
Journal of Advances in Mathematics vol 16 (2019) ISSN: 2347-1921 https://rajpub.com/index.php/jam

8430

DOI: https://doi.org/10.24297/jam.v16i0.8301

Spectacular Exponents: A semi modular Approach to Fast Exponentiation

Robert J. Valenza

Claremont McKenna College 500 E. Ninth Street Claremont, California, USA 91711

rvalenza@cmc.edu

Abstract

This paper introduces a computational scheme for calculating the exponential bw where b and w are positive

integers. This two-step method is based on elementary number theory that is used routinely in this and similar

contexts, especially the Chinese remainder theorem (CRT), Lagrange’s theorem, and a variation on Garner’s al-

gorithm for inverting the CRT isomorphism. We compare the performance of the new method to the standard

fast algorithm and show that for a certain class of exponents it is significantly more efficient as measured by the

number of required extended multiplications.

Keywords: Integer Exponentiation, Modular Exponentiation, Chinese Remainder Theorem, Garner’s Algorithm,

Generating Functions.

Introduction and Preliminary Estimates of Multiplicative Complexity

Throughout this analysis we are concerned with the multiplicative complexity of the exponential calculation, and

accordingly we introduce two associated functions. The multiplicative length ML(a) of an integer a is a simple

adjustment to the binary length of its absolute value:

2

0 | | 1

ML() 1 if | | 2 for some

log | | otherwise.

r

a

a r a r

a

 


= + =
  

Provisionally, the multiplicative complexity MC(a,b) of the product of integers a and b is then defined as the

product ML(a)·ML(b). This is admittedly a crude measure of the number of underlying elementary operations,

but nonetheless useful for general analysis, especially in connection with extended integer arithmetic (i.e., class

constructions that exceed the native integer data types in a given programming language on a given system).

Less formally, we define the multiplicative complexity of any algorithmic calculation as the sum of the complex-

ities of the component multiplications. Thus our subsequent analysis will not consider the implementation or

particulars of the actual multiplications but simply use this notion of multiplicative complexity as a comparison

device. Explicit additions (those not occurring in the context of a multiplication) are completely ignored. We are

careful to use this convention fairly in the sense that we shall never artificially reduce the multiplicative com-

plexity of a calculation by, for instance, introducing repeated additions. Along the same lines, we want to be

clear at the outset that ultimately, we shall be directing our attention exclusively to multiplicative complexity

accruing from multiplication of extended integers and neglecting the computational cost of native arithmetic.

To the extent that these costs are not negligible, our development must be taken as somewhat theoretical, but

we shall take care to point out where such native arithmetic enters significantly into the control flow of our

algorithms in processing extended arithmetic data. (See [1] for a sophisticated survey of exponential methods

and [2] for related material.)

Let us consider the calculation of bw mod m where b and w are positive integers and m is a nonnegative integer.

(Note that the case m = 0 is implicitly reduced to ordinary arithmetic, and hence we allow the expression mod 0

https://doi.org/10.24297/jam.v16i0.8301

Journal of Advances in Mathematics vol 16 (2019) ISSN: 2347-1921 https://rajpub.com/index.php/jam

8431

in subsequent pseudocode fragments.) A direct implementation of this calculation would, of course, proceed as

follows:

function DirectExp(b,w,m)

 b = b mod m;

 x = 1;

 for (j = 1; j <= w; j++)

 {

 x = (x ∗ b) mod m;

 }

return x;

As explained directly following the equation below, if m = 0, at step j we are multiplying a number of approxi-

mate multiplicative complexity (j – 1) · (ML(b) + 1 - 1/ln(2)) by another factor of b, so the multiplicative

complexity of the entire calculation is approximated by

(1)

1

1 (1) 1
(1)(ML() 1)ML() (ML() 1)ML()

ln(2) 2 ln(2)

w

j

w w
j b b b b

=

 −
− + − = + − 

 
 .

In this and subsequent similar symbolic calculations, we often approximate ML by the base-two logarithm, and

indeed in the preceding equation the middle factor is obtained by adjusting ML(b) by the average value of

log2(x) across the interval from 2n – 1 to 2n. The formula is naturally more accurate near the geometric mean of

these limits than it is near the extremes. We shall see this approach to such approximations again in subsequent

estimates but make no further comment upon it. (We shall, however, make an exact accounting for all specific

numerical examples.)

If m > 0, except in degenerate cases, at every step but the first we are multiplying b mod m by a number that is,

on average, of magnitude m/2. Therefore the multiplicative complexity in this case is approximately

(w – 1) · ML(b mod m) · (ML(m) – 1), an estimate that is more accurate as m approaches a power of 2 from below.

(A better approximation for that last factor will occur subsequently in connection with the standard fast algo-

rithm.) We can, of course, reduce the multiplicative complexity of the direct algorithm in the modular case by

using a set of congruence class representative’s mod m centered at 0 (hence allowing negative integers). With

this modification, the final factor in the expression for multiplicative complexity is decremented by 1, and in half

the cases the middle factor is likewise decreased.

Next, we consider the standard fast algorithm, which is based on the binary expansion of the exponent w; the

point is to accumulate bw from the successive squares b2 j–1
, where j runs from 1 to the bit length of w. This

method generally occurs in the context of modular arithmetic (m > 0), but it makes sense for ordinary arithmetic,

too. Here is the associated pseudocode:

function FastExp(b,w,m)

 s = b mod m;

 x = 1;

 while (w > 0)

Journal of Advances in Mathematics vol 16 (2019) ISSN: 2347-1921 https://rajpub.com/index.php/jam

8432

 {

 If(w mod 2 != 0)

 {

 x = x ∗ s mod m;

 }

 w = w/2;

 If(w > 0)

 {

 s = (s ∗ s) mod m;

 }

 }

return x;

The multiplicative complexity of this algorithm again, of course, depends on whether m is 0. In both cases, we

break the calculation into two parts: first, the calculation of the successive squares and, second, the product

accumulation. Henceforth assume that w > 1, and let J = J(w) = log2 w . Note that the number of times that

the loop in the algorithm executes is J + 1, while the number of times the square calculation executes is only J.

In the case of ordinary arithmetic, at the head of the loop on its j-th iteration, the multiplicative length of the

square variable is estimated by 2 j
–1(ML(b) + 1 - 1/ln(2)). The multiplicative complexity of the square is accord-

ingly 22(

j

–1) (ML(b) + 1 - 1/ln(2))2, and thus the approximate multiplicative complexity for this part of the

calculation is given by

(2) 2(1) 2 2

1

1 4 1 1
2 (ML() 1) (ML() 1)

ln(2) 3 ln(2)

JJ
j

j

b b−

=

−
+ − = + −

.

For the second part of the estimate, consider first what happens when w = 2r – 1, for some positive integer r,

which is to say that the binary expansion of w consists of all ones. The value Pj of the accumulated product at

the foot of the loop on its j-th iteration is clearly just b raised to the power 2
j – 1, and accordingly,

1
ML() (2 1)(ML() 1)

ln(2)

j
jP b= − + − .

We can now use this to estimate the multiplicative complexity MC(Pj) of the calculation of Pj for each iteration

of the loop. On the first iteration, one of the factors is one, so MC(P1) = 0. For j > 1, we need to multiply the

multiplicative length of the square variable (as referenced at the head of the loop) by that of the accumulated

product from the previous iteration. Accordingly,

1
1

1 1 2

1
MC() 2 (ML() 1) ML()

ln(2)

1
2 (2 1)(ML() 1)

ln(2)

j
j j

j j

P b P

b

−
−

− −

= + − 

= − + −

Journal of Advances in Mathematics vol 16 (2019) ISSN: 2347-1921 https://rajpub.com/index.php/jam

8433

(with, in fact, no adjustment needed for j = 1) . Thus the total multiplicative complexity of the calculation of all

the Pj (still apart from the calculation of the successive squares) is given by

11

1 1 2 1 2

1

1 4 1 1
2 (2 1)(ML() 1) 2 1 (ML() 1)

ln(2) 3 ln(2)

JJ
j j J

j

b b
++

− − +

=

 −
 − + − = − + + −
 
 



for the special case that all the binary digits of w are one.

In the general case of an unstructured sequence of binary digits, with the exception of the final term in the

summation, the estimated value of ML(Pj) and the expected number of terms in the sum exhibited directly

above are both reduced by half, and this reduces the estimate of the multiplicative complexity of the second

part of the calculation by a factor of one quarter. The final term is extraordinary in that the most significant digit

of w is by definition 1, not 0. Nonetheless, the expected value of ML(Pj) at the head of the last iteration is only

half of the expected value in the special case just considered, and this gives us the following expression for the

average complexity of the product accumulation:

(3)

1 1 2 2

1

2 2

1 1 1 1
2 (2 1)(ML() 1) 2 (2 1)(ML() 1)

4 ln(2) 2 ln(2)

1 4 1 1 1 1
2 1 (ML() 1) (4 2)(ML() 1)

4 3 ln(2) 2 ln(2)

J
j j J J

j

J
J J J

b b

b b

− −

=

 − + − +  − + − =

 −
  − + + − +  − + −
 
 



.

We may now sum expressions (2) and (3) to get an estimate of the total complexity of the fast exponentiation

algorithm for ordinary integer arithmetic (m = 0). Neglecting the “lower order” terms, for J not too small our

approximation comes to

(4)
 

+ + + − = + − 
 

2 21 1 1 1 11 1
4 (ML() 1) 4 (ML() 1)

12 2 3 ln(2) 12 ln(2)
J Jb b .

To make a comparison with estimate (1) of the direct algorithm, we need to replace this expression in J with an

appropriate approximation in the original variable w. This begins with a very special case of Euclidean division,

namely that of w divided by 2
J. By construction, this defines two auxiliary variables r and , as follows:

2 (0 2)

2 (1 2)

J J

J

w r r

 

= +  

=   

so that

 1
2J

r
 = +

where r is subject to a uniform random distribution among the integers between 0 and 2
J – 1. Thus the expected

value of  is approximated asymptotically by 3/2, and, of course, 2
J = w/. The upshot is that the estimate (4) in

terms of w rather than J amounts to

(5) 2 211 1
(ML() 1)

27 ln(2)
w b + − .

Journal of Advances in Mathematics vol 16 (2019) ISSN: 2347-1921 https://rajpub.com/index.php/jam

8434

Comparing this with expression (1) shows that in general the standard fast algorithm is also, by this measure,

superior to the direct calculation even modulo 0. [Actual numerical experiments, which we shall not reproduce

here, bear out this conclusion and the estimates (1) and (5). As noted earlier, estimate (1) is most accurate at the

geometric mean of successive powers of two; estimate (5) exhibits similar behavior, but its accuracy also depends

on the number and distribution of nonzero digits in the binary expansion of w.]

Finally, we look at the familiar modular case, m > 0, for the standard fast algorithm. To estimate the expected

multiplicative complexity of the algorithm we must again look separately at the product accumulations and the

squaring. In both cases, we need to know the expected multiplicative length of a non-negative integer smaller

than the modulus, and we shall calculate an approximation to this in two steps.

First, assume that our modulus is of the form m = 2n – 1. Then the expected value of the multiplicative length is

clearly

1

0

1
(ML(0 2 1)) (1)2 1

2

n
n k

n
k

E k
−

=

 
 → − = + −
 
 


where the adjustment term of –1 merely account for the fact that ML (1) = 0. This can be evaluated by introduc-

tion of the generating function (see [3])

1

0

() (1)
n

k
n

k

A x k x
−

=

= +

which is just the derivative of the geometric series in  x
k, for k = 0,…, n. Consequently,

(6)
1 1

2

1 (1) (1)
()

1 (1)

n n n

n

x n x x
A x

x x

+ + − + − −
 = =
 − − 

and, substituting x = 2, we have at once that

(7)
1

(ML(0 2 1)) ((2) 1) 1
2

n
nn

E A n→ − = − = − .

This formalizes the intuitive argument that the expected value of the multiplicative length of a random integer

mod 2n should simply be n – 1.

Before completing the estimate for the multiplicative complexity of the standard fast algorithm modulo m > 0,

it is convenient to introduce a second auxiliary function that arises in connection with the expectation of the

square of the multiplicative length. Accordingly, let Bn(x) be defined by

1
2

0

() (1)
n

k
n

k

B x k x
−

=

= + .

The key relationship between An(x) and Bn(x) is

  2 21 1
() 2 () () 1 (1)

1

n

n n n

x
B x A x B x n x

x x

−
+ + = − + +

−

whence some routine but tedious algebra yields in particular that

Journal of Advances in Mathematics vol 16 (2019) ISSN: 2347-1921 https://rajpub.com/index.php/jam

8435

(8)

2

2

2

1
(ML (0 2 1) ((2) 1)

2

1
(1) 2

2

n
nn

n

E B

n
−

→ − = −

= − + +

.

We can now complete the general calculations for the expected values of both ML and ML2 from 0 to m = 2n + r,

0  r < 2n. Since the multiplicative length of integers from 2n to m is (n + 1), we have the precise expressions

2 (1) (1)(1)

(ML(0 2)
2 1

n
n

n

n r n
E r

r

− + + +
→ + =

+ +

and

2 2

2
2

1
2 [(1) 2] (1)(1)

2(ML (0 2)
2 1

n

n
n

n

n r n

E r
r

−
− + + + + +

→ + =
+ +

.

Moreover, these expressions are, respectively, clearly bounded from above by E(ML(0 → 2n+1 – 1)) and

E(ML2(0 → 2n+1 – 1)). Thus the expected multiplicative complexity of the accumulation component is bounded

from above by

 ()ML()
2

n
J w b

and the expected multiplicative complexity of the squaring component is bounded by

2

1

1
(() 1)(2)

2n
J w n

−
+ + + .

The consequence is that the expected multiplicative complexity of the fast algorithm modulo m > 0 is bounded

from above by

(9) 2

1

1
()ML() (() 1)(2)

2 2n

n
J w b J w n

−
+ + + +

which involves only the products of logarithmic factors, and hence overwhelmingly outperforms direct expo-

nentiation by this measure.

One final note that is paramount to the sequel is the familiar fact that in computing bw mod m, for m > 0 and b

relatively prime to m, we may reduce w modulo  (m), where  is the Euler phi function, the number of congru-

ence classes represented by numbers relatively prime to m. This number is easily computed from the prime

factorization of m, and, for small m, essentially trivializes modular exponentiation regardless of the size of w.

A Semi modular Approach

For nonnegative integers m, we let Z/mZ denote the ring of integers mod m (whence the natural abstract alge-

braic identification of Z/0Z with Z is consistent with our previous convention). Given a family of relatively prime

positive integers m1,…, ms
, the Chinese remainder theorem asserts that the following map is an isomorphism of

rings with unity [4]:

Journal of Advances in Mathematics vol 16 (2019) ISSN: 2347-1921 https://rajpub.com/index.php/jam

8436

1
1

1
1

: / / /

mod (mod ,..., mod)

s

j s
j

s

j s
j

m m m

a m a m a m


=

=

→   



Z Z Z Z Z Z

Note that the elements of the codomain look like coordinate vectors for which the j-th coordinate of the image

of a mod  mj is simply the projection of a into Z/mj Z. For us, the most important particular elements of this

assertion are the following:

1. The operations of addition and multiplication on the codomain are defined componentwise (similar to the

operations of addition and scalar multiplication in linear algebra):

(mod) (mod) (mod)

(mod) (mod) (mod)

j j j j j j j

j j j j j j j

a m b m a b m

a m b m a b m

+ = +

 = 

2. The map  is both additive and multiplicative:

() () ()

() () ()

a b a b

a b a b

  

  

+ = +

 = 

Here, of course, the variables are understood as integers mod M, where M =  mj. Moreover, (1) = (1,,1).

3. The map  is bijective (hence, invertible) and the inverse map is likewise additive and multiplicative.

In the context of this paper, the clear temptation here is to compute x = bw as follows, using what we shall re-

fer to as a semi modular approach:

- Choose M = mj > x.

- Compute xj = xw mod mj for all indices j.

- Compute –1(x1,…, xs).

[Recall from above that in the second step, we have the possible reduction of w mod  (mj).] Since  is multipli-

cative and multiplication in the product ring is defined componentwise, we see that

1 1
1 1

1
1

1
1

1

1

1

(,...,) (mod ,..., mod)

((mod ,..., mod))

(mod ,..., mod)

(())

(())

(())

mod

w w
s s

w
s

w
s

w

w

x x b m b m

b m b m

b m b m

b

b

x

x M

 





 

 

 

− −

−

−

−

−

−

=

=

=

=

=

=

=

and x mod M is just x because M is chosen to be larger than x, provided of course that –1 is constructed to

return values between 0 and m − 1. Moreover, the middle step, where the exponentials occur, may be accom-

plished via fast modular exponentiation, hence the ostensible efficiency. However, what is obscured here is that

Journal of Advances in Mathematics vol 16 (2019) ISSN: 2347-1921 https://rajpub.com/index.php/jam

8437

the final step, the inversion of the CRT map , is hardly the most facile of computations. One might also note

that unless the moduli and their associated partial products are reusable, and chosen and stored in advance, the

computation of M will by itself have multiplicative complexity comparable to the naïve algorithm. We shall ad-

dress both of these obstructions later.

Inversion of the Isomorphism of the Chinese Remainder Theorem

Let n be a positive integer and let a be any integer relatively prime to n. As a convenient notational device, we

shall define

1 1() modn a a n− −=

Thus in this context, n–1 is an operator that directs us to invert the indicated integer modulo n. Next, with M and

its relatively prime factors mj as above, let

 /k jj
k j

M m m m



= = ,

so that the circumflex on the subscript j indicates the omission of mj from the indicated product, and conse-

quently
ĵ

M is relatively prime to mj. By construction, it follows that

1() mod modj k jk kj j
m M M m m−   .

In other words, for any index j, the product 1()j j j
m M M−  is congruent to 1 modulo mj and congruent to 0

modulo every other modulus mk. Since  is a ring homomorphism, this implies at once that

  −

=

 = 1
1

1

(()) (,...,)
s

j j sj j
j

a m M M a a .

Therefore

(10) 1 1
1

1

(,...,) ()
s

s j j j j
j

a a a m M M− −

=

= 

and we have explicitly inverted . One sees at once, however, how expensive this is in terms of multiplicative

complexity. Let us look at an estimate.

Consider each term in the preceding equation as the product of two factors, separated by the dot. We provi-

sionally ignore the calculation of the factors themselves and assume that each of the s moduli mj is

approximately M
1/s

; some must be larger, some smaller. Again treating ML as if it were purely logarithmic, we

have the approximations

ˆ

1
ML() ML()

1
ML() (1)ML()

j

j

m M
s

M M
s



 − .

Journal of Advances in Mathematics vol 16 (2019) ISSN: 2347-1921 https://rajpub.com/index.php/jam

8438

(For this part of the analysis, it is more convenient to deal with approximations rather than expectations.) Both

aj and 1()j j
m M− may be regarded as uniformly distributed random nonnegative integers less than mj, whence

their bit lengths drop on average by 1. Accordingly,

1 1

ML() ()) (ML() 1) .j j j
a m M M

s

−  −

This gives at once an estimate for the multiplicative complexity of each of the s products occurring in the sum-

mation on the right-hand side of equation (4), which in turn gives the following total estimate for the

multiplicative complexity of this naïve inversion of the CRT applied modulo M:

(11)

1
naive

1

2

1
MC() (ML() 1)(ML() 1)

ML() ML() ML() .

s

j

M M
s

M s M M s

−

=

 − −

 − − +



The sign of the second term calls into question the ratio of s/ML(M) insofar as it decreases the coefficient of

the ML(M)2-term. How large can this number be? To answer this, we introduce some notation:

 s(M) = the number of distinct prime factors of M (equivalently, the maximum value for the number of

 relatively prime factors of M)

 R(M) = s(M)/log2(M)

 ps = the s-th (positive) prime

 s = the product of the first s primes

 Rs = R(s)

The key result is that the values of R(M) are governed by those of the Rs in the sense captured by the second

part of the following proposition:

PROPOSITION. The function R(M) has the following properties:

(i) The sequence Rs is strictly decreasing.

(ii) For every s, if M > s , then R(M) < Rs
.

(iii) R(M) → 0 as M → .

PROOF. For part (i), we must show that

1

2 2
1 1

1
.

log () log ()
s s

j j
j j

s s

p p
+

= =

+


 

This, however, is equivalent to the assertion

Journal of Advances in Mathematics vol 16 (2019) ISSN: 2347-1921 https://rajpub.com/index.php/jam

8439

 2 1

2
1

log ()1

log ()

s

s

j
j

p

s
p

+

=





which in turn is equivalent to the obvious inequality

 2 2 1
1

log () log () .
s

j s
j

p s p +
=



This completes part (i).

Now let M > s . If s = s(M)  s, the assertion is clear. So suppose that s > s; that is, M has more than s prime

factors. Let the prime decomposition of M be given by

1

.j
s

j
j

M q




=

=

Then since the elements of the sequence { pj }j=1,…,s must be bounded by the corresponding elements of the

sequence { qj }j=1,…,s, it follows that

2 2 2
1 1 1

() .

log log log

s ss s s

j j j j
j j j

s s s
R M R R

q q p

  

= = =

  
=   = 

  

The last inequality is a consequence of part (i), and this completes part (ii).

For part (iii), it is enough to show that the sequence Rs goes to zero. Since there are infinitely many primes, for

any positive integer N, we can choose s so large that at least half of the primes up to and including ps exceed

2N. We then have the following chain of inequalities:

2 2 2
1 /2 /2

2

log log log 2
2

s s s s
N

j j
j j s j s

s s s s
R

s N
Np p

=    = =   

=    =

  

.

Hence Rs may be made arbitrarily small, and this completes the proof. ❑

NOTE. The rate of convergence to zero for R(M) is glacially slow, as one might expect from the logarithm in the

denominator; this is confirmed by the following short table of values for Rs (Table 1). The arithmetic was per-

formed with 12-digit precision.

We now return to the approximation (11) and examine the consequences of this analysis of R(M). Noting that

ML(M)  s, we have the following soft bound, which is, nonetheless, sufficient to our subsequent analysis:

(12)
1 2

naiveMC() (1 ())ML()R M M−  −

Since R(M) goes to zero as M goes to infinity, this bound on the multiplicative complexity of the naïve inversion

of CRT is asymptotic to ML(M)2.

Journal of Advances in Mathematics vol 16 (2019) ISSN: 2347-1921 https://rajpub.com/index.php/jam

8440

s ps Rs

220 16,290,047 0.0446304

221 34,136,029 0.0425905

222 71,378,569 0.0407352

223 148,948,139 0.0390400

224 310,248,241 0.0374847

225 645,155,197 0.0360521

Table 1.

EXAMPLE. Noting that for s = 28, s is approximately 1042, and Rs< 0.2, it follows that for M larger than roughly

1042,

1 2

naive

4
MC() ML()

5
M−  .

The next step in our general analysis is to use the bound (12) to compare the multiplicative complexity of the

standard fast algorithm for exponentiation (modulo 0), as given in expression (5), with that of the third and final

step of the semi modular algorithm suggested above, namely, the inversion via formula (10) of the isomorphism

.

The Multiplicative Complexity of the Semi modular Approach with Naïve Inversion of CRT

Again let x = bw, and, since we are analyzing the efficiency of the calculation of x mod M via the Chinese remain-

der theorem for M greater than but near x, we may approximate M by bw. Hence in this case the inequality (12)

reduces to

(13)
1 2 2

naive

1
MC() (1 ()) (ML() 1) .

ln2
R M w b−  − + −

Notice that bw is guaranteed to have relatively few distinct primes in its factorization, hence we do not want to

replace R(M) by R(bw) in this bound, but nonetheless the multiplicative complexity of the naïve inversion algo-

rithm is asymptotic to w2(ML(b) + 1 – 1/ln 2)2. Recalling that estimate (5) for the standard fast algorithm was

(11/27)w2(ML(b) + 1 – 1/ln 2)2, we see that for large exponentials—hence large M—whatever the efficiency of

exponentiation modulo small moduli, the final step of the suggested algorithm is too costly unless we can find

a better inversion method.

Garner’s Algorithm

We can see in equation (10) that every term in the naïve algorithm for the inversion of CRT has a factor of the

approximate order of M
(s–1)/s

, where s is the number of relatively prime factors chosen for the factorization of

M. This is improved by Garner’s algorithm [5], which we shall express recursively. As above, we have the moduli

mj , for j = 1, 2, …, s, and (a1,..., as) 1/ / sm m  Z Z Z Z is the element of the product ring to be inverted. First,

we define two indexed sets of auxiliary parameters (redefining Mj as it was used previously):

Journal of Advances in Mathematics vol 16 (2019) ISSN: 2347-1921 https://rajpub.com/index.php/jam

8441

(a)

1

(1,..., 1)
j

j k
k

M m j s

=

= = −

(b)
1

1 1
1

1

() () (1,...,)
j

j j j j k
k

N m M m m j s
−

− −
−

=

= = =

Note that N1 = 1, the empty product. The heart of the algorithm lies in two iterative calculations that are es-

sentially intertwined. We thus introduce sequences Uj and Vj defined as follows. We begin with

(c) 1 1 1U V a= =

and proceed recursively with

(d) 1() mod (2,...,)j j j j jU N a V m j s−= − =

(e) 1 1 (2,...,)j j j jV M U V j s− −= + = .

The point of the algorithm is that Vj =
1

1(,...,)ja a− , which is to say, via an implicitly polymorphic interpretation

of , that Vj is congruent to ak modulo mk for all k from 1 to j. In particular, Vs inverts the full set of modular

projections. This holds by definition for the case j = 1 as given, and for j > 1 we have

1
1 1 1 1()() mod

mod

j j j j j j j j

j j

V M m M a V V m

a m

−
− − − −  − +



as required.

To estimate the multiplicative complexity of Garner’s algorithm (in this form), we note that assuming the moduli

and associated products are computed in advance, only the calculation of the Vj involves large integers; hence

we confine our attention to the last set of calculations. Again assume that each mj is approximately M
1/s

, so that

1

ML() ML() 1jU M
s

 −

and

 ML() ML() .j

j
M M

s


The multiplicative complexity of calculating all of the Vj may thus be approximated by

2 2 2
2 2

2 2

2
2

(ML() ML()) (ML() ()ML())

1 1 1
(1 ()) ML() .

2 2

s s

j j

j j
M s M M R M M

s s

R M M
s s

= =

−  −

 
 + −  −  
 

 

Accordingly, for s not too small, we have

Journal of Advances in Mathematics vol 16 (2019) ISSN: 2347-1921 https://rajpub.com/index.php/jam

8442

 1 2
Garner

1
MC() (1 ())ML() .

2
R M M−  −

This, in turn, when applied to the case x = bw, yields

1 2 2

Garner

1 1
MC() (1 ()) (ML() 1) .

2 ln2
R M w b−  − + −

Thus, recalling inequality (5) with its lead coefficient of 11/27, we have at least the potential for a significant

improvement over the standard fast algorithm to the extent that (i) Garner’s algorithm may be made more

efficient, and (ii) certain exponents w admit moduli for which some part of the CRT inversion becomes compu-

tationally trivial.

Two Paths Forward

The remainder of this paper considers two variations on the abstract idea of semi modular exponentiation; the

first is a general consideration for choosing a subset of the moduli independently of how the algorithm com-

pletes and invites an excursion into the Gaussian integers; the second is more specifically a variant on Garner’s

algorithm. We shall see that the two in tandem produce some worthwhile results in the right circumstances.

Phi Moduli

We recalled above that when b is relatively prime to m, bw mod m need only be computed for w mod  (m),

where  is the Euler phi function. This follows from the identity b
(m)  1 mod m for such b. We shall now exploit

this in connection with inverting the Chinese remainder theorem.

Consider the special case that m = p is a power of a positive prime with either p > 2 or   2. Suppose moreover

that x
2  1 mod p. Then p divides the product (x + 1)(x – 1), and indeed it must divide one of the factors. That

tells us that even though Z/p Z is not necessarily a field, it is still the case that x  1 mod p. It follows from

this that if  (p) = (p – 1)p
–

1
 | 2w, then b2w  1 mod p and so x = bw  1 mod p. The point is that if

 (p)| 2w, the projection of x = bw into the residue ring Z/p Z is 1. Thus if we choose moduli mj = pj
 j for

which 2w| (mj), at the corresponding step in the naïve inversion of the CRT isomorphism, we need perform no

multiplication. Similarly, if b | mj , then x  0 mod p, and again the corresponding step in the naïve inversion is

trivial. We shall illustrate all of this shortly, but first we show that it can be extended somewhat.

Next consider the extension of the integers Z to the so-called Gaussian integers Z[i] = {a + bi : a, bZ}. Thus the

Gaussian integers are simply those complex numbers whose real and imaginary parts are ordinary integers. This

extension loses the property of admitting a linear ordering compatible with ordinary arithmetic, but retains the

key algebraic properties of Z. We sketch these out minimally:

1. Z[i] is a Euclidean ring; that is, we can perform Euclidean division with quotients and remainders deter-

mined by the norm function, although not uniquely. The group of units in Z[i] (that is, the invertible Gaussian

integers) expands to the set {±1, ±i}.

2. As a Euclidean ring, Z[i] is automatically a principal ideal domain. Thus prime (or irreducible elements)

in Z[i] are exactly those that generate prime ideals. Moreover, we can speak of greatest common divisors

and elements that are relatively prime. In particular, the quotient rings corresponding to arithmetic mod z

for a Gaussian integer z satisfy the Chinese remainder theorem. The implied isomorphism and its inverse

are both defined and computed as with ordinary integers, but using complex arithmetic.

Journal of Advances in Mathematics vol 16 (2019) ISSN: 2347-1921 https://rajpub.com/index.php/jam

8443

3. The Euler phi function again makes sense for a Gaussian integer z and is defined as the size of the unit

group of the corresponding quotient ring; equivalently, it is again the number of residue classes that are

invertible mod z. The size and structure of the group of units for Z[i] differs from that of Z, and we note that

the structure of the group of units for the Gaussian integers modulo p for powers of an integer prime p is

given according to [6] by

1 1 2 1
([] / [])

p p p
i p i C C C 


− −



−
  Z Z .

Here Cn denotes the cyclic group of order n, and the exponent for the group of units is thus

(p2 – 1) p
–

1. This higher value might seem to work against us, insofar as good exponents would seem to

be rarer in this setting, having to accommodate a larger factor, but since we are only concerned with expo-

nentiating ordinary integers, this is in fact not the case, as we shall see in a moment.

Now the point of all this will be clear as soon as we recall a famous theorem by Gauss. In its simplest form—

which is all we need—it states that an integer prime p factors (or splits) in Z[i] if and only if p  1 mod 4, in which

case the factorization takes the form p = (a + bi) · (a – bi) for some ordinary integers a and b. (The resulting

factors are now Gaussian primes.) For such p, we can exploit this in the choice of good moduli for the naïve

inversion of the CRT as follows: Let m = p with p and  modestly restricted as above, but now assume that

x
4  1 mod p in Z. Then since (a ± bi) | p, we have natural projections

/ [] /() []p i a bi i → Z Z Z Z

and we may read x
4  1 as a congruence in the Gaussian integers mod (a ± bi). But over the latter ring, x

4 – 1

factor into (x +1) (x –1) (x + i) (x – i) as an elementary matter of complex arithmetic. As above, this tells us that

if x
4  1 mod p in Z, then x  1, i mod (a ± bi) in Z[i]. The upshot is that if p splits and  (p)| 4w, the

projection of x = bw into the residue rings Z/(a ± bi) is 1 or i. Thus if we choose moduli mj = pj
 j for such

primes subject to the further condition that 4w | (mj), then the corresponding factors in the naïve inversion of

the CRT on Z[i] require no multiplication whatsoever. [Note, by the way, that if p does not split and  (p) | 4w,

then since p – 1 has only a single factor of 2, then also  (p) | 2w. Thus searching for good moduli over the

Gaussian integers automatically yields good ordinary integer moduli.]

Numerical examples of what we shall call phi moduli—that is, moduli for which the projections of bw constitute

units in Z or Z[i]—are given in Table 2. (These rare but spectacular examples of exponents with extraordinarily

large numbers of phi moduli are actually just curios because, as the exponent w increases, the part of the expo-

nentiation that we get “for free” via these moduli evidently represents only a small part of the overall calculation.)

For now, let us only note further that the functions ML and MC are easily extended to the Gaussian integers via

ML(a + bi) = ML(a) + ML(b). Accordingly, the value of MC is the sum of four terms as given by the distributive

law.

Journal of Advances in Mathematics vol 16 (2019) ISSN: 2347-1921 https://rajpub.com/index.php/jam

8444

Sieving with Garner’s Algorithm

Recall that the expensive part of Garner’s algorithm is the extended-integer multiplication explicit in the final

step. In the same way that the naïve inversion of the CRT is improved by having many of the projections bw

project onto ±1 or ±i in the product of the residue rings, Garner’s algorithm is made more efficient by having

the variable Uj reduced to something small. But this is a matter of a felicitous choice of the modulus mj , and

here we do seem to have some scope. Let us sketch out how this might be done, postponing certain details—

and one enormous obstruction—for the moment.

(i) Find all the phi moduli, combine them by multiplication into an initial modulus m1 with corresponding

projection a1 obtainable by nothing but (possibly complex) addition.

(ii) Using a list or array of primes from some chosen interval, sieve iteratively for the next apt modulus mj

by computing Uj = Uj(m) via the successive choice of candidate moduli m from the list of primes, looking

for small values of Uj. Keep in mind that this is a modular calculation that need not require extended arith-

metic and that the list of moduli so obtained need not occur in increasing order: we are free at the

completion of any iteration to go back to the beginning of the list, provided that we skip over primes that

have already been chosen or have occurred in the factorization of m1. (This actually enhances our efficiency.)

Once mj and Uj are chosen, compute Vj. This will require extended arithmetic, but the cost has been reduced

by the choice of mj.

(iii) The loop concludes when the composite modulus Mj exceeds the floating-point estimate of bw. The

current Vj is our result. (If we have chosen to use residue class representatives centered at 0, as suggested

above, our final result will be Vj + Mj , should Vj be less than or equal to zero.)

Table 2. These are all the positive integers under 106 such that the product of the

phi moduli (Gaussian case) is greater than 10160. In the second column, m1 denotes

their product (which would be used as the first modulus for the semi modular

exponentiation). The corresponding initial and final segment of the factors con-

solidate any complex conjugate pairs into a single product.

w log10(m 1)
Number

of factors

98280 213.900 74 4 81 25 49 11 39313 65521 131041 196561 393121

97020 174.435 62 4 27 25 343 121 55441 77617 97021 129361 388081

96390 171.003 61 4 243 25 49 11 27541 38557 42841 128521 192781

95760 162.382 58 4 27 25 49 11 47881 54721 63841 127681 383041

90720 170.951 63 4 243 25 49 11 15121 20161 30241 45361 72577

90090 184.572 66 4 27 25 49 121 6037 51481 72073 120121 180181

86940 160.207 60 4 81 25 49 11 15121 16561 17389 24841 49681

85680 168.415 62 4 27 25 49 11 17137 20161 24481 34273 42841

83160 205.474 73 4 81 25 49 121 47521 55441 66529 110881 332641

81900 185.250 67 4 27 125 49 11 21841 54601 65521 81901 109201

75600 186.459 67 4 81 125 49 11 30241 33601 43201 100801 151201

71820 161.951 58 4 81 25 49 11 35911 47881 57457 71821 287281

69300 179.772 66 4 27 125 49 121 18481 19801 34651 55441 92401

65520 170.844 63 4 27 25 49 11 21841 26209 37441 65521 131041

64260 187.106 67 4 81 25 49 11 15121 17137 36721 42841 128521

56700 160.564 60 4 243 125 49 11 15121 28351 32401 45361 56701

49140 168.124 62 4 81 25 49 11 24571 28081 39313 65521 196561

First five moduli Last five moduli

Journal of Advances in Mathematics vol 16 (2019) ISSN: 2347-1921 https://rajpub.com/index.php/jam

8445

Perhaps the most evident cost here is that the sieving for the Uj implicitly also entails the calculation of bw mod

mk for several moduli. This is not a deal breaker since these calculations are modular and only incidentally involve

extended integers. Indeed, we can reuse the projections bw mod mk to enhance the efficiency of even these

short calculations. The not-so-evident cost—perhaps because this assumption has been buried for so long in

our approach—is that unless the moduli and their order of occurrence can be set in advance, the assumption that

the products Mj and M itself can be precomputed collapses. Since the calculation of M is comparable to the direct

calculation of bw, any advantage gained working via small moduli, with or without sieving with respect to Gar-

ner’s algorithm, will be irretrievably lost.

Given that the italicized conditional just asserted is unavoidable, we turn now to a double-sieving variant that is

successful with a plausible adjustment of the calculation of multiplicative complexity and the continued assump-

tion that native arithmetic is essentially negligible in cost in comparison to the multiplication of extended

integers. In one respect, to be addressed below, we are overworking this assumption to the point that what we

present here must be regarded as a largely theoretical analysis of the degree to which extended multiplication

may be controlled via sieving with native arithmetic.

The key is to refine the notion of multiplicative complexity by adjusting for the number of nonzero bits in the

operands. Roughly speaking, an integer a (ordinary or extended) will typically have its bits equally distributed

between ones and zeroes. Numbers with fewer nonzero bits require much less work to multiply—much more

shifting and much less adding—so, if we can favor such light-weight integers (i.e., integers with relatively small

Hamming distance from 0), the efficiency of all associated multiplications should improve correspondingly. In-

deed, if r(a) represents the ratio of the number of nonzero bits of a to its bit length, then an appropriate

adjustment to the multiplicative complexity of the product ab is simply

MCW(a,b) = 4r(a)r(b)·MC(a,b)

For the remainder of this paper, we shall be concerned with cases where the weight of only one of the factors is

controlled, and so this formula reduces to MCW(a,b) = 2r(a)·MC(a,b) where, say, the first factor is controlled.

With this revision in mind, we would begin by sieving and storing in advance a large number of light-weight

candidate (prime) moduli. The point here is that while the final sequence (or even set) of moduli cannot be

chosen in advance if we are to sieve again on the Uj in step (ii) above, the accumulation of partial products

required by Garner’s algorithm can now be executed at a reduced cost. Nonetheless, one can anticipate two

difficulties with this approach. First, while we can take our time sieving a set of light moduli, as the bit length of

a random integer increases, the chances of finding one with a significant surfeit of zero bits correspondingly

decreases. (The chances of getting only four tails in ten tosses of a fair coin is much larger than the chances of

getting only forty tails in one hundred tosses of that same coin.) Second, to exploit the comparative speed of

sieving for the Uj we are limited in the search for light moduli by the native precision of the system on which

the algorithm is to run. The tests we report on below were executed on a standard-issue 64-bit PC and imple-

mented in Mathematica.

A Few Trial Runs

Before discussing our modest tests, we should mention four auxiliary parameters implicit in the execution of this

algorithm: the maximum bit-weight for the candidate moduli, the lower-bound cut-off for the Uj sieve, the

starting point for the candidate moduli search and the candidate moduli search limit. All our reported runs were

done with a limit of five nonzero bits for each candidate modulus (excluding the phi moduli). This provided a

rich enough set of moduli to work with numbers of a few thousand digits. A higher limit would, of course, extend

our range. The Uj-sieve cut-off was held to three; this means that if the sieve loop for mj ever produced a result

of bit weight three or lower, further searching was aborted. Since we were interested in the theoretical perfor-

mance of our method, we set this parameter so low that we were essentially finding the minimum possible bit

Journal of Advances in Mathematics vol 16 (2019) ISSN: 2347-1921 https://rajpub.com/index.php/jam

8446

length for Uj at each step. Recognizing that we do not account for native arithmetic, this is cost-free in our set

of experiments, but certainly it would have to be reckoned with if the approach were to be made practical.

Finally, both the lower bound for the moduli search and the search limit became experimental parameters, and

we found it most convenient to set the latter in terms of a power z of the exponential x = bw. The search limit,

which would seem enormous, is not directly a bound on the size of the moduli under consideration, but rather

limits from below the product of the moduli that survive the bit-weight test. (The column header for this number

in the subsequent tables is “search ext exp,” the search extension exponent; the product of the candidate moduli

is thus bounded from below by x
z, and z must be at least one for the CRT inversion to produce the correct

answer.)

Table 3 suggests how this scheme responds to changes in the base, the exponent and other associated param-

eters for a few cases for which the target exponential is under 101000. The table header “light mods” designates

the number of prime moduli of weight five or less in the implied range; the final set of moduli for the given

calculation is thus a subset of those determined by sieving. The entry “last candidate” is the last candidate

modulus found, and this is recorded to confirm that the moduli range is held under 232 to avoid overflows in

native 64-bit products. The “efficiency ratio” is simply the ratio of the multiplicative complexity (for extended

multiplications) of our experimental scheme to that of the standard fast algorithm.

In these runs, about 4% of the total calculation is achieved via the phi moduli. Moreover, we see two trends that

can be explained easily. First, a larger starting point for the moduli search tends to give better efficiency; this is

because more arithmetic is packed into the native calculations with bigger numbers. Second, a longer search

interval also tends to favor this scheme: the greater the number of candidate moduli, the more chance we have

of finding light-weight Uj for Garner’s algorithm. For this set of experiments, we needed a good number of

good-sized candidates to begin to see any efficiency, and, even so, these results do not account for the (modular

and native) overhead of sieving for the Uj.

Table 4 takes us into a range of results in excess of 102000, and the phi moduli play a correspondingly smaller

role. Since the exponential results are already much larger, we need not take the search limit extension exponent

so high to begin to see the effectiveness of double sieving: we find many light moduli for modest extension

exponents, with more rapid convergence in overall efficiency.

Further Work

Faster algorithms for sieving on the bit weights of the candidate moduli are certainly tractable and might far

exceed what we have used here, but then this is not at all the focus of these experiments. The difficulty remains

in, say, for a fixed exponent w, finding some better solution to the problem of dynamically sieving on the Uj.

Finer results from the experiments, which we have not presented in the last two tables, show that total multipli-

cative complexity is roughly evenly divided between required accumulation of the partial products of the moduli

and the final step in Garner’s algorithm. At present, we see no prospects for improving the latter calculation

beyond what we have presented here, but possibly the candidate moduli might be chosen in a way that limits

the bit weights of the partial products rather than the moduli themselves. Early attempts along these lines have

not yielded any notable success, and we hope that fresher eyes than ours can spot the trick.

Journal of Advances in Mathematics vol 16 (2019) ISSN: 2347-1921 https://rajpub.com/index.php/jam

8447

Table 3. Three sets of exponentials with varied light-moduli search limits.

b w log10(b w)

phi

mod

count

log10(m 1)

lower

bound

search

search

ext exp

light

mods
last candidate

efficiency

ratio

41 252 406.422 24 24.262 1.00E+06 8 511 4,341,769 1.015

41 252 406.422 24 24.262 1.00E+06 12 749 8,527,873 1.022

41 252 406.422 24 24.262 1.00E+06 16 979 16,846,853 1.002

41 252 406.422 24 24.262 1.00E+06 20 1,199 33,571,849 0.974

41 252 406.422 24 24.262 1.00E+06 24 1,415 42,206,209 0.974

41 252 406.422 24 24.262 4.00E+06 8 476 11,272,193 1.031

41 252 406.422 24 24.262 4.00E+06 12 701 20,988,161 0.992

41 252 406.422 24 24.262 4.00E+06 16 917 34,603,033 0.964

41 252 406.422 24 24.262 4.00E+06 20 1,130 67,133,953 0.961

41 252 406.422 24 24.262 4.00E+06 24 1,337 85,983,241 0.927

41 252 406.422 24 24.262 1.60E+07 8 438 35,135,489 0.968

41 252 406.422 24 24.262 1.60E+07 12 649 67,248,161 0.978

41 252 406.422 24 24.262 1.60E+07 16 855 100,794,433 0.952

41 252 406.422 24 24.262 1.60E+07 20 1,056 135,331,969 0.961

41 252 406.422 24 24.262 1.60E+07 24 1,254 268,435,723 0.909

41 252 406.422 24 24.262 6.40E+07 8 408 134,252,609 0.965

41 252 406.422 24 24.262 6.40E+07 12 608 153,092,609 0.943

41 252 406.422 24 24.262 6.40E+07 16 802 268,961,801 0.954

41 252 406.422 24 24.262 6.40E+07 20 995 335,806,529 0.939

41 252 406.422 24 24.262 6.40E+07 24 1,182 537,673,729 0.917

41 504 812.843 30 32.381 1.00E+06 8 978 16,845,313 0.967

41 504 812.843 30 32.381 1.00E+06 12 1,414 42,205,217 0.973

41 504 812.843 30 32.381 1.00E+06 16 1,826 134,226,949 0.961

41 504 812.843 30 32.381 1.00E+06 20 2,222 268,566,817 0.975

41 504 812.843 30 32.381 1.00E+06 24 2,602 537,165,833 0.975

41 504 812.843 30 32.381 4.00E+06 8 916 34,603,013 0.962

41 504 812.843 30 32.381 4.00E+06 12 1,336 85,196,801 0.942

41 504 812.843 30 32.381 4.00E+06 16 1,735 201,719,809 0.942

41 504 812.843 30 32.381 4.00E+06 20 2,119 536,871,233 0.935

41 504 812.843 30 32.381 4.00E+06 24 2,491 805,310,977 0.942

41 504 812.843 30 32.381 1.60E+07 8 854 100,704,257 0.950

41 504 812.843 30 32.381 1.60E+07 12 1,253 268,435,649 0.950

41 504 812.843 30 32.381 1.60E+07 16 1,636 536,879,621 0.919

41 504 812.843 30 32.381 1.60E+07 20 2,007 872,448,001 0.919

41 504 812.843 30 32.381 1.60E+07 24 2,366 1,212,284,929 0.920

41 504 812.843 30 32.381 6.40E+07 8 802 268,961,801 0.953

41 504 812.843 30 32.381 6.40E+07 12 1,181 537,661,441 0.920

41 504 812.843 30 32.381 6.40E+07 16 1,548 1,073,881,093 0.917

41 504 812.843 30 32.381 6.40E+07 20 1,906 2,147,483,777 0.891

41 504 812.843 30 32.381 6.40E+07 24 2,254 2,233,466,881 0.891

47 504 842.737 30 32.381 1.00E+06 8 1,011 17,072,257 0.991

47 504 842.737 30 32.381 1.00E+06 12 1,460 67,108,913 0.951

47 504 842.737 30 32.381 1.00E+06 16 1,885 134,348,801 0.951

47 504 842.737 30 32.381 1.00E+06 20 2,292 270,533,633 0.944

47 504 842.737 30 32.381 4.00E+06 8 948 35,127,809 0.972

47 504 842.737 30 32.381 4.00E+06 12 1,380 102,760,961 0.938

47 504 842.737 30 32.381 4.00E+06 16 1,792 268,443,697 0.926

47 504 842.737 30 32.381 4.00E+06 20 2,188 536,973,313 0.926

47 504 842.737 30 32.381 1.60E+07 8 884 134,217,773 0.964

47 504 842.737 30 32.381 1.60E+07 12 1,295 268,456,961 0.941

47 504 842.737 30 32.381 1.60E+07 16 1,691 537,071,617 0.938

47 504 842.737 30 32.381 1.60E+07 20 2,073 1,073,774,657 0.914

47 504 842.737 30 32.381 6.40E+07 8 830 270,532,609 0.949

47 504 842.737 30 32.381 6.40E+07 12 1,222 540,016,769 0.923

47 504 842.737 30 32.381 6.40E+07 16 1,601 1,075,052,609 0.915

47 504 842.737 30 32.381 6.40E+07 20 1,970 2,147,549,219 0.885

Journal of Advances in Mathematics vol 16 (2019) ISSN: 2347-1921 https://rajpub.com/index.php/jam

8448

Conflicts of Interest

There are no conflicts of interest associated with this work.

Funding Statement

This work was funded entirely by the author’s home institution, Claremont McKenna College.

Acknowledgments

There are no further acknowledgements to be made.

References

1. Gordon, Daniel M. “A survey of fast exponentiation methods.” Journal of Algorithms, Vol. 27, No. 1 (April

1998), pp. 129–146.

2. Bernstein, Daniel J. “Detecting perfect powers in essentially linear time.” Mathematics of Computation, Vol.

67, No. 223, July 1988, pp. 1253–1283.

3. Tucker, Alan. Applied Combinatorics (Second Edition), John Wiley & Sons, New York, 1984.

4. Lang, Serge. Algebra (Revised Third Edition). Springer Graduate Texts in Mathematics 211, New York, 2002.

5. Knuth, Donald E. The Art of Computer Programming, Volume 2: Semi numerical Algorithms (Second Edi-

tion). Addison-Wesley, Reading, Massachusetts, 1981.

6. Cross, James T. “The Euler  -function in the Gaussian integers.” The American Mathematical Monthly, Vol.

90, No. 8 (Oct. 1983), pp. 518–528.

Table 4. A pair of larger exponentials with a more refined granularity in the search

limit extension exponent.

b w log10(b w)

phi

mod

count

log10(m 1)

lower

bound

search

search

ext exp

light

mods
last candidate

efficiency

ratio

101 1,008 2020.360 36 40.080 1.60E+07 1.0 272 33,556,673 1.125

101 1,008 2020.360 36 40.080 1.60E+07 1.5 407 34,603,081 1.033

101 1,008 2020.360 36 40.080 1.60E+07 2.0 540 50,332,673 0.993

101 1,008 2020.360 36 40.080 1.60E+07 2.5 669 67,502,081 0.976

101 1,008 2020.360 36 40.080 1.60E+07 3.0 798 79,691,809 0.961

101 1,008 2020.360 36 40.080 1.60E+07 3.5 924 134,225,929 0.956

101 1,008 2020.360 36 40.080 1.60E+07 4.0 1,048 135,267,329 0.946

101 1,008 2020.360 36 40.080 1.60E+07 4.5 1,172 167,772,161 0.944

101 1,008 2020.360 36 40.080 1.60E+07 5.0 1,293 268,455,953 0.937

101 1,008 2020.360 36 40.080 1.60E+07 5.5 1,413 272,630,021 0.930

101 1,008 2020.360 36 40.080 1.60E+07 6.0 1,532 310,378,753 0.927

171 1,008 2250.860 36 40.080 1.60E+07 1.0 303 33,571,873 1.134

171 1,008 2250.860 36 40.080 1.60E+07 1.5 452 35,653,637 1.019

171 1,008 2250.860 36 40.080 1.60E+07 2.0 599 67,117,097 0.980

171 1,008 2250.860 36 40.080 1.60E+07 2.5 743 71,303,171 0.956

171 1,008 2250.860 36 40.080 1.60E+07 3.0 885 134,217,779 0.969

171 1,008 2250.860 36 40.080 1.60E+07 3.5 1,023 134,520,833 0.949

171 1,008 2250.860 36 40.080 1.60E+07 4.0 1,161 151,388,161 0.951

171 1,008 2250.860 36 40.080 1.60E+07 4.5 1,296 268,460,033 0.927

171 1,008 2250.860 36 40.080 1.60E+07 5.0 1,430 274,726,913 0.928

171 1,008 2250.860 36 40.080 1.60E+07 5.5 1,563 339,804,161 0.919

171 1,008 2250.860 36 40.080 1.60E+07 6.0 1,692 537,133,057 0.927

