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ABSTRACT: In this paper, we consider a finite undirected and connected simple graph G(E, V) with vertex set V(G) and edge 

set E(G).We introduced a new computes the spectra of some operations on simple graphs [union of disjoint graphs, join of graphs, 

Cartesian product of graphs, strong Cartesian product of graphs, direct product of graphs]. 
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INTRODUCTION 

Graph theory and its applications has a long history, in structural mechanics and in particular  

nodal ordering and graph partitioning are well documented in the literature, Kaveh [11-12]. Algebraic graph theory can be 
considered as a branch of graph theory, where eigenvalues and eigenvectors of certain matrices are employed to deduce 
the principal properties of a graph. In fact eigenvalues are closely related to most of the invariants of a graph, linking one 
extremal property to another. These eigenvalues play a central role in our fundamental understanding of graphs. Most of 
the definitions on algebraic graph theory in the present interesting books such as Biggs [2], Cvetković et al. [5], and Godsil 
and Royle [10]. One of the major contributions in algebraic graph theory is due to Fiedler [9], where the properties of the 
second eigenvalue and eigenvector of the Laplacian of a graph have been introduced. This eigenvector, known as the 
Fiedler vector is used in graph nodal ordering and bipartition, Refs. [14-17].   

The Laplacian matrix of a graph and its eigenvalues can be used in several areas of mathematical research and have a 
physical interpretation in various physical and chemical theories. The related matrix - the adjacency matrix of a graph and 
its eigenvalues were much more investigated in the past than the Laplacian matrix. In the same time, the Laplacian 
spectrum is much more natural and more important than the adjacency matrix spectrum because of it numerous 
application in mathematical physics, chemistry and financial mathematics (see papers [1, 3, 4, 6, 7, 8]). 

•The adjacency matrix, A = A G = (aij )  of Gis an n ×  n  symmetric matrix,G(finite undirected and connected simple 

graph)  

aij =  
1,           if      vivj ∈ E,     

0,                   otherwise.
 . 

•The Laplacian matrix of G is the matrix L = L G = lij = D − A, 

lij =  

di ,          if       i = j,
−1,        if      vivj ∈ E,

  0,          otherwise.

  

   Where D is a diagonal degree matrix  D =  d1, d2,… , dn   of a graph G, 𝑑𝑖  is the degree of vertex i. 

•The characteristic polynomial of 𝐴 𝐺  𝑜𝑟 𝐺 is defined as 𝑃 𝐺,𝜆 =  𝑑𝑒𝑡  𝜆 𝐼 –  𝐴 𝐺  . 

• The roots of P(𝐺,𝜆) are the eigenvalues of  𝐴(𝐺). We will call them also the eigenvalues of 𝐺. 

•The (ordinary) spectrum of a finite graph 𝐺 is by definition the spectrum of theadjacency matrix 𝐴(𝐺), that is, its set of eigenvalues 

together with their multiplicities. 

1. Some operations on graphs and spectra 

In mathematics, one always tries to get new structures from given ones. This also applies to the realm of graphs, where one can 

generate many new graphs  from a given set of graphs. For the other operations, we assume that 𝐺 and 𝐻  are graphs with disjoint 

vertex-sets, 𝑉(𝐺)  = {𝑢1 ,𝑢2 , . . . ,𝑢𝑛} and  𝑉(𝐻)  = {𝑣1 ,𝑣2 , . . . ,𝑣𝑚 }: 

(1) The union 𝐺 ∪  𝐻 has vertex-set 𝑉(𝐺)  ∪  𝑉(𝐻) and edge-set 𝐸(𝐺)  ∪  𝐸(𝐻). 

(2) The join 𝐺 +  𝐻 is obtained from 𝐺 ∪  𝐻 by adding all of the edges from vertices in 𝐺 to        those in 𝐻. 

 

 

 

 

Figure 1 

 

Theorem 2.1, Let 𝐺 be the union of disjoint graphs  𝐺1 , 𝐺2 , 𝐺3 ,…𝐺𝑛 ;  𝑖. 𝑒. (𝐺 =  𝐺𝑖
𝑛
𝑖=1 ).  

ThenP 𝐺, 𝜆 =  P(𝐺𝑖 ,
𝑛
𝑖=1 𝜆) 

Proof. For any square matrices 𝐴1 , 𝐴2, 𝐴3,…𝐴𝑛  not necessarily of the same order.The claim follows at once from  the relation  
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= det  𝐴1 det  𝐴2 det  𝐴3  ⋯  det  𝐴𝑛 . 

Theorem Kel’mans [13] 2.2, Let 𝐺 +  𝐻 denote the join of 𝐺  and  𝐻, then 

𝑷 𝐺 + 𝐻, 𝜆 =
𝜆 𝜆 − 𝑛1 − 𝑛2 

 𝜆 − 𝑛1  𝜆 − 𝑛2 
𝑷 𝐺, 𝜆 − 𝑛2 𝑷(𝐻, 𝜆 − 𝑛1) 

Where  𝑛1 and 𝑛2 are orders of 𝐺 and 𝐻, respectively 𝑷 𝐺, 𝜆  is the characteristic polynomial of the Laplacian matrix of 𝐺. 

•The wheel graph, 𝑊𝑛+1 the graph which is given by 𝑊𝑛+1 = 𝐾1 + 𝐶𝑛 , where 𝐶𝑛  is the cycle graph with n vertices and 𝐾1is any new 

vertex. 

•The fan graph,𝐹𝑛+1  the graph which is given by 𝐹𝑛+1 = 𝐾1 + 𝑃𝑛 , where 𝑃𝑛  is the path graph with n vertices and 𝐾1is any new vertex. 

 

 

 

 
   

 

 

 

 

 Figure 2 

Note that: Chebyshev polynomials: 

(1) Chebyshev polynomial of the first kind  𝑇𝑛 𝑥 = cos 𝑛 cos−1 𝑥 . 

(2) Chebyshev polynomial of the second kind  𝑈𝑛 𝑥 = sin 𝑛 cos−1 𝑥   

Theorem 2.3, (1) Laplacian spectrum of the fan graph 𝐹𝑛+1 are 

  {0,𝑛 +  1, 3 −  2 𝑐𝑜𝑠
𝜋𝑖

𝑛
, 𝑖 =  1, . . . ,𝑛 −  1} 

(2) Laplacian spectrum of the wheel graph 𝑊𝑛+1  are 

 0,𝑛 +  1, 3 −  2 𝑐𝑜𝑠
2𝜋𝑖

𝑛
, 𝑖 =  1, . . . ,𝑛 –  1  . 

Proof. (1) Since Laplacian polynomial of the path graph 𝑷 𝑃𝑛 ,𝜆 =  𝜆𝑈𝑛−1(
𝜆−2

2
) and 𝑷 𝐾1 , 𝜆 =  𝜆, then by theorem (Kel’mans)the 

Laplacian polynomial of the fan graph 𝐹𝑛+1 is given by the formula 

𝑷 𝐹𝑛+1, 𝜆 =  𝜆(𝜆 − 𝑛 − 1)𝑈𝑛−1(
𝜆−3

2
). 

Thus Laplacian spectrum  𝐹𝑛+1 are   0,𝑛 +  1, 3 −  2 𝑐𝑜𝑠
𝜋𝑖

𝑛
, 𝑖 =  1, . . . ,𝑛 –  1  

(2) Since Laplacian polynomial of the cycle graph  𝑷 𝐶𝑛 ,𝜆 =  2𝜆[𝑇𝑛−1   
𝜆−2

2
 − 1]  and 𝑷 𝐾1 , 𝜆 =  𝜆, then by theorem (Kel’mans) 

the Laplacian polynomial of the wheel graph 𝑊𝑛+1 is given by the formula  𝑷 𝑊𝑛+1 , 𝜆 = 2𝜆(𝜆 − 𝑛 − 1)[𝑇𝑛−1   
𝜆−3

2
 − 1]. 

Thus Laplacian spectrum 𝑊𝑛+1 are  0,𝑛 +  1, 3 −  2 𝑐𝑜𝑠
2𝜋𝑖

𝑛
, 𝑖 =  1, . . . ,𝑛 –  1 .                                   □   

Example 2.4: The Laplacian characteristic polynomial of the wheel graph  𝑊7  is 
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𝑷 𝑊7, 𝜆 = 𝑑𝑒𝑡  𝜆 𝐼 –  𝐿 𝑊7  = 𝑑𝑒𝑡











































3100011

1310001

0131001

0013101

0001311

1000131

1111116















 

= 𝜆7 −  24𝜆6 +  231𝜆5 −  1140𝜆4 +  3036𝜆3 −  4128𝜆2 +  2240𝜆. 

Thus Laplacian spectrum  𝑊7  are   0, 7, 2, 4, 5, 4, 2  which us (2) in Theorem 2.3, Laplacian spectrum 𝑊7 

are  0, 7, 3 −  2 𝑐𝑜𝑠
2𝜋𝑖

6
, 𝑖 =  1, . . . , 5 . 

(2) The Laplacian characteristic polynomial of thefan graph  𝐹9 is 

𝑷 𝐹9,𝜆 = 𝑑𝑒𝑡  𝜆 𝐼 –  𝐿 𝐹9  = 𝑑𝑒𝑡
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= 𝜆9 −

30𝜆8 + 372𝜆7 − 2502𝜆6 + 10000𝜆5 −  24318𝜆4 +  35096𝜆3 − 27438𝜆2 + 8883𝜆. 

Thus Laplacian spectrum 𝐹9 are   0, 1.1522, 1.5858, 2.2346, 3, 3.7654, 4.4142, 4.8478, 9 , 

which us (1) in Theorem 2.3, Laplacian spectrum 𝐹9 are   0, 9, 3 −  2 𝑐𝑜𝑠
𝜋𝑖

8
, 𝑖 =  1, . . . , 7 .             □  

Example 2.5 : (1) Find Laplacian spectrum of the complete graph on 𝑛 vertices Kn  . 

(2) Find Laplacian spectrum of the complete bipartite graph  Km,n .  

Solution: (1) We want to show that  𝑷 Kn ,𝜆 = 𝜆(𝜆 − 𝑛)𝑛−1 . To solve this problem we use induction by number of vertices 𝑛. For, 

K1 is a singular vertex. Its Laplacian matrix  

𝐿(Kn)  =  {0}. Hence 𝑷 K1 ,𝜆 = 𝜆. 

Hence the statement is true for  𝑛 =  1. Suppose that for given 𝑛 the equality 𝑷 Kn , 𝜆 = 𝜆(𝜆 − 𝑛)𝑛−1 is already proved. It is easy to 

see that 

Kn+1  is a join of Kn  and K1. By Kel’mans theorem we get 

        𝑷 Kn ,𝜆 =
𝜆(𝜆 − 𝑛 − 1)

 𝜆 − 1 (𝜆 − 𝑛)
 𝑷 K1, 𝜆 − 𝑛 𝑷 Kn , 𝜆 − 1  

 =
𝜆 𝜆 − 𝑛 − 1 

 𝜆 − 1  𝜆 − 𝑛 
 𝜆 − 𝑛  𝜆 − 1 (𝜆 − 1 − 𝑛)𝑛−1 = 𝜆(𝜆 − 𝑛 − 1)𝑛  

               Hence, the Laplacian spectrum of  Kn =   0, nn−1 . 

 (2) Let us note that Km,n  is a join of 𝑥𝑚  and 𝑥𝑛 , where 𝑥𝑘  is a disjoint union of 𝑘 vertices. We have 𝐿 𝑥𝑘   =  𝐷 𝑥𝑘   −  𝐴 𝑥𝑘   =  0𝑘 −
 0𝑘  =  0𝑘  , where 0𝑘  is 𝑘 ×  𝑘 zero matrix. 

Hence, 𝑷 𝑥𝑘 ,𝜆 = 𝜆𝑘 . By Kel’mans theorem we obtain 

𝑷 Km,n , 𝜆 =
𝜆(𝜆 − 𝑚 − 𝑛)

 𝜆 − 𝑛 (𝜆 − 𝑚)
 𝑷 𝑥𝑛 ,𝜆 − 𝑚 𝑷 𝑥𝑚 ,𝜆 − 𝑛  
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     =
𝜆(𝜆 − 𝑚 − 𝑛)

 𝜆 − 𝑛 (𝜆 − 𝑚)
 (𝜆 −𝑚)𝑛(𝜆 − 𝑛)𝑚  

       = 𝜆(𝜆 − 𝑚 − 𝑛)(𝜆 − 𝑚)𝑛−1(𝜆 − 𝑛)𝑚−1 

 Hence, the Laplacian spectrum of Km ,n  is {0,𝑚𝑛−1,𝑛𝑚−1 ,𝑚 +  𝑛}.                                               □ 

3.  Types of graph products and spectra 

(1) Cartesian product  𝐺 × 𝐻𝑜𝑟𝐺□𝐻 has the vertex-set 𝑉 (𝐺) × 𝑉 (𝐻), and 

 𝑢𝑖  ,𝑣𝑗    is adjacent to (𝑢ℎ  , 𝑣𝑘  ) if either: 

(a) 𝑢𝑖   is adjacent to 𝑢ℎ   in 𝐺 and 𝑣𝑗  = 𝑣𝑘  ,or  

(b) 𝑢𝑖  = 𝑢ℎ   and 𝑣𝑗   is adjacent to 𝑣𝑘   in 𝐻. 

 

Figure 3 

(2) Strong Cartesian product 𝐺 ⊠𝐻 has the vertex-set  𝑉 (𝐺) × 𝑉 (𝐻), and 

 𝑢𝑖  ,𝑣𝑗    is adjacent to (𝑢ℎ  , 𝑣𝑘  ) if: 

(a) 𝑢𝑖   is adjacent to 𝑢ℎ   in 𝐺 and 𝑣𝑗  = 𝑣𝑘  ,  

(b) 𝑢𝑖  = 𝑢ℎ   and 𝑣𝑗   is adjacent to 𝑣𝑘   in 𝐻, 

(c) 𝑢𝑖   is adjacent to 𝑢ℎ   in 𝐺 and𝑣𝑗   is adjacent to 𝑣𝑘   in 𝐻; i.e.  𝑢𝑖 𝑢ℎ ∈ 𝐺 𝑎𝑛𝑑 𝑣𝑗  𝑣𝑘  ∈ H . 

 

 

Figure 4 

(3) Direct (Kronecker) product 𝐺⊗𝐻 𝑜𝑟 𝐺 ∗ 𝐻 has the vertex-set  𝑉 (𝐺) × 𝑉 (𝐻), and 

 𝑢𝑖  ,𝑣𝑗    is adjacent to (𝑢ℎ  , 𝑣𝑘  ) if: 𝑢𝑖  𝑢ℎ ∈ 𝐺 𝑎𝑛𝑑 𝑣𝑗  𝑣𝑘  ∈ H. 

 

Figure 5 
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Remark [16]: (i) The cylinder graph can be written on the image 𝑃𝑚  ×  𝐶𝑛 . 

(ii) The adjacency matrix of 𝐺 × 𝐻 can be written as  𝐴(𝐺) ⊗ 𝐼𝑚 + 𝐼𝑛 ⊗𝐴(𝐻). 

Here ⊗ is tensor (kronecker) product of matrices. 

(iii) The adjacency matrix of 𝐺 ⊗𝐻can be written as 𝐴 𝐺 ⊗ 𝐴 𝐻 . 

(iv) The adjacency matrix of 𝐺 ⊠𝐻 can be written as   𝐴 𝐺 + 𝐼 ⊗  𝐴 𝐻 + 𝐼  − 𝐼. 

(v) The Kronecker product of two matrices A and B, is the matrix we get by replacing the ij − th entry of A by aijB, for all i and j. 

As an example, 

 
𝑎11 𝑎12

𝑎21 𝑎22
 ⊗  

𝑏11 𝑏12

𝑏21 𝑏22
 =  

𝑎11  
𝑏11 𝑏12

𝑏21 𝑏22
 𝑎12  

𝑏11 𝑏12

𝑏21 𝑏22
 

𝑎21  
𝑏11 𝑏12

𝑏21 𝑏22
 𝑎22  

𝑏11 𝑏12

𝑏21 𝑏22
 
 =   





















2222212222212121

1222112212211121

2212211222112111

1212111212111111

babababa

babababa

babababa

babababa

 

(vi) The Kronecker product has the property that if 𝐁,𝐂,𝐃, and 𝑬 are four matrices, such that 𝐁𝐃 and 𝑪𝑬 exists, then: (𝐁⊗ 𝐂)(𝐃⊗
𝐄)  =  𝐁𝐃⊗ 𝐂𝐄. 

Theorem 3.1. Suppose 𝜆1, 𝜆2, . . . , 𝜆𝑛  are eigenvalues of  𝐺 and µ1 , µ2, . . . , µ𝑚  are eigenvalues of  𝐻.Then  

(1) the eigenvalues of 𝐺 × 𝐻are 𝜆𝑖 + µ𝑗 ,  for 1 ≤  𝑖 ≤  𝑛 and 1 ≤  𝑗 ≤  𝑚. 

(2) the eigenvalues of𝐺 ⊗𝐻 are 𝜆𝑖µ𝑗 , for 1 ≤  𝑖 ≤  𝑛 and 1 ≤  𝑗 ≤  𝑚. 

(3) the eigenvalues of  𝐺 ⊠𝐻 are  𝜆𝑖 + 1  µ𝑗 + 1 − 1 𝑜𝑟 𝜆𝑖µ𝑗 + 𝜆𝑖 + µ𝑗  for 1 ≤  𝑖 ≤  𝑛 and 1 ≤  𝑗 ≤  𝑚. 

Proof. (1)Let 𝐴  and 𝐵 be the adjacency matrix of 𝐺 and 𝐻respectively. For any eigenvalue 𝜆 and  𝑥 eigenvector of  𝐴, any eigenvalue µ 

and 𝑦eigenvector of 𝐵. We have  𝐴𝑥 =  𝜆𝑥  and  𝐵𝑦 =  µ𝑦. It follows that 

 𝐴 ⊗ 𝐼𝑚 + 𝐼𝑛 ⊗𝐵  𝑥 ⊗ 𝑦 =  𝐴 ⊗ 𝐼𝑚   𝑥 ⊗ 𝑦 +  𝐼𝑛 ⊗𝐵  𝑥 ⊗ 𝑦  

= 𝐴𝑥 ⊗ 𝐼𝑚𝑦 + 𝐼𝑛𝑥 ⊗ 𝐵𝑦 = 𝜆𝑥 ⊗ 𝑦 + 𝑥 ⊗ µ𝑦 

= 𝜆 𝑥 ⊗ 𝑦 + µ 𝑥 ⊗ 𝑦 =  𝜆 + µ  𝑥 ⊗ 𝑦 . 

Thus, 𝜆 +  µ  is an eigenvalue of 𝐺 ×  𝐻. 

(2)   𝐴 ⊗ 𝐵  𝑥 ⊗ 𝑦 = 𝐴𝑥 ⊗ 𝐵𝑦 = 𝜆𝑥 ⊗ µ𝑦 = 𝜆µ 𝑥 ⊗ 𝑦 . 

Thus, 𝜆 µ  is an eigenvalue of 𝐺 ⊗ 𝐻. 

(3)    𝐴 + 𝐼 ⊗  𝐵 + 𝐼  − 𝐼  𝑥 ⊗ 𝑦 =   𝐴 + 𝐼 ⊗  𝐵 + 𝐼   𝑥 ⊗ 𝑦 −  𝑥 ⊗ 𝑦  

=  𝐴 + 𝐼 𝑥 ⊗  𝐵 + 𝐼 𝑦 −  𝑥 ⊗ 𝑦  

=  𝐴𝑥 + 𝑥 ⊗  𝐵𝑦 + 𝑦 −  𝑥 ⊗ 𝑦  

=  𝜆𝑥 + 𝑥 ⊗  µ𝑦 + 𝑦 −  𝑥 ⊗ 𝑦  

=  𝜆 + 1 𝑥 ⊗  µ + 1 𝑦 −  𝑥 ⊗ 𝑦  

=  𝜆 + 1  µ + 1  𝑥 ⊗ 𝑦 −  𝑥 ⊗ 𝑦  

= ( 𝜆 + 1  µ + 1 − 1) 𝑥 ⊗ 𝑦 . 

Thus,  𝜆 + 1  µ + 1 − 1is an eigenvalue of  𝐺 ⊠𝐻.                                                                    □ 
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Example 3.2: Let the cylinder graph  𝐺 = 𝑃2  ×  𝐶7, the characteristic polynomial of 𝐺 is  

P 𝐺, 𝜆 =  𝑑𝑒𝑡  𝜆 𝐼 –  𝐴 𝐺  = 𝜆14 − 21𝜆12 + 154𝜆10 − 476𝜆8 − 4𝜆7 + 623𝜆6 − 56𝜆5 − 343𝜆4 + 84𝜆3 + 63𝜆2 − 28 𝜆 + 3. Thus 

adjacency spectrum of the cylinder graph are  

 −2.8019, −2.8019,−1.445,−1.445,−0.8019,−0.8019, 0.247, 0.247, 0.555, 0.555, 1, 2.247, 2.247, 3 . By Theorem 2.3 (2), 

Adjacency spectrum of the cylinder graph are {𝜆𝑖 + µ𝑗   : 𝑖 = 1, 2 𝑎𝑛𝑑 𝑗 = 1,… , 7}, where 

𝜆𝑖 =  −1, 1  𝑎𝑛𝑑 µ𝑗   =  −1.8019,−1.8019,−0.445,−0.445, 1.247,1.247, 2 .  

4. CONCULSION 

In this paper, we give a new computes of laplacian spectrum of some graphs which represent addition of two graphs. Also we 
give a new computes of adjacency spectrum of some graphs which represent product of two graphs. 
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