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Abstract 

This paper introduces a computational scheme for calculating the exponential bw where b and w are positive 

integers. This two-step method is based on elementary number theory that is used routinely in this and similar 

contexts, especially the Chinese remainder theorem (CRT), Lagrange’s theorem, and a variation on Garner’s al-

gorithm for inverting the CRT isomorphism. We compare the performance of the new method to the standard 

fast algorithm and show that for a certain class of exponents it is significantly more efficient as measured by the 

number of required extended multiplications.     

Keywords:  Integer Exponentiation, Modular Exponentiation, Chinese Remainder Theorem, Garner’s Algorithm, 

Generating Functions. 

Introduction and Preliminary Estimates of Multiplicative Complexity 

Throughout this analysis we are concerned with the multiplicative complexity of the exponential calculation, and 

accordingly we introduce two associated functions. The multiplicative length ML(a) of an integer a is a simple 

adjustment to the binary length of its absolute value:  
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Provisionally, the multiplicative complexity MC(a,b) of the product of integers a and b is then defined as the 

product ML(a)·ML(b). This is admittedly a crude measure of the number of underlying elementary operations, 

but nonetheless useful for general analysis, especially in connection with extended integer arithmetic (i.e., class 

constructions that exceed the native integer data types in a given programming language on a given system). 

Less formally, we define the multiplicative complexity of any algorithmic calculation as the sum of the complex-

ities of the component multiplications. Thus our subsequent analysis will not consider the implementation or 

particulars of the actual multiplications but simply use this notion of multiplicative complexity as a comparison 

device. Explicit additions (those not occurring in the context of a multiplication) are completely ignored. We are 

careful to use this convention fairly in the sense that we shall never artificially reduce the multiplicative com-

plexity of a calculation by, for instance, introducing repeated additions. Along the same lines, we want to be 

clear at the outset that ultimately, we shall be directing our attention exclusively to multiplicative complexity 

accruing from multiplication of extended integers and neglecting the computational cost of native arithmetic. 

To the extent that these costs are not negligible, our development must be taken as somewhat theoretical, but 

we shall take care to point out where such native arithmetic enters significantly into the control flow of our 

algorithms in processing extended arithmetic data. (See [1] for a sophisticated survey of exponential methods 

and [2] for related material.) 

Let us consider the calculation of bw mod m where b and w are positive integers and m is a nonnegative integer. 

(Note that the case m = 0 is implicitly reduced to ordinary arithmetic, and hence we allow the expression mod 0 

https://doi.org/10.24297/jam.v16i0.8301


Journal of Advances in Mathematics vol 16 (2019) ISSN:  2347-1921             https://rajpub.com/index.php/jam 

8431 

in subsequent pseudocode fragments.) A direct implementation of this calculation would, of course, proceed as 

follows: 

function DirectExp(b,w,m) 

 b = b mod m; 

 x = 1; 

 for (j = 1; j <= w; j++) 

 { 

  x = (x ∗ b) mod m; 

 } 

return x; 

As explained directly following the equation below, if m = 0, at step j we are multiplying a number of approxi-

mate multiplicative complexity ( j – 1) · (ML(b) + 1 - 1/ln(2)) by another factor of b, so the multiplicative 

complexity of the entire calculation is approximated by  

(1) 

1

1 ( 1) 1
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In this and subsequent similar symbolic calculations, we often approximate ML by the base-two logarithm, and 

indeed in the preceding equation the middle factor is obtained by adjusting ML(b) by the average value of 

log2(x) across the interval from 2n – 1 to 2n. The formula is naturally more accurate near the geometric mean of 

these limits than it is near the extremes. We shall see this approach to such approximations again in subsequent 

estimates but make no further comment upon it. (We shall, however, make an exact accounting for all specific 

numerical examples.) 

If m > 0, except in degenerate cases, at every step but the first we are multiplying b mod m by a number that is, 

on average, of magnitude m/2. Therefore the multiplicative complexity in this case is approximately 

(w – 1) · ML(b mod m) · (ML(m) – 1), an estimate that is more accurate as m approaches a power of 2 from below. 

(A better approximation for that last factor will occur subsequently in connection with the standard fast algo-

rithm.) We can, of course, reduce the multiplicative complexity of the direct algorithm in the modular case by 

using a set of congruence class representative’s mod m centered at 0 (hence allowing negative integers). With 

this modification, the final factor in the expression for multiplicative complexity is decremented by 1, and in half 

the cases the middle factor is likewise decreased. 

Next, we consider the standard fast algorithm, which is based on the binary expansion of the exponent w; the 

point is to accumulate bw from the successive squares b2 j–1
, where j runs from 1 to the bit length of w. This 

method generally occurs in the context of modular arithmetic (m > 0), but it makes sense for ordinary arithmetic, 

too. Here is the associated pseudocode: 

function FastExp(b,w,m) 

 s = b mod m; 

 x = 1; 

 while (w > 0) 
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 { 

  If(w mod 2 != 0) 

  { 

   x = x ∗ s mod m; 

  } 

  w = w/2; 

  If(w > 0) 

  { 

   s = (s ∗ s) mod m; 

  } 

 } 

return x; 

The multiplicative complexity of this algorithm again, of course, depends on whether m is 0. In both cases, we 

break the calculation into two parts: first, the calculation of the successive squares and, second, the product 

accumulation. Henceforth assume that w > 1, and let J = J(w) = log2 w . Note that the number of times that 

the loop in the algorithm executes is J + 1, while the number of times the square calculation executes is only J. 

In the case of ordinary arithmetic, at the head of the loop on its j-th iteration, the multiplicative length of the 

square variable is estimated by 2 j 
–1(ML(b) + 1 - 1/ln(2)). The multiplicative complexity of the square is accord-

ingly 22(
 
j
 
–1) (ML(b) + 1 - 1/ln(2))2, and thus the approximate multiplicative complexity for this part of the 

calculation is given by 
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. 

For the second part of the estimate, consider first what happens when w = 2r – 1, for some positive integer r, 

which is to say that the binary expansion of w consists of all ones. The value Pj  of the accumulated product at 

the foot of the loop on its j-th iteration is clearly just b raised to the power 2 
j – 1, and accordingly, 

1
ML( ) (2 1)(ML( ) 1 )

ln(2)

j
jP b= − + − . 

We can now use this to estimate the multiplicative complexity MC(Pj ) of the calculation of Pj  for each iteration 

of the loop. On the first iteration, one of the factors is one, so MC(P1 ) = 0. For j > 1, we need to multiply the 

multiplicative length of the square variable (as referenced at the head of the loop) by that of the accumulated 

product from the previous iteration. Accordingly,  
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(with, in fact, no adjustment needed for j = 1) . Thus the total multiplicative complexity of the calculation of all 

the Pj (still apart from the calculation of the successive squares) is given by 

 
11

1 1 2 1 2

1

1 4 1 1
2 (2 1)(ML( ) 1 ) 2 1 (ML( ) 1 )

ln(2) 3 ln(2)

JJ
j j J

j

b b
++

− − +

=

 −
 − + − = − + + −
 
 

  

for the special case that all the binary digits of w are one. 

In the general case of an unstructured sequence of binary digits, with the exception of the final term in the 

summation, the estimated value of ML(Pj ) and the expected number of terms in the sum exhibited directly 

above are both reduced by half, and this reduces the estimate of the multiplicative complexity of the second 

part of the calculation by a factor of one quarter. The final term is extraordinary in that the most significant digit 

of w is by definition 1, not 0. Nonetheless, the expected value of ML(Pj ) at the head of the last iteration is only 

half of the expected value in the special case just considered, and this gives us the following expression for the 

average complexity of the product accumulation: 

(3) 
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.

 

We may now sum expressions (2) and (3) to get an estimate of the total complexity of the fast exponentiation 

algorithm for ordinary integer arithmetic (m = 0). Neglecting the “lower order” terms, for J not too small our 

approximation comes to 

(4) 
 

+ + + − = + − 
 

2 21 1 1 1 11 1
4 (ML( ) 1 ) 4 (ML( ) 1 )

12 2 3 ln(2) 12 ln(2)
J Jb b . 

To make a comparison with estimate (1) of the direct algorithm, we need to replace this expression in J with an 

appropriate approximation in the original variable w. This begins with a very special case of Euclidean division, 

namely that of w divided by 2 
J. By construction, this defines two auxiliary variables r and , as follows: 
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J J
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so that  

 1
2J

r
 = +  

where r is subject to a uniform random distribution among the integers between 0 and 2 
J – 1. Thus the expected 

value of  is approximated asymptotically by 3/2, and, of course, 2 
J = w/. The upshot is that the estimate (4) in 

terms of w rather than J amounts to   

(5) 2 211 1
(ML( ) 1 )

27 ln(2)
w b + − . 
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Comparing this with expression (1) shows that in general the standard fast algorithm is also, by this measure, 

superior to the direct calculation even modulo 0. [Actual numerical experiments, which we shall not reproduce 

here, bear out this conclusion and the estimates (1) and (5). As noted earlier, estimate (1) is most accurate at the 

geometric mean of successive powers of two; estimate (5) exhibits similar behavior, but its accuracy also depends 

on the number and distribution of nonzero digits in the binary expansion of w.] 

Finally, we look at the familiar modular case, m > 0, for the standard fast algorithm. To estimate the expected 

multiplicative complexity of the algorithm we must again look separately at the product accumulations and the 

squaring. In both cases, we need to know the expected multiplicative length of a non-negative integer smaller 

than the modulus, and we shall calculate an approximation to this in two steps. 

First, assume that our modulus is of the form m = 2n – 1. Then the expected value of the multiplicative length is 

clearly 
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where the adjustment term of –1 merely account for the fact that ML (1) = 0. This can be evaluated by introduc-

tion of the generating function (see [3]) 
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which is just the derivative of the geometric series in   x 
k, for k = 0,…, n. Consequently,  
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and, substituting x = 2, we have at once that 

(7) 
1
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2

n
nn
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This formalizes the intuitive argument that the expected value of the multiplicative length of a random integer 

mod 2n should simply be n – 1. 

Before completing the estimate for the multiplicative complexity of the standard fast algorithm modulo m > 0, 

it is convenient to introduce a second auxiliary function that arises in connection with the expectation of the 

square of the multiplicative length. Accordingly, let Bn(x) be defined by 

1
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The key relationship between An(x) and Bn(x) is 
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whence some routine but tedious algebra yields in particular that 
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(8) 
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We can now complete the general calculations for the expected values of both ML and ML2 from 0 to m = 2n + r, 

0  r < 2n. Since the multiplicative length of integers from 2n to m is (n + 1), we have the precise expressions 
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and 
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Moreover, these expressions are, respectively, clearly bounded from above by E(ML(0 → 2n+1 – 1)) and 

E(ML2(0 → 2n+1 – 1)). Thus the expected multiplicative complexity of the accumulation component is bounded 

from above by 

 ( )ML( )
2

n
J w b   

and the expected multiplicative complexity of the squaring component is bounded by 

2
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The consequence is that the expected multiplicative complexity of the fast algorithm modulo m > 0 is bounded 

from above by 

(9) 2

1

1
( )ML( ) ( ( ) 1)( 2 )

2 2n

n
J w b J w n
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which involves only the products of logarithmic factors, and hence overwhelmingly outperforms direct expo-

nentiation by this measure. 

One final note that is paramount to the sequel is the familiar fact that in computing bw mod m, for m > 0 and b 

relatively prime to m, we may reduce w modulo  (m), where   is the Euler phi function, the number of congru-

ence classes represented by numbers relatively prime to m. This number is easily computed from the prime 

factorization of m, and, for small m, essentially trivializes modular exponentiation regardless of the size of w.  

A Semi modular Approach 

For nonnegative integers m, we let Z/mZ denote the ring of integers mod m (whence the natural abstract alge-

braic identification of Z/0Z with Z is consistent with our previous convention). Given a family of relatively prime 

positive integers m1,…, ms 
, the Chinese remainder theorem asserts that the following map is an isomorphism of 

rings with unity [4]: 
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Note that the elements of the codomain look like coordinate vectors for which the j-th coordinate of the image 

of a mod  mj is simply the projection of a into Z/mj Z. For us, the most important particular elements of this 

assertion are the following:  

1. The operations of addition and multiplication on the codomain are defined componentwise (similar to the 

operations of addition and scalar multiplication in linear algebra): 
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2. The map  is both additive and multiplicative: 
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Here, of course, the variables are understood as integers mod M, where M =  mj. Moreover, (1) = (1,,1). 

3. The map  is bijective (hence, invertible) and the inverse map is likewise additive and multiplicative. 

In the context of this paper, the clear temptation here is to compute x = bw as follows, using what we shall re-

fer to as a semi modular approach: 

- Choose M = mj > x. 

- Compute xj = xw mod mj for all indices j. 

- Compute –1(x1,…, xs). 

[Recall from above that in the second step, we have the possible reduction of w mod  (mj ).] Since  is multipli-

cative and multiplication in the product ring is defined componentwise, we see that 
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and x mod M is just x because M is chosen to be larger than x, provided of course that –1 is constructed to 

return values between 0 and m − 1. Moreover, the middle step, where the exponentials occur, may be accom-

plished via fast modular exponentiation, hence the ostensible efficiency. However, what is obscured here is that 
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the final step, the inversion of the CRT map , is hardly the most facile of computations. One might also note 

that unless the moduli and their associated partial products are reusable, and chosen and stored in advance, the 

computation of M will by itself have multiplicative complexity comparable to the naïve algorithm. We shall ad-

dress both of these obstructions later.  

Inversion of the Isomorphism of the Chinese Remainder Theorem 

Let n be a positive integer and let a be any integer relatively prime to n. As a convenient notational device, we 

shall define 

1 1( ) modn a a n− −=  

Thus in this context, n–1 is an operator that directs us to invert the indicated integer modulo n. Next, with M and 

its relatively prime factors mj as above, let 

 /k jj
k j

M m m m



= =  , 

so that the circumflex on the subscript j indicates the omission of mj from the indicated product, and conse-

quently 
ĵ

M  is relatively prime to mj. By construction, it follows that 

1( ) mod modj k jk kj j
m M M m m−    . 

In other words, for any index j, the product 1( )j j j
m M M−   is congruent to 1 modulo mj and congruent to 0 

modulo every other modulus mk. Since  is a ring homomorphism, this implies at once that  
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and we have explicitly inverted . One sees at once, however, how expensive this is in terms of multiplicative 

complexity. Let us look at an estimate. 

Consider each term in the preceding equation as the product of two factors, separated by the dot. We provi-

sionally ignore the calculation of the factors themselves and assume that each of the s moduli mj is 

approximately M
1/s

; some must be larger, some smaller. Again treating ML as if it were purely logarithmic, we 

have the approximations 
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(For this part of the analysis, it is more convenient to deal with approximations rather than expectations.) Both 

aj and 1( )j j
m M−  may be regarded as uniformly distributed random nonnegative integers less than mj, whence 

their bit lengths drop on average by 1. Accordingly, 

 
1 1

ML( ) ( )) ( ML( ) 1) .j j j
a m M M

s

−  −  

This gives at once an estimate for the multiplicative complexity of each of the s products occurring in the sum-

mation on the right-hand side of equation (4), which in turn gives the following total estimate for the 

multiplicative complexity of this naïve inversion of the CRT applied modulo M: 

(11) 

1
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The sign of the second term calls into question the ratio of s/ML(M) insofar as it decreases the coefficient of 

the ML(M)2-term. How large can this number be? To answer this, we introduce some notation:  

 s(M)   =  the number of distinct prime factors of M (equivalently, the maximum value for the number of  

 relatively prime factors of M) 

 R(M)  = s(M)/log2(M) 

 ps   =  the s-th (positive) prime 

 s   =  the product of the first s primes 

 Rs   =  R(s) 

The key result is that the values of R(M) are governed by those of the Rs in the sense captured by the second 

part of the following proposition: 

PROPOSITION. The function R(M) has the following properties: 

(i) The sequence Rs is strictly decreasing. 

(ii) For every s, if M > s , then R(M) < Rs 
. 

(iii) R(M) → 0 as M → . 

PROOF. For part (i), we must show that 
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This, however, is equivalent to the assertion 
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which in turn is equivalent to the obvious inequality 

 2 2 1
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This completes part (i). 

Now let M > s . If s = s(M)  s, the assertion is clear. So suppose that s > s; that is, M has more than s prime 

factors. Let the prime decomposition of M be given by 

 
1
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j
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



=

=  

Then since the elements of the sequence { pj }j=1,…,s must be bounded by the corresponding elements of the 

sequence { qj }j=1,…,s, it follows that 
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The last inequality is a consequence of part (i), and this completes part (ii). 

For part (iii), it is enough to show that the sequence Rs goes to zero. Since there are infinitely many primes, for 

any positive integer N, we can choose s so large that at least half of the primes up to and including ps exceed 

2N. We then have the following chain of inequalities: 

 

2 2 2
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  

. 

Hence Rs may be made arbitrarily small, and this completes the proof. ❑ 

NOTE. The rate of convergence to zero for R(M) is glacially slow, as one might expect from the logarithm in the 

denominator; this is confirmed by the following short table of values for Rs (Table 1). The arithmetic was per-

formed with 12-digit precision. 

We now return to the approximation (11) and examine the consequences of this analysis of R(M). Noting that 

ML(M)  s, we have the following soft bound, which is, nonetheless, sufficient to our subsequent analysis: 

(12) 
1 2

naiveMC( ) (1 ( ))ML( )R M M−  −  

Since R(M) goes to zero as M goes to infinity, this bound on the multiplicative complexity of the naïve inversion 

of CRT is asymptotic to ML(M)2. 
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s ps Rs 

220 16,290,047 0.0446304 

221 34,136,029 0.0425905 

222 71,378,569 0.0407352 

223 148,948,139 0.0390400 

224 310,248,241 0.0374847 

225 645,155,197 0.0360521 

Table 1.  

EXAMPLE. Noting that for s = 28, s  is approximately 1042, and Rs< 0.2, it follows that for M larger than roughly 

1042,  

 
1 2

naive

4
MC( ) ML( )

5
M−   . 

The next step in our general analysis is to use the bound (12) to compare the multiplicative complexity of the 

standard fast algorithm for exponentiation (modulo 0), as given in expression (5), with that of the third and final 

step of the semi modular algorithm suggested above, namely, the inversion via formula (10) of the isomorphism 

. 

The Multiplicative Complexity of the Semi modular Approach with Naïve Inversion of CRT    

Again let x = bw, and, since we are analyzing the efficiency of the calculation of x mod M via the Chinese remain-

der theorem for M  greater than but near x, we may approximate M by bw. Hence in this case the inequality (12) 

reduces to 

(13) 
1 2 2

naive

1
MC( ) (1 ( )) (ML( ) 1 ) .

ln2
R M w b−  − + −  

Notice that bw is guaranteed to have relatively few distinct primes in its factorization, hence we do not want to 

replace R(M) by R(bw) in this bound, but nonetheless the multiplicative complexity of the naïve inversion algo-

rithm is asymptotic to w2(ML(b) + 1 – 1/ln 2)2. Recalling that estimate (5) for the standard fast algorithm was 

(11/27)w2(ML(b) + 1 – 1/ln 2)2, we see that for large exponentials—hence large M—whatever  the efficiency of 

exponentiation modulo small moduli, the final step of the suggested algorithm is too costly unless we can find 

a better inversion method. 

Garner’s Algorithm 

We can see in equation (10) that every term in the naïve algorithm for the inversion of CRT has a factor of the 

approximate order of M
(s–1)/s

, where s is the number of relatively prime factors chosen for the factorization of 

M. This is improved by Garner’s algorithm [5], which we shall express recursively. As above, we have the moduli 

mj , for j = 1, 2, …, s, and (a1,..., as) 1/ / sm m  Z Z Z Z is the element of the product ring to be inverted. First, 

we define two indexed sets of auxiliary parameters (redefining Mj as it was used previously): 
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(a) 

1

( 1,..., 1)
j

j k
k

M m j s

=

= = −  

(b) 
1

1 1
1

1

( ) ( ) ( 1,..., )
j

j j j j k
k

N m M m m j s
−

− −
−

=

= = =     

Note that N1 = 1, the empty product. The heart of the algorithm lies in two iterative calculations that are es-

sentially intertwined. We thus introduce sequences Uj and Vj defined as follows. We begin with 

(c) 1 1 1U V a= =  

and proceed recursively with 

(d) 1( ) mod ( 2,..., )j j j j jU N a V m j s−= − =  

(e) 1 1 ( 2,..., )j j j jV M U V j s− −= + = . 

The point of the algorithm is that Vj =
1

1( ,..., )ja a− , which is to say, via an implicitly polymorphic interpretation 

of , that Vj is congruent to ak modulo mk for all k from 1 to j. In particular, Vs inverts the full set of modular 

projections. This holds by definition for the case j = 1 as given, and for j > 1 we have 

 

1
1 1 1 1( )( ) mod

mod

j j j j j j j j

j j

V M m M a V V m

a m

−
− − − −  − +


 

as required. 

To estimate the multiplicative complexity of Garner’s algorithm (in this form), we note that assuming the moduli 

and associated products are computed in advance, only the calculation of the Vj involves large integers; hence 

we confine our attention to the last set of calculations. Again assume that each mj is approximately M
1/s

, so that 

 
1

ML( ) ML( ) 1jU M
s

 −  

and 

 ML( ) ML( ) .j

j
M M

s
  

The multiplicative complexity of calculating all of the Vj may thus be approximated by 

 

2 2 2
2 2

2 2

2
2

(ML( ) ML( )) (ML( ) ( )ML( ) )

1 1 1
(1 ( )) ML( ) .

2 2

s s

j j

j j
M s M M R M M

s s

R M M
s s

= =

−  −

 
 + −  −  
 

 
 

Accordingly, for s not too small, we have  



Journal of Advances in Mathematics vol 16 (2019) ISSN:  2347-1921             https://rajpub.com/index.php/jam 

8442 

 1 2
Garner

1
MC( ) (1 ( ))ML( ) .

2
R M M−  −  

This, in turn, when applied to the case x = bw, yields 

 
1 2 2

Garner

1 1
MC( ) (1 ( )) (ML( ) 1 ) .

2 ln2
R M w b−  − + −  

Thus, recalling inequality (5) with its lead coefficient of 11/27, we have at least the potential for a significant 

improvement over the standard fast algorithm to the extent that (i) Garner’s algorithm may be made more 

efficient, and (ii) certain exponents w admit moduli for which some part of the CRT inversion becomes compu-

tationally trivial. 

Two Paths Forward 

The remainder of this paper considers two variations on the abstract idea of semi modular exponentiation; the 

first is a general consideration for choosing a subset of the moduli independently of how the algorithm com-

pletes and invites an excursion into the Gaussian integers; the second is more specifically a variant on Garner’s 

algorithm. We shall see that the two in tandem produce some worthwhile results in the right circumstances. 

Phi Moduli  

We recalled above that when b is relatively prime to m, bw mod m need only be computed for w mod  (m), 

where  is the Euler phi function. This follows from the identity b 
(m)  1 mod m for such b. We shall now exploit 

this in connection with inverting the Chinese remainder theorem. 

Consider the special case that m = p is a power of a positive prime with either p > 2 or   2. Suppose moreover 

that x 
2  1 mod p. Then p divides the product (x + 1)(x – 1), and indeed it must divide one of the factors. That 

tells us that even though Z/p Z is not necessarily a field, it is still the case that x  1 mod p. It follows from 

this that if  (p) = (p – 1)p 
–
 
1
 | 2w, then b2w  1 mod p and so x = bw  1 mod p. The point is that if 

 (p )| 2w, the projection of x = bw into the residue ring Z/p Z is 1. Thus if we choose moduli mj = pj
 j for 

which 2w| (mj), at the corresponding step in the naïve inversion of the CRT isomorphism, we need perform no 

multiplication. Similarly, if b | mj , then x  0 mod p, and again the corresponding step in the naïve inversion is 

trivial. We shall illustrate all of this shortly, but first we show that it can be extended somewhat. 

Next consider the extension of the integers Z to the so-called Gaussian integers Z[i] = {a + bi : a, bZ}. Thus the 

Gaussian integers are simply those complex numbers whose real and imaginary parts are ordinary integers. This 

extension loses the property of admitting a linear ordering compatible with ordinary arithmetic, but retains the 

key algebraic properties of Z. We sketch these out minimally: 

1. Z[i] is a Euclidean ring; that is, we can perform Euclidean division with quotients and remainders deter-

mined by the norm function, although not uniquely. The group of units in Z[i] (that is, the invertible Gaussian 

integers) expands to the set {±1, ±i}.  

2. As a Euclidean ring, Z[i] is automatically a principal ideal domain. Thus prime (or irreducible elements) 

in Z[i] are exactly those that generate prime ideals. Moreover, we can speak of greatest common divisors 

and elements that are relatively prime. In particular, the quotient rings corresponding to arithmetic mod z 

for a Gaussian integer z satisfy the Chinese remainder theorem. The implied isomorphism and its inverse 

are both defined and computed as with ordinary integers, but using complex arithmetic. 
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3. The Euler phi function again makes sense for a Gaussian integer z and is defined as the size of the unit 

group of the corresponding quotient ring; equivalently, it is again the number of residue classes that are 

invertible mod z. The size and structure of the group of units for Z[i] differs from that of Z, and we note that 

the structure of the group of units for the Gaussian integers modulo p for powers of an integer prime p is 

given according to [6] by 

1 1 2 1
( [ ] / [ ])

p p p
i p i C C C 


− −



−
  Z Z . 

Here Cn denotes the cyclic group of order n, and the exponent for the group of units is thus 

( p2 – 1) p 
–
 
1.  This higher value might seem to work against us, insofar as good exponents would seem to 

be rarer in this setting, having to accommodate a larger factor, but since we are only concerned with expo-

nentiating ordinary integers, this is in fact not the case, as we shall see in a moment. 

Now the point of all this will be clear as soon as we recall a famous theorem by Gauss. In its simplest form—

which is all we need—it states that an integer prime p factors (or splits) in Z[i] if and only if p  1 mod 4, in which 

case the factorization takes the form p = (a + bi) · (a – bi) for some ordinary integers a and b. (The resulting 

factors are now Gaussian primes.) For such p, we can exploit this in the choice of good moduli for the naïve 

inversion of the CRT as follows: Let m = p with p and  modestly restricted as above, but now assume that 

x 
4  1 mod p in Z. Then since (a ± bi) | p, we have natural projections 

/ [ ] /( ) [ ]p i a bi i → Z Z Z Z  

and we may read x 
4  1 as a congruence in the Gaussian integers mod (a ± bi). But over the latter ring, x 

4 – 1 

factor into (x +1) (x –1) (x + i) (x – i) as an elementary matter of complex arithmetic. As above, this tells us that 

if x 
4  1 mod p in Z, then x  1, i mod (a ± bi) in Z[i]. The upshot is that if p splits and  (p )| 4w, the 

projection of x = bw into the residue rings Z/(a ± bi)  is 1 or i. Thus if we choose moduli mj = pj
 j for such 

primes subject to the further condition that 4w | (mj), then the corresponding factors in the naïve inversion of 

the CRT on Z[i] require no multiplication whatsoever. [Note, by the way, that if p does not split and  (p ) | 4w, 

then since p – 1 has only a single factor of 2, then also  (p ) | 2w. Thus searching for good moduli over the 

Gaussian integers automatically yields good ordinary integer moduli.] 

Numerical examples of what we shall call phi moduli—that is, moduli for which the projections of bw constitute 

units in Z or Z[i]—are given in Table 2. (These rare but spectacular examples of exponents with extraordinarily 

large numbers of phi moduli are actually just curios because, as the exponent w increases, the part of the expo-

nentiation that we get “for free” via these moduli evidently represents only a small part of the overall calculation.) 

For now, let us only note further that the functions ML and MC are easily extended to the Gaussian integers via 

ML(a + bi) = ML(a) + ML(b). Accordingly, the value of MC is the sum of four terms as given by the distributive 

law. 
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Sieving with Garner’s Algorithm 

Recall that the expensive part of Garner’s algorithm is the extended-integer multiplication explicit in the final 

step. In the same way that the naïve inversion of the CRT is improved by having many of the projections bw 

project onto ±1 or ±i in the product of the residue rings, Garner’s algorithm is made more efficient by having 

the variable Uj reduced to something small. But this is a matter of a felicitous choice of the modulus mj , and 

here we do seem to have some scope. Let us sketch out how this might be done, postponing certain details—

and one enormous obstruction—for the moment. 

(i) Find all the phi moduli, combine them by multiplication into an initial modulus m1 with corresponding 

projection a1 obtainable by nothing but (possibly complex) addition. 

(ii) Using a list or array of primes from some chosen interval, sieve iteratively for the next apt modulus mj 

by computing Uj = Uj(m) via the successive choice of candidate moduli m from the list of primes, looking 

for small values of Uj. Keep in mind that this is a modular calculation that need not require extended arith-

metic and that the list of moduli so obtained need not occur in increasing order: we are free at the 

completion of any iteration to go back to the beginning of the list, provided that we skip over primes that 

have already been chosen or have occurred in the factorization of m1. (This actually enhances our efficiency.) 

Once mj and Uj are chosen, compute Vj. This will require extended arithmetic, but the cost has been reduced 

by the choice of mj. 

(iii) The loop concludes when the composite modulus Mj exceeds the floating-point estimate of bw. The 

current Vj is our result. (If we have chosen to use residue class representatives centered at 0, as suggested 

above, our final result will be Vj + Mj , should Vj be less than or equal to zero.) 

 

 

 

 

 

 

 

 

 

 

Table 2. These are all the positive integers under 106 such that the product of the 

phi moduli (Gaussian case) is greater than 10160. In the second column, m1 denotes 

their product (which would be used as the first modulus for the semi modular 

exponentiation). The corresponding initial and final segment of the factors con-

solidate any complex conjugate pairs into a single product. 

 

w log10(m 1)
Number 

of factors

98280 213.900 74 4 81 25 49 11 39313 65521 131041 196561 393121

97020 174.435 62 4 27 25 343 121 55441 77617 97021 129361 388081

96390 171.003 61 4 243 25 49 11 27541 38557 42841 128521 192781

95760 162.382 58 4 27 25 49 11 47881 54721 63841 127681 383041

90720 170.951 63 4 243 25 49 11 15121 20161 30241 45361 72577

90090 184.572 66 4 27 25 49 121 6037 51481 72073 120121 180181

86940 160.207 60 4 81 25 49 11 15121 16561 17389 24841 49681

85680 168.415 62 4 27 25 49 11 17137 20161 24481 34273 42841

83160 205.474 73 4 81 25 49 121 47521 55441 66529 110881 332641

81900 185.250 67 4 27 125 49 11 21841 54601 65521 81901 109201

75600 186.459 67 4 81 125 49 11 30241 33601 43201 100801 151201

71820 161.951 58 4 81 25 49 11 35911 47881 57457 71821 287281

69300 179.772 66 4 27 125 49 121 18481 19801 34651 55441 92401

65520 170.844 63 4 27 25 49 11 21841 26209 37441 65521 131041

64260 187.106 67 4 81 25 49 11 15121 17137 36721 42841 128521

56700 160.564 60 4 243 125 49 11 15121 28351 32401 45361 56701

49140 168.124 62 4 81 25 49 11 24571 28081 39313 65521 196561

First five moduli Last five moduli
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Perhaps the most evident cost here is that the sieving for the Uj implicitly also entails the calculation of bw mod 

mk for several moduli. This is not a deal breaker since these calculations are modular and only incidentally involve 

extended integers. Indeed, we can reuse the projections bw mod mk to enhance the efficiency of even these 

short calculations. The not-so-evident cost—perhaps because this assumption has been buried for so long in 

our approach—is that unless the moduli and their order of occurrence can be set in advance, the assumption that 

the products Mj and M itself can be precomputed collapses. Since the calculation of M is comparable to the direct 

calculation of bw, any advantage gained working via small moduli, with or without sieving with respect to Gar-

ner’s algorithm, will be irretrievably lost. 

Given that the italicized conditional just asserted is unavoidable, we turn now to a double-sieving variant that is 

successful with a plausible adjustment of the calculation of multiplicative complexity and the continued assump-

tion that native arithmetic is essentially negligible in cost in comparison to the multiplication of extended 

integers. In one respect, to be addressed below, we are overworking this assumption to the point that what we 

present here must be regarded as a largely theoretical analysis of the degree to which extended multiplication 

may be controlled via sieving with native arithmetic. 

The key is to refine the notion of multiplicative complexity by adjusting for the number of nonzero bits in the 

operands. Roughly speaking, an integer a (ordinary or extended) will typically have its bits equally distributed 

between ones and zeroes. Numbers with fewer nonzero bits require much less work to multiply—much more 

shifting and much less adding—so, if we can favor such light-weight integers (i.e., integers with relatively small 

Hamming distance from 0), the efficiency of all associated multiplications should improve correspondingly. In-

deed, if r(a) represents the ratio of the number of nonzero bits of a to its bit length, then an appropriate 

adjustment to the multiplicative complexity of the product ab is simply 

MCW(a,b) = 4r(a)r(b)·MC(a,b) 

For the remainder of this paper, we shall be concerned with cases where the weight of only one of the factors is 

controlled, and so this formula reduces to MCW(a,b) = 2r(a)·MC(a,b) where, say, the first factor is controlled. 

With this revision in mind, we would begin by sieving and storing in advance a large number of light-weight 

candidate (prime) moduli. The point here is that while the final sequence (or even set) of moduli cannot be 

chosen in advance if we are to sieve again on the Uj in step (ii) above, the accumulation of partial products 

required by Garner’s algorithm can now be executed at a reduced cost. Nonetheless, one can anticipate two 

difficulties with this approach. First, while we can take our time sieving a set of light moduli, as the bit length of 

a random integer increases, the chances of finding one with a significant surfeit of zero bits correspondingly 

decreases. (The chances of getting only four tails in ten tosses of a fair coin is much larger than the chances of 

getting only forty tails in one hundred tosses of that same coin.) Second, to exploit the comparative speed of 

sieving for the Uj we are limited in the search for light moduli by the native precision of the system on which 

the algorithm is to run. The tests we report on below were executed on a standard-issue 64-bit PC and imple-

mented in Mathematica. 

A Few Trial Runs 

Before discussing our modest tests, we should mention four auxiliary parameters implicit in the execution of this 

algorithm: the maximum bit-weight for the candidate moduli, the lower-bound cut-off for the Uj sieve, the 

starting point for the candidate moduli search and the candidate moduli search limit. All our reported runs were 

done with a limit of five nonzero bits for each candidate modulus (excluding the phi moduli). This provided a 

rich enough set of moduli to work with numbers of a few thousand digits. A higher limit would, of course, extend 

our range. The Uj-sieve cut-off was held to three; this means that if the sieve loop for mj ever produced a result 

of bit weight three or lower, further searching was aborted. Since we were interested in the theoretical perfor-

mance of our method, we set this parameter so low that we were essentially finding the minimum possible bit 
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length for Uj at each step. Recognizing that we do not account for native arithmetic, this is cost-free in our set 

of experiments, but certainly it would have to be reckoned with if the approach were to be made practical. 

Finally, both the lower bound for the moduli search and the search limit became experimental parameters, and 

we found it most convenient to set the latter in terms of a power z of the exponential x = bw. The search limit, 

which would seem enormous, is not directly a bound on the size of the moduli under consideration, but rather 

limits from below the product of the moduli that survive the bit-weight test. (The column header for this number 

in the subsequent tables is “search ext exp,” the search extension exponent; the product of the candidate moduli 

is thus bounded from below by x 
z, and z must be at least one for the CRT inversion to produce the correct 

answer.)  

Table 3 suggests how this scheme responds to changes in the base, the exponent and other associated param-

eters for a few cases for which the target exponential is under 101000. The table header “light mods” designates 

the number of prime moduli of weight five or less in the implied range; the final set of moduli for the given 

calculation is thus a subset of those determined by sieving. The entry “last candidate” is the last candidate 

modulus found, and this is recorded to confirm that the moduli range is held under 232 to avoid overflows in 

native 64-bit products. The “efficiency ratio” is simply the ratio of the multiplicative complexity (for extended 

multiplications) of our experimental scheme to that of the standard fast algorithm.  

In these runs, about 4% of the total calculation is achieved via the phi moduli. Moreover, we see two trends that 

can be explained easily. First, a larger starting point for the moduli search tends to give better efficiency; this is 

because more arithmetic is packed into the native calculations with bigger numbers. Second, a longer search 

interval also tends to favor this scheme: the greater the number of candidate moduli, the more chance we have 

of finding light-weight Uj for Garner’s algorithm. For this set of experiments, we needed a good number of 

good-sized candidates to begin to see any efficiency, and, even so, these results do not account for the (modular 

and native) overhead of sieving for the Uj. 

Table 4 takes us into a range of results in excess of 102000, and the phi moduli play a correspondingly smaller 

role. Since the exponential results are already much larger, we need not take the search limit extension exponent 

so high to begin to see the effectiveness of double sieving: we find many light moduli for modest extension 

exponents, with more rapid convergence in overall efficiency. 

Further Work 

Faster algorithms for sieving on the bit weights of the candidate moduli are certainly tractable and might far 

exceed what we have used here, but then this is not at all the focus of these experiments. The difficulty remains 

in, say, for a fixed exponent w, finding some better solution to the problem of dynamically sieving on the Uj. 

Finer results from the experiments, which we have not presented in the last two tables, show that total multipli-

cative complexity is roughly evenly divided between required accumulation of the partial products of the moduli 

and the final step in Garner’s algorithm. At present, we see no prospects for improving the latter calculation 

beyond what we have presented here, but possibly the candidate moduli might be chosen in a way that limits 

the bit weights of the partial products rather than the moduli themselves. Early attempts along these lines have 

not yielded any notable success, and we hope that fresher eyes than ours can spot the trick. 
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Table 3. Three sets of exponentials with varied light-moduli search limits. 

b w log10(b w)

phi 

mod 

count

log10(m 1)

lower 

bound 

search

search 

ext exp

light 

mods
last candidate

efficiency 

ratio

41        252      406.422 24        24.262 1.00E+06 8          511      4,341,769         1.015

41        252      406.422 24        24.262 1.00E+06 12        749      8,527,873         1.022

41        252      406.422 24        24.262 1.00E+06 16        979      16,846,853       1.002

41        252      406.422 24        24.262 1.00E+06 20        1,199   33,571,849       0.974

41        252      406.422 24        24.262 1.00E+06 24        1,415   42,206,209       0.974

41        252      406.422 24        24.262 4.00E+06 8          476      11,272,193       1.031

41        252      406.422 24        24.262 4.00E+06 12        701      20,988,161       0.992

41        252      406.422 24        24.262 4.00E+06 16        917      34,603,033       0.964

41        252      406.422 24        24.262 4.00E+06 20        1,130   67,133,953       0.961

41        252      406.422 24        24.262 4.00E+06 24        1,337   85,983,241       0.927

41        252      406.422 24        24.262 1.60E+07 8          438      35,135,489       0.968

41        252      406.422 24        24.262 1.60E+07 12        649      67,248,161       0.978

41        252      406.422 24        24.262 1.60E+07 16        855      100,794,433     0.952

41        252      406.422 24        24.262 1.60E+07 20        1,056   135,331,969     0.961

41        252      406.422 24        24.262 1.60E+07 24        1,254   268,435,723     0.909

41        252      406.422 24        24.262 6.40E+07 8          408      134,252,609     0.965

41        252      406.422 24        24.262 6.40E+07 12        608      153,092,609     0.943

41        252      406.422 24        24.262 6.40E+07 16        802      268,961,801     0.954

41        252      406.422 24        24.262 6.40E+07 20        995      335,806,529     0.939

41        252      406.422 24        24.262 6.40E+07 24        1,182   537,673,729     0.917

41        504      812.843 30        32.381 1.00E+06 8          978      16,845,313       0.967

41        504      812.843 30        32.381 1.00E+06 12        1,414   42,205,217       0.973

41        504      812.843 30        32.381 1.00E+06 16        1,826   134,226,949     0.961

41        504      812.843 30        32.381 1.00E+06 20        2,222   268,566,817     0.975

41        504      812.843 30        32.381 1.00E+06 24        2,602   537,165,833     0.975

41        504      812.843 30        32.381 4.00E+06 8          916      34,603,013       0.962

41        504      812.843 30        32.381 4.00E+06 12        1,336   85,196,801       0.942

41        504      812.843 30        32.381 4.00E+06 16        1,735   201,719,809     0.942

41        504      812.843 30        32.381 4.00E+06 20        2,119   536,871,233     0.935

41        504      812.843 30        32.381 4.00E+06 24        2,491   805,310,977     0.942

41        504      812.843 30        32.381 1.60E+07 8          854      100,704,257     0.950

41        504      812.843 30        32.381 1.60E+07 12        1,253   268,435,649     0.950

41        504      812.843 30        32.381 1.60E+07 16        1,636   536,879,621     0.919

41        504      812.843 30        32.381 1.60E+07 20        2,007   872,448,001     0.919

41        504      812.843 30        32.381 1.60E+07 24        2,366   1,212,284,929  0.920

41        504      812.843 30        32.381 6.40E+07 8          802      268,961,801     0.953

41        504      812.843 30        32.381 6.40E+07 12        1,181   537,661,441     0.920

41        504      812.843 30        32.381 6.40E+07 16        1,548   1,073,881,093  0.917

41        504      812.843 30        32.381 6.40E+07 20        1,906   2,147,483,777  0.891

41        504      812.843 30        32.381 6.40E+07 24        2,254   2,233,466,881  0.891

47        504      842.737 30        32.381 1.00E+06 8          1,011   17,072,257       0.991

47        504      842.737 30        32.381 1.00E+06 12        1,460   67,108,913       0.951

47        504      842.737 30        32.381 1.00E+06 16        1,885   134,348,801     0.951

47        504      842.737 30        32.381 1.00E+06 20        2,292   270,533,633     0.944

47        504      842.737 30        32.381 4.00E+06 8          948      35,127,809       0.972

47        504      842.737 30        32.381 4.00E+06 12        1,380   102,760,961     0.938

47        504      842.737 30        32.381 4.00E+06 16        1,792   268,443,697     0.926

47        504      842.737 30        32.381 4.00E+06 20        2,188   536,973,313     0.926

47        504      842.737 30        32.381 1.60E+07 8          884      134,217,773     0.964

47        504      842.737 30        32.381 1.60E+07 12        1,295   268,456,961     0.941

47        504      842.737 30        32.381 1.60E+07 16        1,691   537,071,617     0.938

47        504      842.737 30        32.381 1.60E+07 20        2,073   1,073,774,657  0.914

47        504      842.737 30        32.381 6.40E+07 8          830      270,532,609     0.949

47        504      842.737 30        32.381 6.40E+07 12        1,222   540,016,769     0.923

47        504      842.737 30        32.381 6.40E+07 16        1,601   1,075,052,609  0.915

47        504      842.737 30        32.381 6.40E+07 20        1,970   2,147,549,219  0.885
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Table 4. A pair of larger exponentials with a more refined granularity in the search 

limit extension exponent. 

b w log10(b w)

phi 

mod 

count

log10(m 1)

lower 

bound 

search

search 

ext exp

light 

mods
last candidate

efficiency 

ratio

101      1,008   2020.360 36        40.080 1.60E+07 1.0       272      33,556,673       1.125

101      1,008   2020.360 36        40.080 1.60E+07 1.5       407      34,603,081       1.033

101      1,008   2020.360 36        40.080 1.60E+07 2.0       540      50,332,673       0.993

101      1,008   2020.360 36        40.080 1.60E+07 2.5       669      67,502,081       0.976

101      1,008   2020.360 36        40.080 1.60E+07 3.0       798      79,691,809       0.961

101      1,008   2020.360 36        40.080 1.60E+07 3.5       924      134,225,929     0.956

101      1,008   2020.360 36        40.080 1.60E+07 4.0       1,048   135,267,329     0.946

101      1,008   2020.360 36        40.080 1.60E+07 4.5       1,172   167,772,161     0.944

101      1,008   2020.360 36        40.080 1.60E+07 5.0       1,293   268,455,953     0.937

101      1,008   2020.360 36        40.080 1.60E+07 5.5       1,413   272,630,021     0.930

101      1,008   2020.360 36        40.080 1.60E+07 6.0       1,532   310,378,753     0.927

171      1,008   2250.860 36        40.080 1.60E+07 1.0       303      33,571,873       1.134

171      1,008   2250.860 36        40.080 1.60E+07 1.5       452      35,653,637       1.019

171      1,008   2250.860 36        40.080 1.60E+07 2.0       599      67,117,097       0.980

171      1,008   2250.860 36        40.080 1.60E+07 2.5       743      71,303,171       0.956

171      1,008   2250.860 36        40.080 1.60E+07 3.0       885      134,217,779     0.969

171      1,008   2250.860 36        40.080 1.60E+07 3.5       1,023   134,520,833     0.949

171      1,008   2250.860 36        40.080 1.60E+07 4.0       1,161   151,388,161     0.951

171      1,008   2250.860 36        40.080 1.60E+07 4.5       1,296   268,460,033     0.927

171      1,008   2250.860 36        40.080 1.60E+07 5.0       1,430   274,726,913     0.928

171      1,008   2250.860 36        40.080 1.60E+07 5.5       1,563   339,804,161     0.919

171      1,008   2250.860 36        40.080 1.60E+07 6.0       1,692   537,133,057     0.927


