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ABSTRACT
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1. INTRODUCTION

Let R" be the real n —dimensional Euclidean space with the corresponding norm | - |. Let R, = [0, «) be a subset of real
numbers. Motivated by the work of ([3,4,5]), in this paper we consider the following differential equation of the form:

x'() = f(&,x(@®),x'(©), x(t = 1))(1.1)
fort € R, with the conditions
xt-1D=¢@), 0<t<1(1.2
x(0) = x, x(0) =7, (1.3)
where f € C(R; x R" x R" X R",R") and ¢(t) is a continuous function for which lim,_,1_q ¢(t) exists.

When dealing with the equation (1.1) with (1.2)-(1.3), the basic questions to be answered are: (i) under what conditions the
systems under considerations have solutions? (ii) how can we find the solutions or closely approximate them? (iii) what
are their nature?. The study of such questions gives rise to new results and need a fresh outlook for handling such
problems for (1.1)-(1.3). The objective of the present paperis to investigate new estimates on the difference between two
approximate solutions of equation (1.1) and convergence properties on solutions of approximate solutions.Subsequently
some authors have been studied the problems of existence, uniqueness and other properties of solutions of special forms
or the equation (1.1) by using different techniques, see [5,7-10, 13] and the references cited therein. We also refer some
papers and monographs [1,2,6,11,12] and the references given therein. Our general formulation of (1.1)-{(1.3) is
anattempt to generalize the results of [5].

The paper is organized as follows. In section 2, we present the preliminaries and main result of existence of approximate
solutions and uniqueness of the solutions. Finally, in Section 3 deals with closeness and convergence of solutions and
also we discuss results on continuous dependence of solutions on initial data, functions involved therein and parameters.

2. MAIN RESULT

Before proceeding to the statement of our main results, we shall set forth some preliminaries that will be used in our
subsequent discussion.

Definition 2.1. Let x;(t) € € (R,,R*)R(i = 1,2) be functions such that x;(t) exist for t € R, and satisfy the

inequalities
|5 ®) = £ (6 2@, x: (0, %t = D)| < &, (2)
for given constants €; = 0 (i = 1,2), where it is assumed that the initial conditions
x(t—1)=¢;(), (0<t<1) (2.2)
x(0) =xf, x(0)=xF (2.3)

for i = 1,2 are fulfilled and ¢;(t) are continuous functions for which lim,_,_o ¢;(t) exist. Then we call x;(t) (i = 1,2)
thee; —approximate solutions with respect to the equation (1.1) ith initial conditions (2.2)-(2.3).

We require the following Lemma known as the Gronwall-Bellman inequality in our further discussion.
Lemma 2.2 ([2],p. 12) Let u(t),n(t),e(t) € C(R,, R;) and n(t) be nondecreasing on R,. If

u(t) <n(t) + fot e(s)u(s)ds, (2.4)
fort € R,, then

u(t) < n(t)exp@?@fot e(s)ds), (2.5)

fort € R,.
The following theorem estimates the difference between the two approximate solutions of equation (1.1).
Theorem 2.3 Suppose that the function f in equation (1.1) satisfies the condition

where p(t) € C(R,, R,). Let x;(¢) (i = 1,2) be respectively ¢; —approximate solutions of equation (1.1) on R, with (2.2)-
(2.3) such that

lxf —x31 <6, |xf—x3| <8,2.7)

where § > 0 and § = 0 are constants. Then
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121 (6) = x2 (O] + | (8) = x5(0)] < n(@exp (f; (¢ — s+ Dp(s) ds) , (2.8)

for0 <t <1and
() = %2 (O] + 21 (6) = 2;,(8)| < n(®exp (f[2(t = 5) + 1 [p(s + 1) + p()] ds) , (2.9)
for 1<t <, where n(t) = (e; + &) [t + 5]+ 6 + (¢ + DS + J; @ = $)p()[Is () = pz()l]ds.

Proof.Since x;(t) (i = 1,2)for t € R, are respectively ¢;-approximate solutions of equation (1.1) with (2.2)-(2.3), we have
(2.1). By taking t = tin (2.1) and integrating both sides with respect to = from 0 to t, we have

€t = fot|xl () — f('r,xl-(‘r),xi' (), x;(r — 1))| dt

=

f {x£, (‘[) — f(T, X (T), xlt (T)r Xi (T - 1))}dT
0

= [{xi® =% = [y (5. 6@, 2 @), %G - D)} (2.10)
fori=1,2.

By taking t = s in (2.10) and integrating both sides with respect to s from 0 to t, we have

tZ t
El'?Z
0

f t {xg (s) - xF — f o a @), 5 3 1))dr} ds
0 0

ds

{xl (s) —xi — fsf(f, %), %, (0, %, (7 — 1))dT}
0

>

= |{xl-(t) =[x +x7t] — fot(t - s)f(s,xl»(s),x£ (s),x;(s — 1))ds}|, (2.11)
for i = 1,2. From(2.10), (2.11) and using the elementary inequalities
lv —z] < vl + |z], [v] = |z] £ v — 2], (2.12)

we observe that

(El + Ez)t >

{xl ) —x — fo f(s,%:(s), x1(8), %1 (s — 1))ds}

+

t
{xé(t) . ?; - J‘ f(s'xz(s);xé(s)'xz(s B 1))ds}
0

>

{xi ) —x — _I(; £(5,21(s), %1 (8), 21 (s — 1))ds}

¢
— {xz ) —x — fo f(s,x,(s), x5 (), %2 (s — 1))ds}

> |x; (t) — x50 =[] — 3]

- f0t|f(5, x1(8),%1(5), %1 (s — 1) — f(5,22(5), %3(8), %2 (s — D))| ds (2.13)

and

£2
(e + 62)7 2

t
{xl ) =[x + x7t] — J; f(s, X1 (s),xi (8),x1(s — 1))ds}

+

t
{xz (®) = [x; + x5t] — f £(s,%2(5), x3(5), %2 (s — 1))dS}
0

=

{xl(t) =[x +xit] - f f(s, x1(5), x1(5), %1 (s — 1))ds}
0

¢
_ {xz(t) — x5 +x5t] — f f(s, X (s),x’Z (s),x,(s — 1))ds}
0

> [x1(6) = % (O] = |[x} +x7t] = [x; + x3t]|
- fot(t - s)|f(s, X1 (s),x; (s),x.(s — 1)) - f(s, X3 (s),xé (s),x3(s — 1))| ds.(2.14)
Letu (£) = |x () — x(®)| + |21 () — x,(), t € R,. From (2.13) and (2.14) and using the hypotheses, we get
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t2 _
u(t) < (g +EZ)?+ [xi — 25| + |xf—x§

t+(El +62)t+|x_ik—g

+ fot(t —-s+ 1)|f(s, X1 (s),xi (s),x1(s — 1)) - f(s, xz(s),x’z(s),xz(s - 1))| ds
2

t ] _
< (&1 +¢€) ?+t +5+({t+1)5

+ [ (¢ = 5+ Dp()x1 (), =12 ()| +[x1(5) = x2(8)] + |1 (s — 1) = xp(s — D] ds

2
< (e +€) t+% +8+(t+1)5
+ fot(t — s+ Dp(s)uls) + |x(s — 1) — x,(s — 1|1 ds. (2.15)

We consider the following two cases

Case I: 0 <t < 1. From (2.15) and hypotheses, we observe that

2 ¢
u(t) < (e; +€2) [t + %] +8+(@+15+ J;) (t— s+ Dp()[uls) + |p1(s) — p2(s)|1ds
£2 L "
< (e1+€) [t + 7] +5+(t+1)5+ fo 2 = 5)pS)lp1(s) — ¢2(s)l]ds

+ ft(t —s+ Dp(s)u(s)ds
0

<n(t) + [, (¢ — s+ Dp(s)uls) ds. (2.16)
Clearly n(t) is nondecreasing in t. Now an application of Lemma 2.2 to (2.16) yields (2.8).

Case ll: 1 < t < . From (2.15) and hypotheses, we observe that

2 ¢
u(t) < (e + €3) [t +%] +85+(@+1)6+ f (t—s+ Dpl)uls) + |x(s =1) —x3(s — 1|l ds
0
£2 A 1
<@ +e) [t+7] 84 DE+ [ @=p@I9(5) = do@llds

t t
+J- (t—s+ Dp(s)u(s)ds +J- (t—s+ Dp)uls) + |x1(s —1) —x(s — D]l ds
0 1

<n(t) + (¢ — s+ Dps)uls)ds +1;, (2.17)
where
L= [ (t—s+Dp()[lx(s — 1) — x(s — D] ds. (2.18)

By making the change of variable s — 1 = 7, then from (2.18), we obtain
ol
h= [ E-opE+ Dlin@ - x@lds
0

< fot(t —1) p(t + Du(r)dr.
Therefore, we have
I < fot(t —5) p(s + Du(s)ds. (2.19)
Using (2.19) in (2.17), we get
u(®) < n() + [;[2(t —s) + 11[p(s) + p(s + D]us)ds. (2.20)
Now an application of Lemma 2.2 to (2.20) yields (2.9). This completes the proof of the theorem.
Remark 2.4:

(i) We note that the estimates obtained in (2.8) and (2.9) yield not only the bound on the difference between the two
approximate solutions of equation (1.1) but also the bound on the difference between their derivatives.

(i) If x;(t) is a solution of equation (1.1) with x;(0) = x{, x;(0) = x, then we have ¢; = 0 and from (2.8) and (2.9), we
see that x,(t) » x;(t)ase; » 0and § - 0, § > 0and ¢,(t) - ¢ (t) for0 <t < 1.
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(iiy Moreover, if we put (@) e, =€, =0 and x{ =x;, x; =x;5, ¢1(t) = ¢,(t) (0<t<1)in (2.8) and (2.9), then the
unigueness of solutions of equation (1.1) is established and (b) e; = €, =0 in (2.8) and (2.9), then we get the bound
which shows the dependency of solutions of equation (1.1) on given initial values.

2. CLOSENESS OF SOLUTIONS

In this section we study the continuous dependence of solutions to (1.1)—(1.3) on the function f and the closeness of the
solutions of following equations (3.1)—(3.3).

Consider the initial value problem
Y (® = f(t,y(®),y ),y - 1)E.1)
fort € R, with the conditions
yt—-1) =9y, (0<t<1)3.2)
y(0) = yy, ¥'(0) =7q, (3.3)
wheref € C(R, x R* x R"® x R",R") and %(t) is a continuous function for which lim,_,;_o 1(t) exists.
Next theorem deals with the closeness of the solutions of initial value prblems (1.1)—(1.3) and (3.1)—(3.3).

Theorem 3.1 Suppose that the function f in equation (1.1) satisfies the condition (2.6) and there exist constants
€ =0,6; =0, §, = 0 such that

|f(t.x,y,2) — f(t,x,y,2)| <€, (3.4)
lxg — yol < 61, |xg — Yol < 82,(3.5)
Let x(t) and y(t) be respectively, solutions of the prblems (1.1)—(1.3) and (3.1)—(3.3) on R,. Then
lx(6) = x(O)] + x'(6) = ¥ (©)] < d(t) exp (J (¢ = s + Dp(s) ds) , (3.6)
for0<t<1land

lx(£) = ()] + |x'(t) = y' (O] < d(®) exp (J[2(¢t = ) + 1][p(s + 1) + p(s)] ds ) , (3.7)

for1 <t < oo, where
d() = 8 + 8, (L + 0)+(S + ) T+ [} 2 = )p(s)lg(s) — w(s)l ds.

Proof.Let v (t) = |x(t) —y ()| + |x (&) — y (t)], t € R,. Using the facts that x(t) and y(t) are the solutions of IVP (1.1)-
(2.3) and IVP (3.1)-(3.3) and hypotheses, we observe that

v(t) < [xo — yol + |xg — Yolt
t
+ f (t = 9)|f(5,x(5),% (), x(s = 1)) = F(5,¥(), ¥ (), y(s — )| ds
0

+xg — ol + [ (s,2(s),x' (8), x(s = 1)) — £ (5,¥(5), ¥ (s),¥(s — 1))| ds
<& +6,(1+0)

+J (t = )|f(s,x(s),x'(8),x(s = D) = f(5,7(5), ¥ (s),y(s — 1))| ds
0

+ =95y, ),y = 1) = F(s,y(5),y () y(s = )| ds
+ 1 (5x(5),x' (9,65 = 1) = F(5,5(), ¥ (5,365 = D) ds
()Y (), y(s = D) = F(5,9(),y' (), 9(s — D) ds
< 8+ 8y(1+ )+f) (¢ — $)eds J+[ e ds
+Jy € = )PE[W(s) + |x(s — 1) = y(s — D] ds+[; p(s)[v(s) + [x(s — 1) — y(s = D[] ds
< 81+ 8y(1+ 0o+ OF + [ — 5 + Dp(©)[(s) + x5 — D y(s ~ D] s @9

We consider the following two cases

Casel: 0 <t < 1. From (3.8) and hypotheses, we observe that

5670 |Page January 9 2016



m ISSN 2347-1921

v() < 8 + 81+ )45+ )T+ [ 2 - Ip(s)|g(s) — (o)l ds
+ ft(t —s+ Dp(s)v(s)ds
0

< d(®) + [ (t — s+ Dp(s)v(s)ds. (3.9)
Clearly d(t) is nondecreasing in t. Now an application of Lemma 2.2 to (3.9) yields (3.6).

Case Il: 1 <t < . From (3.8) and hypotheses, we observe that

V(D) < 8 +8,(1+ 0 + (5 + e+ (6 — s+ Dp(s)[w(s) + [x(s — 1) — y(s — D[] ds

<d(t)+ J;:(t —s+ Dp(s)v(s)ds + flt(t —s+ Dps)|x(s—1) —y(s—1)|ds

<d(t) + fot(t —s+ Dp(s)v(s)ds + I, (3.10)
where
I = [t =s+ Dp©)lx(s = 1) = y(s — D[] ds. (3.11)
By making the change of variable s — 1 = 7, then from (3.11), we obtain
I = f; (¢ =Dp( + DIlx(@) = y@I] dr
< fot(t - 1) p(t + Dv(r)dr.
Therefore, we have
I, < fot(t —5) p(s + Dv(s)ds. (3.12)
Using (3.12) in (3.10), it is easy to observe that
v(t) <d() + fOt[Z(t —5)+1][p(s) + p(s + 1)]v(s)ds. (3.13)
Now an application of Lemma 2.2 to (3.13) yields (3.7). This completes the proof of the theorem.

Remark 3.2: The result given in Theorem 3.1 relates the solutions of IVP (1.1)-(1.3) and of IVP (3.1)-(3.3) in the sense

that if £ is close to f, x, is close to y, and Xgis close to g, then not only the solutions of IVP (1.1)-(1.3) and of IVP (3.1)-
(3.3) are close to each other, but also depend continuously on the functions involved therein .

Consider the initial value problem

Y (©® = filt,y(@®),y (), y(t = 1))(3.14)
for t € R, with the conditions
vt —1D =), (0=t<1)3.15)
%@ = ¢, (0 =6, (3.16)
fork =1,2,---, where f;, € C(R; X R®™ x R™ x R", R") and 1, (t) are continuous functions for which lim,_,;_¢ ¥, (t) exist.

As an immediate consequence of Theorem 3.1, we have the following corollary.

Corollary 3.3 Suppose that the function f in equation (1.1) satisfies the condition (2.6) and there exist constants
€ =0,6,20,6,=0 (k=1,2,) such that

If(t,x,y,2) — fi (t,x,y,2)| < €, (3.17)
lxo — el < 8, |% — | < 6;,(3.18)

with ¢, -0 and 6, -0, 6, >0 as k- oo. If y,(t)(k=1,2-) and x(t) are respectively the solutions of the
prblems(3.14)-(3.16) and(1.1)—(1.3), theny, (t) - x(t)as k > o on R,.

Proof. Fork = 1,2,---, the conditions of Theorem 3.1 hold. As an application of of Theorem 3.1 and Lemma 2.2 yields
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(8 = x(O] + 1y, () = ¥ (©)] < di () exp (f; (£ — s + Dp(s) ds ), (3.19)
for0<t<1land
() = X(O1 + 1y, (8) = X' ()] < die(®) exp ([ [2(¢ = $) + 1][p(s + 1) + p(s)] ds ) , (3.20)
for1 <t < o, where
di () = 8+ 5c(1+ +(S+ ) € + [; 2 = p()IP() — e ()] ds.

The required results follows from (3.19) and (3.20). It follows that the problem (1.1)—(1.3) depends continuously on the
functions involved therein. This completes the proof.

Remark 3.4:The result obtained in Corollary 3.3 provide sufficient conditions that ensures solutions of [VPs (4.14)—
(4.16) will converge to the solutions of IVP (1.1)—(1.3).

We consider the initial value problem
x"(£) = F(t,x(t),x'(t), x(t — 1), 11)(3.21)
x'(8) = F(t,x(t),x' (), x(t — 1), 42)(3.22)
for t € R, with the conditions (1.2)-(1.3), where F € C(R; X R™ x R" x R" x R, R™) and p,, u, are real parameters

The following theorem states the continuous dependence of solutions to (3.21) and (3.22) with the initial conditions given
by (1.2)—(1.3) on parameters.

Theorem 3.5 Suppose that the function Fsatisfies the condition

|F(t,x,y,2,11) — F(6,%,5,Z,p2)| < h(Ollx — x| + |y =yl + |z — z| + |11 — p21], (3.23)

whereh € C(Ry,R,). Let x(t) and y(t) be respectively, solutions of the prblems(3.21)with (1.2)—(1.3) and (3.22)with (1.2)
—(1.3) onR,. Then

(&) = (O] + X' (0) = Y'@)] < (@) exp (3 (¢ — s + Dh(s) ds ), (3.29)

for0 <t<1and

2(©) =y + X' (©) = y'©)] < e(®) exp ([y[2(c = $) + 1][As + D) + h()] ds) , (3.25)

forl <t < o, where

e(t) = | — pa| [ (2 = s)h(s) ds.
Proof. Let v (¢) = |x(t) —y (®)| + |x' (£) — y' ()], t € R,. Using the facts that x(t) and y(t) are respectively, solutions of
the prblems (3.21) with (1.2) —(1.3) and (3.22) with (1.2) —(1.3) onR, and hypotheses, we observe that

v(t) < fot(t — $)IF (s, x(5), x (), x(s — 1), 1) = F(s,y(s),y (), y(s = 1), pz)| ds
+ fOtIF(S.x(S),x'(S).x(s — D, 1) = F(s5,5(5),y (), y(s = 1), up)| ds
< Jot(t — s+ DIF(s,x(s),x (), x(s = 1), 1) = F(5,5(5), ¥ (), y(s = 1), ) | ds
< fy (& =5+ D) + lx(s = 1) —y(s = DI + | — ol ds. (3.26)

We consider the following two cases

Casel: 0 <t < 1. From (3.26) and hypotheses, we observe that

v(t) < |y — uyl f01(2 —s)h(s)ds + fol(t — s+ Dh()[lp(s) — p(s)I]ds + fot(t —s+ Dh(s)v(s)ds
1 ¢
< | — ol f (2 —=5s)h(s)ds + f (t—s+ 1h(s)v(s)ds
0 0

<e(®)+ [,(t —s + Dh(s)v(s) ds. (3.27)

Clearly e(t) is nondecreasing in t. Now an application of Lemma 2.2 to (3.27) yields (3.24).
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Case Il: 1 <t < . From (3.26) and hypotheses, we observe that

1 1
v(®) < It — f (2 - $)h(s) ds + f (t — s + DR b() — $(s)[] ds
0 0

+ ft(t —s+Dh()|x(s—1) —y(s—1)|ds + ft(t — s+ Dh(s)v(s)ds
1 0

< Iy = ol [ 2 = h(s) ds + [ (t — s + Dh(s)v(s) ds + I5(3.28)
where
Iy = [{(t = s+ Dh()[x(s — 1) — y(s — D[] ds (3.29)
By making the change of variable s — 1 = t, then from (3.29), we obtain
I = [; 't = DG + D@ - y@|] d
< fot(t - 1) p(t + Dv(r)dr.
Therefore, we have
I3 < [;(t = 5) h(s + Dv(s)ds. (3.30)
Using (3.30) in (3.28), it is easy to observe that
v(t) <e(t) + fOt[Z(t —5s) + 1][h(s) + h(s + 1D)]v(s)ds. (3.31)
Now an application of Lemma 2.2 to (3.31) yields (3.25). This completes the proof of the theorem.

Remark 3.6: The result dealing with the property of a solution called "dependence of solutions on parameters”. Here
the parameters are scalars. Notice that the initial conditions do not involve parameters. The dependence on parameters
are an important aspect in various physical problems.
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