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ABSTRACT 
 

This paper considers some aspects of Goldbach‟s conjecture as a conjecture and estimates the number of prime pairs in 

some intervals in order to portray a compelling picture of some of the computational issues generated by the conjecture. 
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 1  n 

 
 

INTRODUCTION 
Two seemingly not unrelated famous open problems in prime number theory are the  Goldbach conjecture and the twin 
prime conjecture. Christian Goldbach (1690-1764), a German mathematician and lawyer, formulated a number of 
conjectures written in a 1742 letter to Leonard Euler (1707-1783), a Swiss mathematician [5]. (In reading them note that 
Goldbach considered the number 1 to be a prime, a convention that is no longer followed.) Alphonse de Polignac (1826– 
1863), a French mathematician, in 1849, the year he was admitted to the École Polytechnique in Paris, came up with what 

is more or less the „twin prime conjecture‟. 
 

The two conjectures can be expressed in quite similar forms in that if p1 and p2 are prime numbers then: 

 p1  p2   N has at least one solution for any given even integer N ≥ 4: a Goldbach conjecture; 

 p1  p2   2 has infinitely many solutions: the twin prime conjecture. 

In view of this similarity, it is not surprising that the partial developments of progress on these two conjectures have 
paralleled each other [18]. Not surprisingly, many published attempts from the elementary [3], including combinatorial [4] 
and computational bounds [15], to those which introduce new techniques have appeared [6,11] including Farey sieves 
[11]. While Hardy [13] dismissed, the former, the latter have themselves enriched the literature; for instance, the twin 

primes constant,  2 , of Halberstam and Richert [12] resulted in the extended Goldbach conjecture that 
 

R(n) ~ 2 2 
pk  

 ln x2 
dx 

k 2   pk 
pk |n 

 2 2 

in which R(n) is the number of representation of an even number, n, as the sum of two prime numbers. Sieve methods 

have also been tried; for instance, the Farey sieve associates counts with fractions in Farey sequences [2] and uses these 

counts to characterize prime numbers [7]. Eminent high-profile mathematicians, such as Erdös and his problem solvers 

[1], Green, Tao and their colleagues [10], have made other fascinating progress on these conjectures. 
 
 

CHECKING GOLDBACH 

The Goldbach conjecture can be expressed as 
 

2N  p
1  
 2t  p

2   
 2t 

 
 

 
(2.1) 

 

in which p1   N  2t, p2   N  2t. 
 

Then either p1 = p2 = N or one of the primes must be greater than N (half the even number) [14]. This is illustrated in Table 

1. 

Table 1: Examples of Equation (2.1) 
 

Even Number Sum of 2 prime numbers 

104  2  52 59 + 45  = 61-2 + 43+2 = 61 + 43 

71 + 33 = 67+4 +37-4 = 67 +37 
91 + 13  = 87+4 + 17-4 = 87 + 17 

2862  2 1431 1437 + 1425 = 1433+4 + 1429-4 
1437 + 1425 = 1437+2 + 1425-2 

= 1439 + 1423 

54908  2  27454 27451 + 27457 = 27451-24 + 27457+24 
=27427+27481 

= 27451+30 + 27457-30 
= 27481 + 27427 

99714  2  49857 49857 + 49857 = 49857-34 + 49857+34 

= 49823 + 49891 

535670  2  267835 267835 + 267835 = 267835+72 + 267835-72 
= 267907 + 267763 

 

 
Some of the philosophical implications of this approach are outlined in [17]. If there is no restriction on t, then since there is 

an infinity of primes numbers a t should exist such that Equation (2.1) should be satisfied. An example of the relatively 

large values which t can take is shown by 
 

389965026819938 = 5569 + 389965026814369 
 

or 

http://en.wikipedia.org/wiki/Twin_prime
http://en.wikipedia.org/wiki/Twin_prime
http://en.wikipedia.org/wiki/Twin_prime
https://en.wikipedia.org/wiki/France
https://en.wikipedia.org/wiki/France
https://en.wikipedia.org/wiki/Polytechnique
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389965026819938  5569  194982513404400  389965026814369  194982513404400 

 2  194982513409969; 
 

that is, it is clear that in this case the value of t (N ± 2t) is greater than the gaps between the primes. 
 

While the gaps between the primes become very large, the numbers themselves are relatively very large so that even ha lf 

of these numbers would be greater than the gaps believed to exist between primes. Jens Kruse Andersen and his 

colleagues have investigated these issues computationally, and in the process improved some numerical techniques. For 

instance, the large prime number (2
57885161

-1) has 174251170 digits and the next largest prime has 129781889 digits so 

that half of the adjacent even integer would be larger than the gap between the primes so that a t could be found. 
 

The value of t will depend on the number of primes in the range [N,2N]. The smaller prime in (2.1) has the associated 

range [3,N-1], so the question is about the probability of find a matching t given that there are so many choices of primes 

in this range. For example, if the expected value, E(t), is the weighted average value of all the possible values of t in a 

given range, then 
 

E(t) = kP(t – k) 
 

and, as noted above, there are n possible values of t in a given range where n is the number of prime numbers in the 

region. 

 
 

GOLDBACH INDICATIVE RATIOS 

The number of primes to (M-3) yields a smooth curve with lnM which appears to reach a constant value around 0.02. 

Table 2 lists a rough estimate of the number of prime pairs for a given even number M as n
2
/M. The ratio of the predicted 

number over the actual number is approximately 1.5 when M  04   Z
4 

[15], but when M  24 , M  4r
2  
 2, the ratio is 

approximately 0.8 and the ratio of the number of prime pairs to the number of available primes averages around 0.1 for the 

digit range in Table 2. 
 

Table 2: Proportion of prime pairs 

 No. of 
digits 

M Class No. n of 
primes 

n
2
/M-3 
A 

No. of 
prime 

pairs, B 

A/B n/M 

2 20 
0 4 

7 2.9 2 1.95 0.350 

40 
0 4 

11 3.3 3 1.10 0.275 

58 2 4 
15 4.1 4 1.03 0.276 

80 0 4 
22 6.3 6 1.05 0.275 

3 258 
2 4 

55 12 16 0.75 0.213 

440 
0 4 

85 16 15 1.07 0.193 

728 
0 4 

129 23 15 1.53 0.177 

920 
0 4 

157 27 23 1.17 0.171 

4 1170 
2 4 

193 32 50 0.64 0.165 

3206 2 4 
454 64 72 0.89 0.143 

4916 0 4 
658 88 51 1.73 0.134 

6738 
2 4 

870 112 140 0.80 0.129 

8686 
2 4 

1083 135 107 1.3 0.125 

5 10290 2 4 
1263 155 295 0.53 0.123 

34298 
2 4 

3668 392 300 1.31 0.107 

59322 
2 4 

6005 608 566 1.07 0.101 

92764 
0 4 

9129 898 514 1.75 0.098 

6 651064 0 4 
45625 3197 3084 1.04 0.070 

7 1162858 
2 4 

75586 4913 4530 1.08 0.065 
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An exploratory relation between M and n/M is explored in Figure 1. This suggests a refinement in Table 3 which is then 

represented by a line of “best fit” in Figure 2. While the coefficient of determination, r
2
, is relatively high, near enough is not 

good enough, unless one is satisfied with asymptotic proofs! 
 

 
Figure 1: X (ln M – 5) vs Y ((n/M)x10

2
) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Proportion of prime pairs 
 

 No. of 
digits 

M No. n 
of 

primes 

No. of 
prime 
pairs, 

B 

ln B   n 
 2

 

   10 
 M  n 

 

2 20 7 2 0.69 53.84 

40 11 3 1.10 37.93 

58 15 4 1.39 34.88 

80 22 6 1.79 37.93 

3 258 55 16 2.77 27.09 

440 85 15 2.71 23.94 

728 129 15 2.71 21.54 

920 157 23 3.14 20.58 

4 1170 193 50 3.91 19.75 

3206 454 72 4.28 16.50 

4916 658 51 3.93 15.45 

6738 870 140 4.94 14.83 

8686 1083 107 4.67 14.24 

5 10290 1263 295 5.69 13.99 

34298 3668 300 5.70 11.98 

59322 6005 566 6.34 11.26 

92764 9129 514 6.24 10.92 

6 651064 45625 3084 8.03 7.54 

7 1162858 75586 4530 8.42 6.95 
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Figure 2: ln(B) vs (n/(M-n))x10
2

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Since the smaller prime could be 3, the number of primes available for certain M values could be very large. The results in 

Figure 1 for n/M vs lnM suggest that the ratio n/M reaches a constant positive value. Since n
2
/M approximates to the 

number of prime pairs, and with K the limiting value for n/M, the number of prime pairs is approximately Kn, that is, greater 

than zero which is necessary for the Goldbach conjecture to be established. Although the range in Table 2 is relatively 

small, the stability of the integer structure shown in [15] should ensure that the lnM function is valid up to very large values 

of M. 

 
CONCLUDING COMMENTS 

Some of these ideas which flow from Equation (2.1) could also be tested on semi-primes which are asymptotically denser 

than primes. A “semiprime” (or biprime) is an integer which is the product of two (not necessarily distinct) prime numbers. 

In this context Lemoine's conjecture, named after the French mathematician, Émile Lemoine (1840-1912), states that 

all odd integers greater than 5 can be represented as the sum of an odd prime number and an even semiprime [5]. The 

material also lends itself to undergraduate projects in heuristic mathematics [19] particularly where iPads and similar 

devices are part of the teaching and learning process [9]. While Hardy typifies a certain approach to conjectures, Polya 

[16] and Franklin [8] characterise a broader view of inductive heuristics which can engage the attention of the „amateurs‟, 

such as Pascal and Fermat. 
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