra has a unite 𝑒, 𝑥 𝜖𝐸. If the condition spectral radius 

𝜎𝜖(𝑥)˂1(𝑓𝑜𝑟 𝑎𝑙𝑙 𝜀 > 0) , then 

(𝑒 − 𝑥)−1 = ∑ 𝑎𝑖

∞

𝑖=0

 

"Remark 2.3 [19]: Let 𝐸 be Banach algebra with spectral radius 𝜎𝜖(𝑥) of  𝑥 satisfy 𝜎𝜖(𝑥) ≤ ||𝑥||." 

"Remark 2.4 [2]: If 𝜎𝜖(𝑥) < 1, then ∥ 𝑥𝑛 ∥→ 0 as 𝑛 → ∞". 

"Lemma 2.5 [2]: If 𝐸 is a real Banach algebra with cone 𝐶 and if  ѻ ≼ 𝑢 ≼ 𝑐 for each ѻ ≼ 𝑐, therefore 𝑢 = ѻ." 

"Lemma 2.6 [2]: Let 𝐶 be a cone and 𝑎 ≼ 𝑏 + 𝑐 for 𝑐𝜖𝐶, then 𝑎 ≼ 𝑏. 

A sub set 𝐶 of 𝐸 is called a algebra cone of 𝐸 if  

1) 𝐶 non- empty closed and { ѻ, 𝑒} ⊂ 𝐶 
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2) 𝛼𝑎 + 𝛽𝑏 ∈ 𝐶 for all 𝛼, 𝛽 > 0 

3) 𝑥. 𝑦𝜖𝐶   

4) 𝐶 ∩ (−𝐶) = {ѻ}." 

 " We can define a preference ordering ≼ with respect to 𝐶 by 𝑥 ≼ 𝑦 iff𝑦 − 𝑥𝜖𝐶. 𝑥 ≺ 𝑦 with stand for 𝑥 ≼ 𝑦 and 

𝑥 ⋠ 𝑦 the cone 𝐶 is called normal if there exist 𝑁 > 0 such that, for all 𝑥, 𝑦𝜖𝐸  

ѻ ≼ 𝑥 ≼ 𝑦 ⟹∥ 𝑥 ∥≼ 𝑁 ∥ 𝑦 ∥." 

Now, we define a new construction called ∆- ordered Banach algebra. 

Definition 2.7: Let 𝑋 be a non-empty.  A function ∆𝜆: [0, ∞) × 𝑋 × 𝑋 → 𝐸 is called an ∆- metric on 𝑋 if 

1) ∆(𝜆 , x, y)≽ѻ  for 𝑥, 𝑦𝜖𝑋, 𝜆 ≥ 0 

2) 𝑥 = 𝑦 if and only if ∆(𝜆 , x, y) = ѻ  

3) ∆(𝜆 , x, y) = ∆(𝜆 , y, x)  

4)∆(𝜆 , x, y) ≼ ∆(𝜇, 𝑦, 𝑎) for , 𝜇 > 𝜆 > 0 and 𝑥, 𝑦, 𝑎𝜖𝑋 

5) )∆(𝜆 + μ , x, y) ≼ ∆(𝜆 , x, y) + ∆(𝜇, 𝑦, 𝑎) 

The triple  (𝑋, 𝐸, ∆) is called ∆- ordered Banach algebra. 

Example 2.8: Let 𝑋 be locally compact Housdorff space , 𝐶(𝑋) = {𝑓|𝑓: 𝑋 → 𝑅, 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛}, and 

𝐶+(𝑋) = {𝑓 ∈ 𝐶(𝑋): 𝑓(𝑥) ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑋}, define multiplication in the natural way. Therefore  C(X) with 

supermom norm is ordered Banach algebra. It is obvious  𝑡ℎ𝑎𝑡 (C(x), X, ∆) is ∆ − 𝑜𝑟𝑑𝑒𝑟𝑒𝑑 𝐵𝑎𝑛𝑎𝑐ℎ 𝑎𝑙𝑔𝑒𝑏𝑟𝑎 where  

∆: [0, ∞) × 𝑋 × 𝑋 → 𝐶(𝑋)  by Δ(𝜆, 𝑎, 𝑏) = 𝑠𝑢𝑝│𝑓(𝑎) − 𝑓(𝑏)│𝑒𝜆 

2- Topological structure on ∆ − ordered Banach Algebra 

Definition 3.1: Let (𝑋, 𝐸, 𝐶) be ∆ −ordered Banach algebra .  For all  𝑥𝜖𝑋 , for all  𝑐 ≻ѻ , 𝑡ℎ𝑒 𝑠𝑒𝑡  𝐵∆(𝜆, 𝑥, 𝑐) =

{𝑦𝜖𝑋: Δ(𝜆, 𝑥, 𝑦) ≺ 𝑐} is called  ∆-ball with and radius 𝑐 ≻ ѻ 𝑎𝑛𝑑 admits 𝑥 . 

And put 𝛽 = {𝐵∆(𝜆, 𝑥, 𝑐): 𝑥𝜖𝑋, 𝑎𝑛𝑑 𝑐 ≻ ѻ}.  

Theorem 3.2: Let (𝐸, 𝐶) be ordered Banach algebra, then (𝑋, 𝐸, ∆) is a Housdorff space. 

Proof:- Let (𝐸, 𝑋, ∆) be a ∆ − ordered Banach algebra. Let 𝑥, 𝑦 𝜖𝑋 with 𝑥 ≠ 𝑦, 𝜆, 𝜇 ≥ 0 , 𝑤𝑒  𝑡𝑎𝑘𝑒 𝑐 =

Δ(𝜆 + 𝜇, 𝑥, 𝑦), 𝑈 = 𝐵 (𝜆, 𝑥,
𝑐

2
), 𝑉 = 𝐵 (𝜇, 𝑦,

𝑐

2
).  

Then 𝑥𝜖𝑈 and 𝑦𝜖𝑉. We support 𝑈 ∩ 𝑉 ≠ ∅. There exist  𝑎𝜖𝑈 ∩ 𝑉.  

But  Δ(𝜆 + 𝜇, 𝑥, 𝑎) ≼ Δ(𝜆, 𝑥, 𝑎) + Δ(𝜇, 𝑦, 𝑎) ≼
𝑐

2
+

𝑐

2
= 𝑐.  

That is 𝑐 ≺ 𝑐 and this contradiction.            

Then, (𝑋, 𝐸, ∆) is a Housdorff space. 



Journal of Advances in Mathematics Vol 18 (2020) ISSN: 2347-1921                https://rajpub.com/indx.php/jam 

63 
 

Definition 3.3: Let (𝑋, 𝐸, ∆) be  𝑎 ∆ −ordered Banach algebra. A sequence {𝑥𝑛} in (𝑋, ∆) converges to a point  𝑥 

if for every c ∈ 𝐸 𝑤𝑖𝑡ℎ 𝑐 ≻ ѻ, there exist a positive integer 𝑁0 such that Δ(𝜆, 𝑥𝑛 , 𝑥) ≺ 𝑐 for 𝑛 ≥ 𝑁0, we denoted 

by lim
𝑛→∞

𝑥𝑛 = 𝑥  (  𝑥𝑛 → 𝑥  𝑎𝑠 (𝑛 → ∞)). 

Definition 3.4: Let (𝐶, 𝐸, ∆) be  𝑎 ∆ −ordered Banach algebra. A sequence {𝑥𝑛} is said to be Cauchy sequence if 

for each 𝑐 ≻ ѻ there exists a positive integer 𝑁0 such that Δ(𝜆, 𝑥𝑛 , 𝑥𝑚) ≺ 𝑐 for all 𝑛, 𝑚 ≥ 𝑁0. 

Examples 3.5: 𝐿𝑒𝑡 (𝑋, 𝐶(𝑋) , ∆) a  ∆ − ordered Banach algebra in example (3.2) , take the set of rational numbers 

Q.  

Define ∆= [0, ∞) × 𝑋 × 𝑋 → 𝐶(𝑋) is in example. Let {𝑥𝑡} be a sequence defined by 𝛼𝑡 = (1 +
1

𝑡
)𝑡. We note that 

𝑥𝑡𝜖ℚ for each 𝑡𝜖ℤ , note that  Δ(𝜆, 𝑥𝑡 , 𝑥𝑘) = │𝑓(𝑥𝑡) − 𝑓(𝑥𝑘)│𝑒−𝜆 

= │ (1 +
1

𝑡
)

𝑡

− (1 +
1

𝑘
)𝑘│𝑒𝜆  as 𝑡, 𝑘 → ∞  

Δ(𝜆, 𝑥𝑡 , 𝑥𝑘) → 0  

That is for each 𝑐 ≻ 𝜃, there is 𝑁0 ∈ 𝑍+ such that Δ(𝜆, 𝑎𝑡 , 𝑎𝑘) ≺ 𝑐 for all 𝑡, 𝑘 ≥ 𝑁0. 

Thus, {𝑎𝑡} is a Cauchy sequence, but 𝑎𝑡 → 𝑒 as → ∞ , 𝑒 ∉ ℚ. Hence, {𝑎𝑡} is not convergent. 

Definition 3.7: Let (𝑋, 𝐸, ∆) and (𝑋′, 𝐸′, ∆′) are ∆- ordered Banach algebra . A mapping 𝑓: 𝑋 → 𝑋′ is said to be 

continuous at 𝑥 ∈ 𝑋 when ever {𝑥𝑛} convergent to 𝑥, then {𝑓(𝑥𝑛)} is convergent to 𝑓(𝑥). 

Definition 3.8: Let (𝑋, 𝐸, ∆)  be ∆ −ordered Banach algebra , (𝑋, 𝐸, ∆)   is called complete if for each Cauchy 

sequence is convergent in 𝑋. 

Definition 3.9: Let (𝑋, 𝐸, ∆) be ∆ −ordered Banach algebra. A map Τ: 𝑋 → 𝑋 is called Lipchitz if for all 𝑐 ≻ ѻ, 

there exist a vector 𝑁𝜖𝐶 with 𝜎𝜖(𝑁) ≺ 1 for each 𝑥, 𝑦𝜖𝑋 , 

Δ(λ, Τ𝑎 , Τ𝑏) ≼ N. Δ(𝜇, 𝑎, 𝑏) for all 𝑥, 𝑦𝜖𝑋 and 𝜆 ≤ 𝜇  

Example 3.10: Let ([0, ∞), 𝐶(𝑋), ∆) be a ∆- ordered Banach algebra. Define 𝑇: 𝑋 → 𝑋 as follows 𝑇(𝑎) =
𝑎

2
 

  Δ(λ, Τ𝑎, Τ𝑏) = 𝑠𝑢𝑝│𝑓(Τ𝑎)−𝑓(Τ𝑏)│𝑒𝜆  

= 𝑠𝑢𝑝│𝑓 ∘ 𝑇(𝑎) − 𝑓 ∘ 𝑇(𝑏)│𝑒𝜆 = 𝑠𝑢𝑝│𝑓 (
𝑎

2
) − 𝑓 (

𝑏

2
) │𝑒𝜆  

=
1

2
𝑠𝑢𝑝│𝑓(𝑎) − 𝑓(𝑏)│𝑒𝜆  

Δ(𝜇, 𝑎, 𝑏) = 𝑠𝑢𝑝│𝑓(𝑎) − 𝑓(𝑏)│𝑒𝜇  

That is 𝑇 is a  Lipschitz map in 𝑋  

Definition 3.11: Let (𝑋, 𝐸, ∆)be ∆ −ordered Banach algebra. A sequence {𝑥𝑡} is said to be 𝑚- sequence if for all 

𝑚 ≻ ѻ, there exists 𝑡𝜖𝑥𝑡 such that 𝑥𝑡 ≺ 𝑚 for all 𝑛 ≥ 𝑡. 

Lemma 3.12: Let (𝑋, 𝐸, ∆)be ∆ − ordered Banach algebra. {𝑚𝑥𝑡} is a 𝑚- sequence for all 𝑐 ≻ ѻ if the sequence 

{𝑥𝑡} is a 𝑚- sequence in𝐶. 

Proof:- Suppose {𝑥𝑡} is a 𝑚- sequence for all 𝑐 ≻ ѻ, there exists 𝑡𝜖ℤ+ such that 𝑥𝑡 ≺ 𝑐 for 𝑛 > 𝑡. For all  𝑐 ≻ ѻ 

, 𝑚𝑥𝑡 ≼ 𝑚𝑐 by take  
𝑐

𝑚
= 𝑡. 
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3- Main Results  

Definition 4.1: Let (𝑋, 𝐸, ∆) be ∆- ordered Banach algebra. 𝑇: 𝑋 → 𝑋 holds the contradiction condition if   

Δ(𝜆, Τ𝑥 , Τ𝑦) ≼  𝑡𝑛∆(
𝜆

2𝑛 , 𝑥1, 𝑥0) 

Theorem 4.2: Let (𝑋, 𝐸, ∆) be ∆- ordered Banach algebra. Suppose 𝑇: 𝑋 → 𝑋 holds the ∆-contradiction condition 

 Δ(𝜆, Τ𝑥 , Τ𝑦) ≼ 𝑚1Δ ((
𝜆

4
) , 𝑥, Τ𝑥) + 𝑚2Δ ((

𝜆

4
) , Τ𝑥 , 𝑦) + 𝑚3Δ ((

𝜆

4
) , 𝑥, Τ𝑦) + 𝑚4Δ((

𝜆

4
) , 𝑦, Τ𝑦)  

where 0 < ∑ 𝑚𝑖
4
𝑖=1 ≤ 1, for  i=1,2,3,4 Then 𝑇 is a unique fixed point in 𝑋. 

Proof: choose 𝑥0𝜖𝑋, 𝑥1 = 𝑇𝑥0
 and 𝑥𝑛+1 = Τ𝑥𝑛

 

Take 0 < 𝑚𝑖 ≤ 1 , 𝑓𝑜𝑟 𝑖 = 1,2,3,4 

First we see,  

Δ(𝜆, 𝑥𝑛+1, 𝑥𝑛) = Δ(𝜆, Τ𝑥𝑛
, Τ𝑥𝑛−1

) ≼ 𝑚1Δ ((
𝜆

4
) , 𝑥𝑛 , Τ𝑥𝑛

) + 𝑚2Δ ((
𝜆

4
) , 𝑥𝑛−1, 𝑇𝑥𝑛

) + 𝑚3Δ ((
𝜆

4
) , 𝑥𝑛 , Τ𝑥𝑛−1

) +

𝑚4Δ ((
𝜆

4
) , 𝑥𝑛−1, Τ𝑥𝑛−1

) +  

≼ 𝑚1Δ ((
𝜆

4
) , 𝑥𝑛 , 𝑥𝑛+1) + 𝑚2Δ ((

𝜆

4
) , 𝑥𝑛−1, 𝑥𝑛+1) + 𝑚3Δ ((

𝜆

4
) , 𝑥𝑛 , 𝑥𝑛) + 𝑚4Δ ((

𝜆

4
) , 𝑥𝑛−1, 𝑥𝑛) 

≼ 𝑚1Δ((𝜆/4), 𝑥𝑛 , 𝑥𝑛+1) + 𝑚2Δ ((
𝜆

4
) , 𝑥𝑛−1, 𝑥𝑛) + 𝑚3Δ((𝜆/4), 𝑥𝑛 , 𝑥𝑛+1) + 𝑚4Δ ((

𝜆

4
) , 𝑥𝑛−1, 𝑥𝑛)]  

≼ (𝑚1 + 𝑚3)Δ ((
𝜆

4
) , 𝑥𝑛 , 𝑥𝑛+1) + (𝑚2 + 𝑚4)[(Δ ((

𝜆

4
) , 𝑥𝑛 , 𝑥𝑛−1)]  

≼ 𝑡1∆ ((
𝜆

4
) , 𝑥𝑛 , 𝑥𝑛+1) + 𝑡2∆((

𝜆

4
) , 𝑥𝑛 , 𝑥𝑛−1) 

………….≼ 𝑡1
𝑛∆ ((

𝜆

2𝑛) , 𝑥0, 𝑥1) + 𝑡2
𝑛∆ ((

𝜆

2𝑛) , 𝑥1, 𝑥0) 

if follows that 

Δ(𝜆, 𝑥𝑛+1, 𝑥𝑛) ≼ 𝑡1
𝑛∆ ((

𝜆

2𝑛
) , 𝑥0, 𝑥1) + 𝑡2

𝑛∆ ((
𝜆

2𝑛
) , 𝑥1, 𝑥0) 

 Δ(𝜆, 𝑥𝑛+1, x𝑛) = (𝑡1
𝑛 + 𝑡2

𝑛) Δ ((
𝜆

4
) , 𝑥0, 𝑥1) 

Put  𝑘 = (𝑡1
𝑛 + 𝑡2

𝑛) , 

1−𝜀

1+𝜀
≤ │𝑘│ ≤

1+𝜀

1−𝜀
. For 0 < 𝜖 < 1 

It is clearly see that 𝜎𝜖(𝑘) ≺ 1  

Δ(𝜆, 𝑥𝑛+1, 𝑥𝑛) ≼ 𝑘Δ (
𝜆

2𝑛−1 , 𝑥𝑛 , 𝑥𝑛−1) + ⋯ + 𝑘𝑛Δ(
𝜆

2𝑛−1 , 𝑥1, 𝑥0)  

Δ(𝜆, 𝑥𝑛 , 𝑥𝑛+𝑚) ≼ 𝑘𝑚Δ (
𝜆

2𝑛−1 , 𝑥𝑛 , 𝑥𝑛−1) + ⋯ + 𝑘𝑛+𝑚Δ(
𝜆

2𝑛−1 , 𝑥1, 𝑥0)  
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When n, 𝑚 → ∞ we have lim
𝑛,𝑚→∞

Δ(𝜆, 𝑥𝑛 , 𝑥𝑛+𝑚) = ѻ 

Thus {𝑥𝑛} is Cauchy sequence in (𝑋, 𝐸, ∆) 

Since (𝑋, 𝐸, ∆) is Banach algebra  

That is (𝑋, 𝐸, ∆)𝑖𝑠 complete. 

Then {𝑥𝑛} is convergent to 𝑥∗𝜖𝑋 such that 𝑥𝑛 → 𝑥∗ 

Next, we claim that  𝑥∗ is a fixed point of 𝑇  

Actually,  

∆(
𝜆

4
, Τ𝑥∗ , 𝑥∗) ≼ ∆(𝜆, Τ𝑥∗ , 𝑥∗) ≼ 𝐾[∆ (

𝜆

2
, 𝑥∗, Τ𝑥𝑛

) + ∆ (
𝜆

2
, Τ𝑥𝑛

, Τ𝑥∗)]  

= 𝑘∆ (
𝜆

2
, 𝑥∗, 𝑥𝑛+1) + 𝑘∆(

𝜆

2
, Τ𝑥𝑛

, Τ𝑥∗)  

≼ 𝑘[𝑚1∆ (
𝜆

4
, 𝑥∗, Τ𝑥∗) + 𝑚2∆ (

𝜆

4
, 𝑥𝑛+1, Τ𝑥∗)   

+𝑚3∆ (
𝜆

4
, 𝑥∗, Τ𝑥𝑛+1

) + 𝑚4∆(
𝜆

4
, 𝑥𝑛+1, Τ𝑥𝑛+1

)] + 𝑘∆(
𝜆

2
, 𝑥𝑛+1, 𝑥∗)  

≼ 𝑘𝑚1∆ (
𝜆

4
, 𝑥∗, Τ𝑥∗) + 𝑘2𝑚2∆ (

𝜆

4
𝜆, 𝑥𝑛+1, 𝑇𝑥∗) + 𝑘2𝑚2∆ (

𝜆

4
𝜆, 𝑥∗, 𝑥𝑛+1) + 𝑘𝑚3∆𝜆 (

𝜆

4
𝜆, 𝑥∗, 𝑥𝑛+1) +

𝑘2𝑚4∆ (
𝜆

4
, 𝑇𝑥∗, 𝑥∗) + 𝑘2𝑚2∆(

𝜆

4
, 𝑥∗, 𝑥𝑛)] + 𝑘∆(

𝜆

2
, 𝑥𝑛+1, 𝑥∗)   

= (𝑘𝑚1 + 𝑘2𝑚4)∆ (
𝜆

4
, 𝑥∗, Τ𝑥∗) + (𝑘2𝑚2 + 𝑘2𝑚4)∆(

𝜆

4
, 𝑥𝑛 , 𝑥∗)  

+(𝑘2𝑚2 + 𝑘𝑚3)∆ (
𝜆

4
, 𝑥∗, 𝑥𝑛+1) + 𝑘∆(

𝜆

2
, 𝑥∗, 𝑥𝑛+1)  

then 

(1 − 𝑘𝑚1 − 𝑘2𝑚4)∆ (
𝜆

4
, 𝑥∗, Τ𝑥∗) ≼ (𝑘2𝑚2 + 𝑘2𝑚4)∆ (

𝜆

4
, 𝑥𝑛 , 𝑥∗) + (𝑘2𝑚2 + 𝑘𝑚3 + 𝑘)∆ (

𝜆

4
, 𝑥∗, 𝑥𝑛+1) +

𝑘∆(
𝜆

2
, 𝑥∗, 𝑥𝑛+1) …………………………………….(4.3) 

∆ (
𝜆

4
, 𝑥∗, Τ𝑥∗) ≼

(𝑘2𝑚2+𝑘2𝑚4)∆(
𝜆

4
,𝑥𝑛 ,𝑥∗)+(𝑘2𝑚2+𝑘𝑚3+𝑘)∆(

𝜆

4
,𝑥∗,𝑥𝑛+1)+𝑘∆(

𝜆

2
,𝑥∗,𝑥𝑛+1) 

(1−𝑘𝑚1−𝑘2𝑚4)
≼ 𝑐  

We can see easily  ∆(𝜆, 𝑥∗, Τ𝑥∗) = ѻ is the mapping 𝑇 𝑤ℎ𝑖𝑐ℎ  has a fixed point 𝑥∗ 

At last, for uniqueness, if there is 𝑦∗other fixed point, then 

∆(𝜆, 𝑥∗, 𝑦∗) = ∆(𝜆, Τ𝑥∗ , Τ𝑦∗)  

≼ 𝑚1∆ (
𝜆

4
, 𝑥∗, Τ𝑥∗) + 𝑚2∆ (

𝜆

4
, 𝑥∗, Τ𝑦∗) + 𝑚3∆ (

𝜆

4
, 𝑦∗, Τ𝑥∗) + 𝑚4∆(

𝜆

4
, 𝑥∗, Τ𝑦∗)  

≼ 𝑚1∆ (
𝜆

4
, 𝑥∗, 𝑇𝑥∗) + 𝑚2∆ (

𝜆

4
, 𝑥∗, 𝑦∗) + 𝑚4∆ (

𝜆

4
, 𝑦∗, 𝑥∗) + 𝑚3∆ (

𝜆

4
, 𝑦∗, Τ𝑦∗) 

≼ (𝑚2 + 𝑚4)Δ(𝜆, 𝑥∗, 𝑦∗)  

Since  0 < (𝑚2 + 𝑚4) < 1, we deduce from lemma that 𝑥∗ = 𝑦∗ 
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Definition 4.3: Let (𝐸, 𝐶) be ordered Banach algebra with algebra cone 𝐶. Take  Φ be the set of all functions 

φ: 𝐸3 → 𝐸 satisfying the following properties: 

1) φ(𝑒, 𝑒, 𝑒) = 𝑐 ≼ 𝑒 

2) Let 𝑎, 𝑏𝜖𝐸 be such that if either 𝑎 ≼ φ(𝑎, 𝑏, 𝑏) or 𝑎 ≼ φ(𝑏, 𝑎, 𝑏) or𝑎 ≼ 𝜑(𝑏, 𝑎, 𝑎)  

Definition 4.3: A self-mapping 𝑇 on ∆- ordered Banach algebra (𝑋, 𝐸, ∆)is called 𝜑-contraction, if there exists a 

map 𝜑𝜖Φ satisfy  

Δ(𝜆, Τ𝑥 , Τ𝑦) ≼ 𝜑(Δ(𝜆, 𝑥, 𝑦), Δ(𝜆, 𝑥, Τ𝑥), Δ(𝜆, 𝑦, Τ𝑦) )………………………..…….(4.1) 

Theorem 4.4: Let (𝑋, 𝐸, ∆)be ∆- ordered Banach algebra and T a 𝜑- contraction. If there exists 𝜆 > 0 such that 

for all  𝑥𝜖𝑋. 

Δ(𝜆, 𝑥0, Τ𝑥𝑜
) = sup {Δ(𝜆, 𝑥, Τ𝑥): 𝑥𝜖𝑋}, then 𝑇 has a unique fixed point 

Proof: Suppose 𝑥0 ≠ Τ𝑥𝑜
. We take 𝑥 = 𝑥0, 𝑦 = Τ𝑥𝑜

 in (5.1). then  Δ(𝜆, Τ𝑥𝑜
, Τ2

𝑥𝑜
) ≼

 𝜑(Δ(𝜆, 𝑥0, Τ𝑥0
), Δ(𝜆, 𝑥0, Τ2

𝑥𝑜
), Δ(𝜆, T𝑥𝑜

, Τ2
𝑥𝑜

)) 

Since Δ(𝜆, Τ𝑥0
, Τ2

𝑥𝑜
) ≼ 𝑘. [Δ(𝜆, 𝑥0, Τ𝑥0

)]. But given that 

Δ(𝜆, 𝑥0, Τ𝑥0
) = sup{Δ(𝜆, 𝑥, Τ𝑥) : 𝑥𝜖𝑋}  

Hence Τ𝑥0
= 𝑥0 

For uniqueness, let 𝑦0 be other fixed point of  𝑇 that is Τ𝑦𝑜
= 𝑦0  

Now, Δ(𝜆, 𝑥0, 𝑦0) =  

≼ 𝜑(∆𝜆

3

(𝑥0, 𝑦0), ∆𝜆

3

(𝑥0, Τ𝑥0
), ∆𝜆

3

(𝑦0, Τ𝑦0
))  

≼ 𝜑(∆𝜆

3

(𝑥0, 𝑦0), ∆𝜆

3

(𝑥0, 𝑥0), ∆𝜆

3

(𝑦0, 𝑦0)) 

≼ 𝜑 (Δ (
𝜆

3
, 𝑥0, 𝑦0) , 0,0)  

There for ∆𝜆(𝜆, 𝑥0, 𝑦0) ≼ 0 or  ∆𝜆(𝑥0, 𝑦0) = 0. Implies 𝑥0 ≠ 𝑦0  

That is the fixed point is unique and this complete the proof 

Theorem 4.5: Let 𝑆 and 𝑇 be self-mapping on ∆- Banach algebra (𝑋, 𝐸, ∆)satisfy the condition  

∆𝜆(𝜆, Τ𝑥 , S𝑦) ≼ 𝜑((Δ(𝜆, 𝑥, 𝑦), Δ(𝜆, 𝑥, Τ𝑥), Δ(𝜆, 𝑦, S𝑦))     for all 𝑥, 𝑦𝜖𝑋  

If there exists 𝑦𝜖𝑋 such that  

Δ(𝜆, 𝑦, Τ𝑦) ≼ Δ(𝜆, 𝑧, 𝑆𝑧) ………………………………….………………….……(4.2)  

Then there exist a unique common fixed point of 𝑆 and 𝑇  

Proof: Let Τ𝑦0
= 𝑥0 , put 𝑥 = 𝑥0, 𝑦 = Τ𝑥0

,we obtain  
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∆𝜆(𝜆, Τ𝑥0
, 𝑆(Τ𝑥0

)) ≼ 𝜑(Δ(𝜆, 𝑥0, Τ𝑥0
), Δ(𝜆, 𝑥0, Τ𝑥0

), Δ(𝜆, 𝑥0, 𝑆(Τ𝑥0
)  

By (3) we get  

Δ(𝜆, Τ𝑥0
. 𝑆(Τ𝑥0

)) ≼ 𝑘Δ(𝜆, 𝑥0, Τ𝑥0
) ≼ Δ(𝜆, 𝑥0, Τ𝑥0

)  

This contradict of (4.1) 

To prove that 𝑥0 is also a fixed point of 𝑆, let  S𝑥0
= 𝑥0, therefore. 

Δ(𝜆, 𝑥0, S𝑥0
) = Δ(λ, Τ𝑥0

, S𝑥0
) ≼ 𝜑[Δ(𝜆, 𝑥0, 𝑥0), Δ(𝜆, 𝑥0, Τ𝑥0

), Δ(𝜆, 𝑥0, S𝑥0
)]  

Or Δ(𝜆, 𝑥0, S𝑥0
) ≼ 𝜑(0,0, Δ(𝜆, 𝑥0, S𝑥0

)) that is Δ(𝜆, 𝑥0, S𝑥0
) ≼ 0 or S𝑥0

= 𝑥0  

For uniqueness, let 𝑦0 be another fixed point of  𝑆 and 𝑇 that is 

Τ𝑦0
= S𝑦0

= 𝑦0, then  

Δ(𝜆, 𝑥0, 𝑦0) = Δ(λ, Τ𝑥0
, Τ𝑦0

) ≼ 𝜑[(Δ(𝜆, 𝑥0, 𝑦0), Δ(𝜆, 𝑥0, Τ𝑥0
), Δ(𝜆, 𝑦0, Τ𝑦0

)]  

Or ∆𝜆(𝜆, 𝑥0, 𝑦0) ≼ 𝜑(Δ(𝜆, 𝑥0, 𝑦0), Δ(𝜆, 𝑥0, 𝑥0), Δ(𝜆, 𝑦0, 𝑦0)) 

≼ 𝜑(Δ(𝜆, 𝑥0, 𝑦0), 0,0)  

That is Δ(𝜆, 𝑥0, 𝑦0) ≼ 0 implies 𝑥0 = 𝑦0 . 

Corollary 4.6: Let 𝑆 and 𝑇 be self-mapping of ∆- ordered Banach algebra (𝑋, 𝐸, ∆) satisfying the following 

conditions: 

1) There exists integer 𝑛 and 𝑚 such that  

Δ(λ, Τ𝑛
𝑥, S𝑚

𝑦) ≼ 𝜑[Δ(𝜆, 𝑥, 𝑦), Δ(𝜆, 𝑥, Τ𝑛
𝑥), Δ(𝜆, 𝑦, 𝑆𝑚

𝑦
] for some 𝜑𝜖Φ  

2) If there exists a point 𝑦𝜖𝑋 such that Δ(𝜆, 𝑦, Τ𝑛
𝑥) ≼ Δ(𝜆, 𝑥, S𝑚

𝑥) 

Then there exists a unique common fixed point of 𝑆 and 𝑇 

Theorem 4.7: Let (𝑋, 𝐸, ∆) be a ∆- ordered Banach algebra such that  

Δ(𝜆, Τ𝑥 , Τ𝑦) ≼ min {𝜆Δ(𝜆, 𝑥, Τ𝑥), 𝜇Δ(𝜇, 𝑦, Τ𝑦)}  

If there exists function 𝐹 defined by 𝐹(𝑥) = 𝜆∆𝜆(𝜆, 𝑥, Τ𝑥) for each 𝑥𝜖𝑋 such that 𝐹(𝑥) ≼ 𝐹(T(𝑥)), then,  𝑇 has a 

unique fixed point 

Proof: Suppose for some 𝑥0, 𝑥0 ≠ Τ𝑥0
. Then 𝐹(Τ𝑥0

) = Δ(λ, Τ𝑥0
, 𝑇(T(𝑥0)) ≼ min {𝜆Δ(𝜆, 𝑥0, Τ𝑥0

), 𝜇Δ(𝜇, Τ𝑥0
, T𝑥0

} since 

Δ(Τ𝑥0
, Τ𝑥0

) = 𝜃  

Δ(𝜆, Τ𝑥0
, T(T(𝑥0)) ≼ 𝜆Δ(𝜆, 𝑥0, Τ𝑥0

)  

𝐹(Τ𝑥0
) ≼ 𝐹(𝑥0) which is contradiction  

Hence Τ𝑥0
= 𝑥0 

For uniqueness, let 𝑦 be another point of 𝑋 different from 𝑥0 such that 𝑦0 = Τ𝑦0
, then 
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Δ(𝜆, 𝑥0, 𝑦0) = Δ(λ, Τ𝑥0
, Τ𝑦0

) ≼ min {𝜆Δ(𝜆, 𝑥0, Τ𝑥0
), 𝜆Δ(𝜆, 𝑦0 , Τ𝑦0

)}  

 = min {𝜆Δ(𝜆, 𝑥0, 𝑥0), 𝜆Δ(𝜆, 𝑦0, 𝑦0)} = min {𝜃, 𝜃}  

Δ(𝜆, 𝑥0, 𝑦0) ≼ 𝜃  

Hence Δ(𝜆, 𝑥0, 𝑦0) ≼ 0 which implies that Δ(𝜆, 𝑥0, 𝑦0) = 0 or 𝑦0 = 𝑥0 

The proof is complete. 

Theorem 4.8: Let 𝑇 be a self-map on a compact ∆- ordered Banach algebra(𝐸, 𝐴, 𝐶) satisfy Lipsctiz condition  

Then,  𝑇 has a unique fixed point. 

Proof: Suppose 𝑇 satisfy Lipsctiz condition. Then,  𝑇 is a continuous map on 𝑋 we define a function from 𝑋 into 

𝑥 as 𝐹(𝑥) = Δ(𝜆, 𝑥, Τ𝑥) for all 𝑥𝜖𝑋. 

Since 𝑇 and ∆ are continuous, it follow 𝐹 is continuous on 𝑋 . Since 𝑋 is compact there exists a point 𝑦𝜖𝑋 such 

that 𝐹(𝑦) = inf {Δ(𝜆, 𝑥, Τ𝑥): 𝑥𝜖𝑋}. 

We support that 𝑦 ≠ Τ𝑦.  

Otherwise, that a fixed point by Lipscitiz condition  

We haveΔ(λ, Τ𝑦 , Τ2
𝑦) ≼ 𝑘Δ(𝜇, 𝑦, Τ𝑦). 0 < 𝜆 ≤ 𝜇 

So that 𝐹(Τ𝑦) ≼ 𝑇(𝑦) which contradiction. 

Then,  𝑦 = Τ𝑦 

Uniqueness follows from Lipscitz condition. 

Proposition 4.9: Let (𝑋, 𝐸, ∆)be a complete ∆- ordered Banach algebra. Assume that the mapping  Τ: 𝑋 → 𝑋 

satisfy. 

Δ(λ, Τ𝑛
𝑥, Τ𝑛

𝑦) ≼ 𝑘Δ(𝜆, 𝑥, 𝑦) , For each 𝑥, 𝑦𝜖𝑋 , for 𝑛 ∈ 𝑍+,where 𝑘 a vector with is 𝜎𝜀(𝑘) < 1.  Then,  𝑇 has a unique 

fixed point 

Proof: Τ𝑛(Τ𝑥∗) = Τ(Τ𝑛𝑥∗) = Τ𝑛𝑥∗ = Τ(Τ𝑛−1𝑥∗) = Τ𝑛−1(𝑥∗)  = ⋯ = Τ𝑥∗.  

So, Τ𝑥∗ is also has fixed point of Τ𝑛 then 𝑇𝑥∗ = 𝑥∗ 

𝑥∗ is a fixed point of Τ.   

Theorem 4.10: Let (𝑋, 𝐸, ∆) be a compact ∆- ordered Banach algebra. Suppose the mapping satisfy ∆ −

𝑙𝑖𝑝𝑠ℎ𝑡𝑖𝑧 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛  in the following:   

Δ(λ, Τ𝑥 , Τ𝑦) ≼ 𝑘[𝛽Δ(𝛽, Τ𝑥 , 𝑦) + 𝜇Δ(μ, Τ𝑦 , 𝑥)]  , for all 𝑥, 𝑦𝜖𝑋, where 𝑘 is a vector with 𝑘𝜖(0,1). Then, 𝑇 has a unique 

fixed point in 𝑋. Another sequence {𝑇𝑥
𝑡} converge to the fixed point. 

Proof: choose 𝑥0𝜖𝑋 and set 𝑥𝑡 = 𝑇𝑥
𝑡 ,𝑡 ≥ 1, we have for 𝑡 < 𝑚 

Δ(𝜆, 𝑥𝑡+1, 𝑥𝑚) ≼ 𝛽Δ(𝛽, 𝑥𝑡 , 𝑥𝑡+1) + 𝜇Δ(𝜇, 𝑥𝑡+1, 𝑥𝑚)  
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≼ 𝛽Δ(𝛽, 𝑥𝑡 , 𝑥𝑡+1) + 𝜇[𝛽Δ(𝛽, 𝑥𝑡+1, 𝑥𝑡+2) + 𝜇Δ(𝜇, 𝑥𝑡+2, 𝑥𝑚)]  

≼ 𝛽Δ(𝑥𝑡 , 𝑥𝑡+1) + 𝜇𝛽Δ(𝑥𝑡+1, 𝑥𝑡+2) + 𝜇2[𝛽Δ(𝑥𝑡+2, 𝑥𝑡+1) + 𝜇Δ(𝑥𝑡+3, 𝑥𝑚)]  

≼ 𝛽Δ(𝑥𝑡 , 𝑥𝑡+1) + 𝜇𝛽Δ(𝑥𝑡+1, 𝑥𝑡+2) + 𝜇2𝛽Δ(𝑥𝑡+1, 𝑥𝑡+2) + 𝜇3𝛽Δ(𝑥𝑡+3, 𝑥𝑡+1) + 𝜇4Δ(𝑥𝑡+4, 𝑥𝑚)  

. 

. 

. 

≼ 𝛽[Δ(𝜆, 𝑥𝑡 , 𝑥𝑡+1) + 𝜇Δ(𝜆, 𝑥𝑡+1, 𝑥𝑡+2) + 𝜇2Δ(𝜆, 𝑥𝑡+2, 𝑥𝑡+3) + … + 

𝜇𝑛Δ(𝜆, 𝑥1, 𝑥0)] + 𝜇𝑛[Δ(𝜆, 𝑥𝑡+𝑚, 𝑥𝑚)]  

≼ 𝛽[𝑘𝑡Δ(𝜆, 𝑥1, 𝑥0) + 𝜇𝑘𝑡+1Δ(𝜆, 𝑥1, 𝑥0) + ⋯ + 𝜇𝑚𝑘𝑡+𝑚Δ(𝜆, 𝑥1, 𝑥0)   

+𝜇𝑡+1[𝑘𝑡+𝑚+1Δ(𝜆, 𝑥1, 𝑥0)]  

≼ 𝛽𝑘𝑡[1 + 𝜇𝑘 + ⋯ + 𝜇𝑚𝑘𝑚]Δ(𝜆, 𝑥1, 𝑥0) + 𝜇𝑡𝑘𝑡+𝑚Δ(𝜆, 𝑥1, 𝑥0)  

≼ 𝛽𝑘𝑡[∑ 𝜇𝑖𝑘𝑖]Δ(𝜆, 𝑥1, 𝑥0) + 𝜇𝑚+1𝑘𝑡+𝑚Δ(𝜆, 𝑥1, 𝑥0)𝑚
𝑖=1   

≼ 𝛽𝑘𝑡[∑ 𝜇𝑖𝑘𝑖Δ(𝜆, 𝑥1, 𝑥0)]𝑚+1
𝑖=1   

≼ 𝛽𝑘𝑡[∑ 𝜇𝑖𝑘𝑖]Δ(𝜆, 𝑥1, 𝑥0)∞
𝑖=1   

≼ 𝛽𝑘𝑡[∑ 𝜇𝑖𝑘𝑖]Δ(𝜆, 𝑥1, 𝑥0)0
𝑖=1   

≼ 𝛽𝑘𝑡(𝑒 − 𝜇𝑘)−1Δ(𝜆, 𝑥1, 𝑥0)  

║Δ(𝜆, 𝑥𝑛+1, 𝑥𝑚)║ ≤ ║𝛽𝑘𝑡║.║(𝑒 − 𝜇𝑘)−1║.║Δ(𝜆, 𝑥1, 𝑥0)║  

Since ║𝑘𝑛║ → 0 as 𝑛 → ∞, where ║Δ(𝜆, 𝑥𝑛 , 𝑥𝑚)║ → 0 as 𝑛 → ∞  

Which implies Δ(𝜆, 𝑥𝑡 , 𝑥𝑚) → 0 as (𝑡, 𝑚 → 0)  

Hence,  {𝑥𝑡} is a Cauchy sequence. 𝑠𝑖𝑛𝑐𝑒 𝑋 𝑖𝑠 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒, there exists 𝑥∗𝜖𝑋 such that  𝑥𝑡 → 𝑥∗ as 𝑛 → ∞, therefore  

lim
 

Δ(𝜆, 𝑇𝑥∗ , 𝑥∗) ≼ 𝑘[𝛽Δ(𝜆, 𝑇𝑥𝑡
, 𝑇𝑥∗) + 𝜇Δ(𝜆, 𝑇𝑥∗ , 𝑥𝑡)]  

≼ 𝛽𝑘[Δ(𝜆, 𝑥𝑡 , 𝑥∗) + Δ(𝜆, 𝑥∗, 𝑥𝑡+1)] + 𝜇Δ(𝜆, 𝑇𝑥∗ , 𝑥𝑡)  

║Δ(𝜆, 𝑇𝑥∗ , 𝑥∗)║   

≤ ║𝜆║.║𝑘║. [║Δ(𝜆, 𝑥𝑡 , 𝑥∗)║ + ║Δ(𝜆, 𝑥∗, 𝑥𝑡+1)║] + ║𝜇║.║Δ(𝜆, 𝑥𝑡 , 𝑥∗)║  

Which implies 𝑇𝑥∗ = 𝑥∗ and so 𝑥∗ is fixed point 

To prove uniqueness, let 𝑏 be another fixed point of 𝑇.  

Then Δ(𝜆, 𝑥∗, 𝑏) = Δ(𝜆, 𝑇𝑥∗ , 𝑇𝑏) ≤ 𝑘[𝛽Δ(𝜆, 𝑇𝑥∗ , 𝑏) + 𝜇Δ(𝜆, 𝑇𝑏 , 𝑥∗)]  

= 𝑘[𝛽Δ(𝜆, 𝑥∗, 𝑏) + 𝜇Δ(𝜆, 𝑏, 𝑥∗)] =𝑘[𝜆 + 𝑚]Δ(𝜆, 𝑥∗, 𝑏)  
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Then,  [1 − 𝑘(𝛽 + 𝜇]Δ(𝜆, 𝑥∗, 𝑏) ≤ 0.  

Since 𝑘𝜖(0,1) and 𝛽, 𝜇 > 0 ⟹ Δ(𝜆, 𝑥∗, 𝑏) = 0 so 𝑥∗ = 𝑏   

 The proof is complete. 

5-Conclusion 

In this paper, we introduce a new concept which is called ∆- ordered Banach algebra. Also, we define 

𝑙𝑖𝑝𝑠ℎ𝑡𝑖𝑧 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡ℎ𝑖𝑠 𝑝𝑎𝑐𝑒 ,𝜑 − 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛, ∆ − 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛  and ∆ − 𝑙𝑖𝑝𝑠ℎ𝑡𝑖𝑧 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛. In the new work, 

we  prove fixed point theorems satisfying these maps in ∆- ordered Banach algebra. Our conditions and results 

are new in comparison with those of the results of cone metric space .These results can be extended to other 

spaces. 
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