

ON ABEL CONVERGENT SERIES OF FUNCTIONS

ERDAL GÜL AND MEHMET ALBAYRAK

Yildiz Technical University, Department of Mathematics, 34210 Esenler, Istanbul egul34@gmail.com
mehmetalbayrak12@gmail.com

ABSTRACT

In this paper, we are concerned with Abel uniform convergence and Abel point-wise convergence of series of real functions where a series of functions $\sum f_n$ is called Abel uniformly convergent to a function f if for each $\varepsilon > 0$ there is a $\delta > 0$ such that

$$|f_x(t) - f(t)| < \varepsilon$$

For $1-\delta < x < 1$ and $\forall \ t \in X$, and a series of functions $\sum f_n$ is called Abel point-wise convergent to f if for each $t \in X$ and $\forall \varepsilon > 0$ there is a $\delta(\varepsilon,t)$ such that for $1-\delta < x < 1$

$$|f_x(t) - f(t)| < \varepsilon$$
.

2010 Mathematics Subject Classification: 40A30.

Key Words: Pointwise convergence; Uniform convergence; Abel convergence

Council for Innovative Research

Peer Review Research Publishing System

Journal: JOURNAL OF ADVANCES IN MATHEMATICS

Vol.11, No.9

www.cirjam.com, editorjam@gmail.com

1 INTRODUCTION

Firstly, we give some notations and definitions in the following. Throughout this paper, N will denote the set of all positive integers. We will use boldface \mathbf{p} , \mathbf{r} , \mathbf{w} , ... for sequences $\mathbf{p} = (p_n)$, $\mathbf{r} = (r_n)$, $\mathbf{w} = (w_n)$,... of terms in R, the set of all real numbers. Also, \mathbf{s} and \mathbf{c} will denote the set of all sequences of points in R and the set of all convergent sequences of points in R, respectively.

A sequences (p_n) of real numbers is called Abel convergent (or Abel summable), (See [1,3]), to ℓ if for $0 \le x < 1$ the series $\sum_{k=0}^{\infty} p_k \, x^k$ is convergent and

$$\lim_{x \to 1^{-}} (1 - x) \sum_{k=0}^{\infty} p_k x^k = \ell$$

Abel proved that if $\lim_{n \to \infty} p_n = \ell$, then Abel – $\lim_{n \to \infty} p_n = \ell$ (Abel).

A series $\sum_{n=0}^{\infty} p_n$ of real numbers is called Abel convergent series (See [1,3]), (or Abel summable) to ℓ if for $0 \le x < 1$ the series $\sum_{k=0}^{\infty} p_k \, x^k$ is convergent and

$$\lim_{x\to 1^-} (1-x) \sum_{k=0}^{\infty} S_k x^k = \ell$$
, where $S_n = \sum_{k=0}^n p_k$

In this case we write Abel- $\sum_{n=0}^{\infty} p_n = \ell$. Abel proved that if $\lim_{n \to \infty} \sum_{k=0}^n \ell = \ell$, then Abel- $\sum_{n=0}^{\infty} p_n = \ell$ (Abel), i.e. every convergent series is Abel summable . As we know the converse is false in general, e.g. Abel- $\sum_{n=0}^{\infty} (-1)^n = \frac{1}{2}$ (Abel), but $\sum_{n=0}^{\infty} (-1)^n \neq \frac{1}{2}$.

2 RESULTS

We are concerned with Abel convergence of sequences of functions defined on a subset *X* of the set of real numbers. Particularly, we introduce the concepts of Abel uniform convergence and Abel point-wise convergence of series of real functions and observe that Abel uniform convergence inherits the basic properties of uniform convergence.

Let (f_n) be a sequences of real functions on X and for all $t \in X$ let $f_x(t) = (1-x)\sum_{n=0}^{\infty} S_n(t) x^n$, where $S_n(t) = \sum_{k=0}^n f_k(t)$.

Definition 2.1 A series of functions $\sum f_n$ called Abel point-wise convergent to a function f if for each $t \in X$ and $\forall \varepsilon > 0$ there is a $\delta(\varepsilon, t)$ such that for $1 - \delta < x < 1$

$$|f_x(t) - f(t)| < \varepsilon.$$

In this case we write $\sum f_n \rightarrow f$ (Abel) on X.

It is easy to see that any point-wise convergent sequence is also Abel point-wise convergent. But the converse is not always true as being seen in the following example.

Example 2.1 Define $f_n:[0,1] \to R$ by

$$f_n(t) = (-1)^n = \begin{cases} -1, & n \in \mathbb{N} \text{ and } n \text{ odd}; \\ 1, & n \in \mathbb{N} \text{ and } n \text{ even} \end{cases}$$

and

$$S_n(t) = \begin{cases} 0, & n \text{ odd;} \\ 1, & n \text{ even} \end{cases}$$

Then, for every $\varepsilon > 0$,

$$\left| (1-x) \sum_{n=0}^{\infty} \left(S_n(t) - \frac{1}{2} \right) x^n \right| < \varepsilon.$$

Hence

$$\lim_{x \to 1^{-}} (1 - x) \sum_{n=0}^{\infty} S_n(t) x^n = \frac{1}{2}$$

So $\sum f_n$ is Abel point-wise convergent to $\frac{1}{2}$ on [0,1]. But observe that $\sum f_n$ is not point-wise on [0,1].

Definition 2.2 A series of functions $\sum f_n$ is called Abel uniform convergent to a function f if for each $\varepsilon > 0$ there is a $\delta > 0$ such that

$$|f_{r}(t) - f(t)| < \varepsilon$$

for $1 - \delta < x < 1$ and $\forall t \in X$.

In this case we write $\sum f_n \Rightarrow f$ (Abel) on X.

The sequence is equicontinuous if for every $\varepsilon>0$ and every $x\in X$, there exists a $\delta>0$, such that for all n and all $x^*\in X$ with $|x^*-x|<\delta$ we have

$$|f_n(x^*) - f_n(x)| < \varepsilon$$
.

The next result is a Abel analogue of a well-known result.

Theorem 2.1 Let (f_n) be equicontinuous on X. If a series of functions $\sum f_n$ converges Abel uniform to a function f on X, then f is continuous on X.

Proof. Let t_0 be an arbitrary point of X. By hypothesis $\sum f_n \Rightarrow f$ (Abel) on X. Then, for every $\varepsilon > 0$, there is a $\delta_1 > 0$ such that $1 - \delta_1 < x < 1$ implies $|f_x(t) - f(t)| < \frac{\varepsilon}{3}$ and $|f_x(t_0) - f(t_0)| < \varepsilon$ for each $t \in X$. Since f_n is quicontinuous at $t_0 \in X$, there is a $\delta_2 > 0$ and $n \in N$ such that $|t - t_0| < \delta_2$ implies $|f_k(t) - f_k(t_0)| < \frac{\varepsilon}{3n}$ for each $t \in X$, so

$$|f_x(t) - f_x(t_0)| = |(1 - x) \sum_{n=0}^{\infty} S_n(t) x^n - (1 - x) \sum_{n=0}^{\infty} S_n(t_0) x^n$$

$$= |(1 - x) \sum_{n=0}^{\infty} (S_n(t) - S_n(t_0)) x^n|$$

$$\leq (1 - x) \sum_{n=0}^{\infty} |(S_n(t) - S_n(t_0))| x^n$$

$$\leq (1 - x) \sum_{n=0}^{\infty} \frac{\varepsilon}{3} x^n = \frac{\varepsilon}{3}$$

Now for all 0 < x < 1, for $\delta = min [\delta_1, \delta_2]$ and for all $t \in X$ for which $|t - t_0| < \delta$, we have

$$|f(t) - f(t_0)| = |f(t) - f_x(t) + f_x(t) - f_x(t_0) + f_x(t_0) - f(t_0)|$$

$$\leq |f(t) - f_x(t)| + |f_x(t) - f_x(t_0)| + |f_x(t_0) - f(t_0)| < \varepsilon.$$

Since $t_0 \in X$ is arbitrary, f is continuous on X.

The next example shows that neither of the converse of Theorem 2.1 is true.

Example 2.2 Define $f_n:[0,1] \to R$ by

$$f_n(t) = n^2 t (1-t)^n$$

Then we have $\sum f_n : [0,1] \to f = 0$ (Abel) on [0,1]. Though all f_n and f are continuous on [0,1], it follows from Definition 2.2 that the Abel point-wise convergence of (f_n) is not uniform, since

$$c_n = \max_{0 \le t \le 1} |\sum_{k=0}^n f_k(t) - f(t)| = \infty$$
 and Abel-lim $c_n = \infty \ne 0$.

The following result is a different form of Dini's theorem.

Theorem 2.2 Let X be compact subset of R, (f_n) be a sequence of continuous functions on X. Assume that f is continuous and $\sum f_n \to f$ (Abel) on X. Also let $\sum_{k=0}^n f_k$ be monotonic decreasing on X; $\sum_{k=0}^n f_k$ $(t) \ge \sum_{k=0}^{n+1} f_k$ (t)

 $(n=1,2,3,\dots)$ for every $t\in X$. Then $\sum f_n\Rightarrow f$ (Abel) on X.

Proof. Put $h_n(t) = \sum_{k=0}^n (f_k(t) - f(t))$. By hypothesis, each h_n is continuous and $h_n \to 0$ (Abel) on X, also h_n is a monotonic decreasing sequence on X. Since continuous functions h_n on set compact X, it is bounded on X. As all a series of functions h_n is bound and monotonic decreasing, it is pointwise convergence for all a $t \in X$. Since h_n is Abel pointwise to zero for all a $t \in X$, it find pointwise convergece to zero for all a $t \in X$. Hence for every $\varepsilon > 0$ and each $t \in X$ there exists a number $n(t) \coloneqq n(\varepsilon, t) \in N$ such that $0 \le h_n(t) < \frac{\varepsilon}{2}$ for all $n \ge n(t)$.

Since $h_{n(t)}$ is continuous a $t \in X$ for every $\varepsilon > 0$, there is an open set V(t) which contains t such that $|h_{n(t)}(\ell) - h_{n(t)}(t)| < \varepsilon/2$ for all $\ell \in V(t)$. Hence for given $\varepsilon > 0$, by monotonicity we have

$$0 \le h_n(\ell) \le h_{n(t)}(\ell) = h_{n(t)}(\ell) - h_{n(t)}(t) + h_{n(t)}(t)$$
$$< |h_{n(t)}(\ell) - h_{n(t)}(t)| + h_{n(t)}(t) < \varepsilon$$

for every $\ell \in V(t)$ and for all $n \ge n(t)$. Since $X \subset \bigcup_{t \in X} V(t)$ and it is compact set, by the Heine Borel theorem it has a finite open covering as

$$X \subset V(t_1) \cup V(t_2) \dots \cup V(t_m).$$

Now, let $N = \max\{n(t_1), n(t_2), n(t_3), \dots, n(t_m)\}$. Then $0 \le h_n(\ell) < \varepsilon$ for every $t \in X$ and for all $n \ge N$. So $\sum f_n \Rightarrow f$ (Abel) on X.

Using Abel uniform convergence, we can also get some applications. We merely state the following theorems and omit the proofs.

Theorem 2.3 If a series function sequence $\sum f_n$ converges Abel uniformly on [a,b] to a function f on [a,b] and each f_n is an integrable on [a,b] then, f is integrable on [a,b]. Moreover,

$$\lim_{x \to 1^{-}} \int_{a}^{b} f_{x}(t)dt = \int_{a}^{b} f(t) dt$$

Theorem 2.4 Suppose that $\sum f_n$ is a function series such that each (f_n) has a continuous derivative on [a,b]. If $\sum f_n \to f$ on [a,b] and $\sum f_n^* \to g$ (Abel) on [a,b], then $\sum f_n \to f$ (Abel) on [a,b], where f is differentiable and $f^* = g$.

3 FUNCTIONS SERIES THAT PRESERVE ABEL CONVERGENCE

Recall that a function sequence (f_n) is called convergence-preserving (or conservative) on $X \subset R$ if the transformed sequence $(f_n(p_n))$ converges for each convergent sequence $\mathbf{p} = (p_n)$ from X (see [4]). In this section, analogously, we describe the function sequences which preserve the Abel convergence of sequences. Our arguments also give a sequential characterization of the continuity of Abel limit functions of Abel uniformly convergent function series. First we introduce the following definition.

Definition 3.1 Let $X \subset R$ and let $\sum f_n$ be a series of real functions, and f a real function on X. Then series of functions $\sum f_n$ is called Abel preserving Abel convergence (or Abel conservative) on X, if it transforms Abel convergent sequences to Abel convergent sequences, i.e. series of functions $\sum f_n(p_n)$ is Abel convergent to $f(\ell)$ whenever $f(p_n)$ is a convergent sequences from $f(p_n)$ is a called Abel regular on $f(p_n)$.

Hence, if series of functions $\sum f_n$ is conservative on X, then series of functions $\sum f_n$ is Abel conservative on X. But the following example shows that the converse of this result is not true.

Example 3.1 Let $f_n: [0,1] \to R$ defined by

$$f_n(t) = (-1)^n n = \begin{cases} -n, & n \text{ odd;} \\ n, & n \text{ even} \end{cases}$$

and

$$S_n(t) = \begin{cases} \frac{-n-1}{2}, & n \in \mathbb{N} \text{ and } n \text{ odd}; \\ \frac{n}{2}, & n \in \mathbb{N} \text{ and } n \text{ even} \end{cases}$$

Suppose that (w_n) is an arbitrary sequence in [0,1] such that $\lim_{x\to 1^-}(1-x)\sum_{n=0}^\infty w_n(t)x^n=L$. Then, for every $\varepsilon>0$, $\left|(1-x)\sum_{n=0}^\infty \left(S_n(w_n)-(-\frac{1}{4})\right)x^n\right|<\varepsilon$. Hence $\lim_{x\to 1^-}(1-x)\sum_{n=0}^\infty S_n(w_n)=-\frac{1}{4}$. So $\sum f_n$ is Abel conservative on [0,1]. But observe that $\sum f_n$ is not conservative on [0,1].

The next well-known theorem plays an importent role in the proof of Theorem 3.2.

Theorem 3.1 If the series $\sum_{n=0}^{\infty} f_n$ is Abel pointwise convergent to f on X and $f_n(t) \ge 0$ for n sufficiently large for all $t \in X$ then $\sum_{n=0}^{\infty} f_n$ converges to f for all $t \in X$.

Proof. There exists n_0 such that if $n > n_0$ then $f_n(t) > 0$ for all $t \in X$. Thus the $(S_n)_{n_{0+1}}^{\infty}$ is an increasing sequence if S_n is bounded then $\sum_{n=0}^{\infty} f_n(t) = f(t)$ for all $t \in X$. So for all $t \in X$

$$\lim_{x \to 1^{-}} (1 - x) \sum_{k=0}^{\infty} f_k(t) x^k = \sum_{k=0}^{\infty} f_k(t)$$

If S_n is not bounded $\underset{n\to\infty}{\lim} S_n = \infty$, so $\sum_{n=0}^{\infty} f_n(t)$ is not Abel point-wise convergent for all $t\in X$ (which contradicts the hypothesis).

Now we are ready to prove the following theorem.

Theorem 3.2 Let (f_n) be a sequence of nonnegative functions defined on a closed interval $[a,b] \subset R$, a,b>0. Then a series of nonnegative functions $\sum f_n$ is Abel conservative on [a,b] if and only if a series of nonnegative functions $\sum f_n$ converges Abel uniformly on [a,b] to a continuous function.

Proof. Necessity. Assume that a series of nonnegative functions $\sum f_n$ is Abel conservative on [a,b]. Choose the sequence $(r_n)=(r,r,...)$ for each $r\in [a,b]$. Since $A-\lim(r_n)=r$, $A-\lim(r_n)=r$, $A-\lim(r_n)=r$, and exists, hence $A-\lim(r_n)=f(r)$ for all $r\in [a,b]$: We claim that f is continuous on [a,b]. To prove this we suppose that f is not continuous at a point $p_0\in [a,b]$. Then there exists a sequence (p_k) in [a,b] such that $\lim_{k\to\infty}p_k=p_0$, but $\lim f(p_k)$ exists and $\lim f(p_k)=L\neq f(p_0)$. Since a series of nonnegative functions $\sum f_k$ is Abel pointwise convergent to f on [a,b], we obtain $\sum f_n\to f$ (Abel) on [a,b], from Theorem 3.1. Hence we write,

$$\begin{split} &\text{for } k = 1 \quad \Rightarrow \lim_{x \to 1^{-}} (1 - x) \sum_{n=0}^{\infty} \left(S_{n}(p_{1}) - f(p_{1}) x^{n} = 0 \right. \Leftrightarrow \lim_{n \to \infty} S_{n}(p_{1}) = f(p_{1}) \\ &\text{for } k = 2 \quad \Rightarrow \lim_{x \to 1^{-}} (1 - x) \sum_{n=0}^{\infty} \left(S_{n}(p_{2}) - f(p_{2}) x^{n} = 0 \right. \Leftrightarrow \lim_{n \to \infty} S_{n}(p_{2}) = f(p_{2}) \\ &\text{for } k = 3 \quad \Rightarrow \lim_{x \to 1^{-}} (1 - x) \sum_{n=0}^{\infty} \left(S_{n}(p_{3}) - f(p_{3}) x^{n} = 0 \right. \Leftrightarrow \lim_{n \to \infty} S_{n}(p_{3}) = f(3) \\ & \cdots \\ & \cdots \\ & \cdots \\ & \text{for } k = j \quad \Rightarrow \lim_{x \to 1^{-}} (1 - x) \sum_{n=0}^{\infty} \left(S_{n}(p_{j}) - f(p_{j}) x^{n} = 0 \right. \Leftrightarrow \lim_{n \to \infty} S_{n}(p_{j}) = f(p_{j}). \end{split}$$

Now, by the "diagonal process" as in [5] and [6]

$$|(1-x)\sum_{n=0}^{\infty} (S_n(p_n) - f(p_n)x^n| \le |\sum_{j=1}^{\infty} (1-x)\sum_{n=0}^{\infty} (S_n(p_j) - f(p_j)x^n|$$

So we have

$$\lim_{x \to 1^{-}} (1 - x) \sum_{n=0}^{\infty} (S_n(p_n) - f(p_n)) x^n = 0$$
 (3.1)

Then,

$$\sum_{n=0}^{\infty} S_n(p_n) x^n = \sum_{n=0}^{\infty} (S_n(p_n) - f(p_n) + f(p_n)) x^n = \sum_{n=0}^{\infty} (S_n(p_n) - f(p_n)) x^n + \sum_{n=0}^{\infty} f(p_n) x^n$$

and hence from (3.1) one obtains

$$\lim_{x \to 1^{-}} (1 - x) \sum_{n=0}^{\infty} S_n(p_n) x^n = \lim_{x \to 1^{-}} (1 - x) \sum_{n=0}^{\infty} f(p_n) x^n$$

If $\lim f(p_n) = L$, then

$$\lim_{x \to 1^{-}} (1 - x) \sum_{n=0}^{\infty} f(p_n) x^n = L.$$

So we find that

$$\lim_{x \to 1^{-}} (1 - x) \sum_{n=0}^{\infty} S_n(p_n) x^n = L.$$
 (3.2)

Hence series of nonnegative functions $\sum_{n=0}^{\infty} f_n(p_n)$ is not Abel convergent since the series of functions

 $\sum_{n=0}^{\infty} f_n(p_n)$ has two different limit value. So, the series of nonnegative functions $\sum f_n(p_n)$ is not Abel convergent

convergent , which contradicts the hypothesis. Thus f must be continuous on [a,b]. It remains to prove that series of nonnegative functions $\sum f_n$ converges Abel uniformly on [a,b] to f. Assume that a series of functions $\sum f_n$ is not Abel uniformly convergent to f on [a,b]. Hence there exists a number $\varepsilon_0 > 0$ and numbers $r_n \in [a,b]$ such that $\left| \left(1-x \right) \sum_{n=0}^{\infty} \left(S_n(r_n) - f(r_n) x^n \right| \ge 2\varepsilon_0$. We obtain from Theorem 3.1 that $\left| S_n(r_n) - f(r_n) \right| \ge 2\varepsilon_0$. The bounded sequence $f(r_n)$ contains a convergent subsequence $f(r_n)$, $\lim_{x\to 1^-} (1-x) \sum_{i=0}^{\infty} r_{n_i} x^i = \alpha$, say. By the continuity of $f(r_n) = f(r_n)$. So there is an index $f(r_n) = f(r_n) = f(r_n)$. For the same $f(r_n) = f(r_n)$, we have

$$\left| (1-x) \sum_{i=0}^{\infty} (S_{n_i}(r_{n_i}) - f(\alpha)) x^i \right| \ge \left| (1-x) \sum_{i=0}^{\infty} (S_{n_i}(r_{n_i}) - f(r_{n_i})) x^i \right| - \left| (1-x) \sum_{i=0}^{\infty} (f(r_{n_i}) - f(\alpha)) x^i \right| \ge \varepsilon_0.$$

Hence a series of nonnegative functions $\sum f_{n_i}(r_{n_i})$ is not Abel convergent, which contradicts the hypothesis. Thus a series of nonnegative functions $\sum f_n$ must be Abel uniformly convergent to f on [a,b].

Sufficiency. Assume that $\sum f_n \Rightarrow f$ (Abel) on [a,b] and f is continuous. Let $p=(p_n)$ be a Abel convergent Sequence in [a,b] with A-lim $p_n=p_0$. Since Theorem 3.1 and $\sum f_n \Rightarrow f$ (Abel) on [a,b] and, we obtain that $\lim p_n=p_0$. Since $\lim p_n=p_0$ and f is continuous, we obtain that there is $A-\lim f(p_n)$ and let $A-\lim f(p_n)=f(p_0)$. Let $\varepsilon>0$ be given. We write $|(1-x)\sum_{n=0}^{\infty}(f(p_n)-f(p_0))x^n|<\frac{\varepsilon}{2}$. As $f_n\Rightarrow f$ (Abel) on [a,b], we have $|(1-x)\sum_{n=0}^{\infty}(f_n(t)-f(t))x^n|<\frac{\varepsilon}{2}$ for every $t\in [a,b]$. Hence taking $t=(p_n)$ we have

$$\left| (1-x) \sum_{n=0}^{\infty} (f_n(p_n) - f(p_0)) x^n \right| \leq \left| (1-x) \sum_{n=0}^{\infty} (f_n(p_n) - f(p_n)) x^n \right| + \left| (1-x) \sum_{n=0}^{\infty} (f(p_n) - f(p_0)) x^n \right| < \varepsilon.$$

This shows that $\sum f_n(p_n) \to f(p_0)$ (Abel), whence the proof follows.

Theorem 3.2 contains the following necessary and sufficient condition for the continuity of Abel limit functions of function series that converge Abel uniformly on a closed interval.

Theorem 3.3 Let $\sum f_k$ be a series of nonnegative functions that converges Abel uniformly on a closed interval [a,b], a,b>0 to a function f. The A-limit function f is continuous on [a,b] if and only if the series of nonnegative functions $\sum f_k$ is Abel conservative on [a,b].

Now, we study the Abel regularity of function series. If series of nonnegative functions $\sum f_k$ is Abel regular on [a,b], then obviously A-lim $\sum f_n(t)=t$ for all $t\in [a,b]$, a,b>0. So, taking f(t)=t in Theorem 3.2, we immediately get the following result.

Theorem 3.4 Let $\sum f_k$ be a series of nonnegative functions on [a,b], a,b>0. Then series of nonnegative functions (f_k) is Abel regular on [a,b] if and only if series of nonnegative functions $\sum f_k$ is Abel uniformly convergent on [a,b] to the function fdefined by f(t)=t

REFERENCES

- [1] N.H. Abel Resherches sur la srie N.H. Abel, Recherches sur la srie $1 + \frac{m}{1}x + \frac{m(m-1)}{1.2}x^2 + \cdots$, J. Fr. Math. 1 (1826) 311-339
- [2] Tauber, A, Ein Satz aus der Theorie der Unendlichen Reihen. Monatsh. Phys., VII (1897)273-277
- [3] Hardy, G. H., 1991. Divergent series. Second Edition, AMS Chelsea Publishing, 396s. USA.
- [4] Kolk, E. Convergence-preserving function sequences and uniform convergence. J. Math. Anal. Appl. 238 (1999), 599-603.
- [5] Bartle, R. G. Elemnts of Real Analysis. John and Sons Inc., New York, 1964.
- [6] Duman ,O. and Orhan, C., μ –statistacally convergent function sequences, 84 (129) (2004), 413-422.