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ABSTRACT: In this paper, we consider a finite undirected and connected simple graph G(E, V) with vertex set V(G) and edge
set E(G).We introduced a new computes the spectra of some operations on simple graphs [union of disjoint graphs, join of graphs,
Cartesian product of graphs, strong Cartesian product of graphs, direct product of graphs].
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INTRODUCTION

Graph theory and its applications has a long history, in structural mechanics and in particular

nodal ordering and graph partitioning are well documented in the literature, Kaveh [11-12]. Algebraic graph theory can be
considered as a branch of graph theory, where eigenvalues and eigenvectors of certain matrices are employed to deduce
the principal properties of a graph. In fact eigenvalues are closely related to most of the invariants of a graph, linking one
extremal property to another. These eigenvalues play a central role in our fundamental understanding of graphs. Most of
the definitions on algebraic graph theory in the present interesting books such as Biggs [2], Cvetkovic¢ et al. [5], and Godsil
and Royle [10]. One of the major contributions in algebraic graph theory is due to Fiedler [9], where the properties of the
second eigenvalue and eigenvector of the Laplacian of a graph have been introduced. This eigenvector, known as the
Fiedler vector is used in graph nodal ordering and bipartition, Refs. [14-17].

The Laplacian matrix of a graph and its eigenvalues can be used in several areas of mathematical research and have a
physical interpretation in various physical and chemical theories. The related matrix - the adjacency matrix of a graph and
its eigenvalues were much more investigated in the past than the Laplacian matrix. In the same time, the Laplacian
spectrum is much more natural and more important than the adjacency matrix spectrum because of it numerous
application in mathematical physics, chemistry and financial mathematics (see papers [1, 3, 4, 6, 7, 8]).
*The adjacency matrix, A= A(G) = (a;) of Gis ann X n symmetric matrix,G(finite undirected and connected simple
graph)

S {1, if ViV]' € E,

17 o, otherwise.’

*The Laplacian matrix of G is the matrix L = L(G) =1; = D — A,

d;, if i=j,
li]' = _1, if ViVj € E,
0, otherwise.

Where D is a diagonal degree matrix (D = (dy,dy, ..., dn)) of a graph G, d; is the degree of vertex i.
*The characteristic polynomial of A(G) or G is defined as P(G,1) = det (/1 I- A(G)).

* The roots of P(G, 2) are the eigenvalues of A(G). We will call them also the eigenvalues of G.

*The (ordinary) spectrum of a finite graph G is by definition the spectrum of theadjacency matrix A(G), that is, its set of eigenvalues
together with their multiplicities.

1. Some operations on graphs and spectra

In mathematics, one always tries to get new structures from given ones. This also applies to the realm of graphs, where one can
generate many new graphs from a given set of graphs. For the other operations, we assume that G and H are graphs with disjoint
vertex-sets, V(G) = {uy,uy,...,utand V(H) ={v1,vp,..., 0}

(1) The union G U H has vertex-set V(G) U V(H) and edge-set E(G) U E(H).
(2) The join G + H is obtained from G U H by adding all of the edges from vertices in G to those in H.

(G ——— *———e
GUH G+ H
H * - * - ——o—
Figure 1

Theorem 2.1, Let G be the union of disjoint graphs Gy, G, Gs, ...Gy,; i.e.(G = U™, G)).
ThenP(G,A) = [’ P(G;, 1)

Proof. For any square matrices A;, A,, As, ... A, not necessarily of the same order.The claim follows at once from the relation
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A0 O 0
0 A O 0

det| 0 0 A, -+ 0 [=det(4;)det(A;)det(A3) - det(4,).
[0 0 0 - A

Theorem Kel’mans [13] 2.2, Let G + H denote the join of G and H, then
AA—ny —ny)
A-n)@—ny)

Where n; and n, are orders of G and H, respectively P(G, 1) is the characteristic polynomial of the Laplacian matrix of G.

PG +H,A) = P(G,A—n,)P(H, A —ny)

*The wheel graph, W,, ., the graph which is given by W,,,, = K; + C,,, where C,, is the cycle graph with n vertices and K;is any new
vertex.

*The fan graph,F, ., the graph which is given by F,,; = K; + B,, where P, is the path graph with n vertices and K is any new vertex.

m

7

Figure 2
Note that: Chebyshev polynomials:
(1) Chebyshev polynomial of the first kind T,,(x) = cos(n cos~! x).
(2) Chebyshev polynomial of the second kind U, (x) = sin(n cos™! x)

Theorem 2.3, (1) Laplacian spectrum of the fan graph F,; are

{O,n + 1,3 — Zcos%i,i = 1,480 — 1}
(2) Laplacian spectrum of the wheel graph W, ,, are

{on+ 13- 2c0s™,i =1,..,n-1}.

Proof. (1) Since Laplacian polynomial of the path graph P(B,, 1) = AU,,_; (%) and P(K;, 1) = A, then by theorem (Kel’mans)the
Laplacian polynomial of the fan graph F,, . is given by the formula

P(F1, ) = AQ—n = DUpt ().

Thus Laplacian spectrum F, ., are {O,n + 1,3 -2 COS%,l =1,...,n- 1}

(2) Since Laplacian polynomial of the cycle graph P(C,,A) = 2A[T,,_4 (A%Z) — 1] and P(K;,4) = A, then by theorem (Kel’mans)

the Laplacian polynomial of the wheel graph W, is given by the formula P(W,,,1,4) = 241 —n — 1)[T,_1 (?) —1].
Thus Laplacian spectrum W,, ., are {O,n + 1,3 -2 cos%,i =1,...,n- 1}. O

Example 2.4: The Laplacian characteristic polynomial of the wheel graph W5 is
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[A-6 1 1 1 1 ]
1 A-3 1 0 0 1
1 1 21-3 1 0 0 0
P(W;,2) = det (11~ L(Wy)) = det| 1 0 1 1-3 1 0 0
1 0 0 1 1-3 1 0
1 0 0 0 1 A1-3 1
1 1 0 0 0 1 Ai-3

=27 — 24254 23125 — 11402* + 303613 — 412822 + 22404.

Thus Laplacian spectrum W, are {0,7,2,4,5,4, 2} which us (2) in Theorem 2.3, Laplacian spectrum W,
2mi .,
are{0,7,3 — 2cos =i = 1,...,5}.

(2) The Laplacian characteristic polynomial of thefan graph Fg is

-8 1 1 1 1 1 1 1 1
1 1-2 1 0 0 0 0 0 0
1 1y 1-3 1 0 0 0 0 0
1 0 1 i-3 1 0 0 0 0
P(F5,7) = det (A1 - L(Fy)) =det| 1 0 0 1 1-3 1 0 0 0 |=21-
1 0 0 0 I -3 1 0 0
1 0 0 0 0 1 -3 1 0
1 0 0 0 0 0 1 B -
1 0 0 0 0 0 0 1 A-2

3018 + 37217 — 25021° + 100001° — 243184* + 350964 — 2743812 + 88831.
Thus Laplacian spectrum Fy are {0,1.1522,1.5858,2.2346,3,3.7654,4.4142,4.8478, 9},

which us (1) in Theorem 2.3, Laplacian spectrum Fq are {0, 9,3 -2 cos%i,i =y . .. 7}. O

Example 2.5 : (1) Find Laplacian spectrum of the complete graph on n vertices K,, .
(2) Find Laplacian spectrum of the complete bipartite graph Ky, ,,.

Solution: (1) We want to show that P(K,,1) = A(A —n)"*~' . To solve this problem we use induction by number of vertices n. For,
K is a singular vertex. Its Laplacian matrix

L(K,) = {0}. Hence P(K;,A) = A.

Hence the statement is true for n = 1. Suppose that for given n the equality P(K,,4) = A(A — n)"~! is already proved. It is easy to
see that

Knt1 isajoin of K, and K;. By Kel’mans theorem we get

_AA=n-1)
P(K,, 1) = m P(Ky,A—n)P(K,,A—1)
AAr—-n—-1) L n
zm(l_n)(l—l)(l—l—n) 1_/1(/1_71_1)

Hence, the Laplacian spectrum of K, = {0, n*~1}.
(2) Let us note that K, , is a join of x,,, and x,,, where x,, is a disjoint union of k vertices. We have L(x; ) = D(x; ) — A(x; ) = 0} —
0, = 0, ,where 0 is k X k zero matrix.

Hence, P(x;, 1) = A*. By Kel’mans theorem we obtain

A(A—m—n)

P(Knnd) = 0@ =m

P(xn,l _m)P(xmrA - n)
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_ AMA-m-—n)
S A-m@-m

=A(A—-m—n)(A —m)"L(A —n)m!

A -m*(A-n)"

Hence, the Laplacian spectrum of Ky, ,, is {0,m"™1,n™~1,m + n}. u]
3. Types of graph products and spectra
(1) Cartesian product G x HorGoH has the vertex-set V (G) x V (H), and
(u;,v; ) is adjacent to (uy, , vy ) if either:
(@) w; isadjacenttou, in G and v; = vy ,0r

() w; =wu, andv; isadjacentto v, in H.

L7 I N

]_)
<, ]

N

Figure 3
(2) Strong Cartesian product G [X] H has the vertex-set V (G) XV (H), and
(u;,v; ) is adjacent to (uy, , vy, ) if:
(@) w isadjacenttow, inGandv; = vy,
(b) w; =u, andy; is adjacent to vy in H,

(¢) w isadjacenttow, in G andy; is adjacentto v, in H; i.e. (ui u, € Gand vy vy € H).

’r——
P3 P P
P2 2 X 3
Figure 4

(3) Direct (Kronecker) product GQH or G * H has the vertex-set V (G) XV (H), and

(ui )Y ) is adjacent to (uy, , vy ) if: u; u, € G and v; v, € H.

—— XX

3

]32*]33

Figure 5
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Remark [16]: (i) The cylinder graph can be written on the image B, X C,.

(ii) The adjacency matrix of G x H can be writtenas A(G) Q L,,, + I, ® A(H).

Here ® is tensor (kronecker) product of matrices.

(iii) The adjacency matrix of G @ Hcan be written as A(G) & A(H).

(iv) The adjacency matrix of G [ H can be written as ((A(G) + 1) ® (A(H) + D) — 1.

(v) The Kronecker product of two matrices A and B, is the matrix we get by replacing the ij — th entry of A by aijB, for all i and j.

As an example,
b b b b a11b11 a‘llblZ a12b11 a12b12
11 D12 11 D12

[an a1Z] [bn b12] ary [b21 bzz] d12 byy bzzq_ a11b21 anbzz aleZl a12b22

a1 G2 b21 b22 ) bll blz] bll b12 a21bll a'21b12 a22bll a‘22b12

az1 azz
by by by by

a21b21 a21b22 aZZb21 a'22b22

(vi) The Kronecker product has the property that if B, C, D, and E are four matrices, such that BD and CE exists, then: (B ® C)(D ®
E) = BD® CE.

Theorem 3.1. Suppose A;, 4j,..., A, are eigenvalues of G and By, B, ..., ,, are eigenvalues of H.Then
(1) theeigenvaluesof G x Hare 4, + @, forl < i < nand1 < j < m.
(2) the eigenvalues ofG ® H are 4;@;,for1 < i < nand1l < j < m.
(3) theeigenvaluesof G X Hare (4; + 1)(B +1) —1or 4,8 +4 + B forl < i < nandl < j < m.

Proof. (1)Let A and B be the adjacency matrix of G and Hrespectively. For any eigenvalue A and x eigenvector of A, any eigenvalue
and yeigenvector of B. We have Ax = Ax and By = Ry. It follows that

AQIn+,®B)x®y)=(AQ ) ®y)+ (U, ®B)(x ®y)
=AxQLy+Lx@®By=xQy+xQky
=x®@y)+Ax®y) = A+ BDxQy).

Thus, A + @ is an eigenvalue of G x H.
(2 AQB(x®y)=Ax @By = =x @ By = A0(x ® y).

Thus, 2 8 is an eigenvalue of G @ H.

@((+D®B+D)-1)x®y =(U+D QB +D)E®Y) - (x®)
=A+Dx®B+Dy-(x®y)
=Ax+0) @By +y)-(x®y)
=x+0) Q@@ +y) - (x®y)
=A+Dx@@+1Dy-(x®y)
=A+DE+ DY) - (x®y)
=((+D@+D-DEx Q).

Thus, (A + 1)(@+ 1) — lis an eigenvalue of G X H. |
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Example 3.2: Let the cylinder graph G = P, X C5, the characteristic polynomial of G is

P(G, 1) = det(ﬂl—-A(G))==A?4——212124—154210——476&8——4174—62316——5615——343&44—84134—6312—-28&—%3.Thus

adjacency spectrum of the cylinder graph are

{—2.8019, —2.8019,—1.445,—1.445,—-0.8019,—-0.8019,0.247,0.247,0.555,0.555, 1, 2.247, 2.247, 3}. By Theorem 2.3 (2),
Adjacency spectrum of the cylinder graph are {1; + &, :i = 1,2 and j = 1, ..., 7}, where

A ={-1,1}and B = {-1.8019,—-1.8019,—0.445,—0.445,1.247,1.247, 2}.

4. CONCULSION

In this paper, we give a new computes of laplacian spectrum of some graphs which represent addition of two graphs. Also we
give a new computes of adjacency spectrum of some graphs which represent product of two graphs.
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