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Abstract 

In this work we will add the radiation pressure effect of varying mass body to the model of varying mass 

Hamiltonian function, including Periastron effect. The problem was formulated in terms of Delaunay variables. 

The solution of the problem was constructed based on Delava – Hansilmair perturbation techniques. Finally we 

find the first order solution for the problem as time series by calculating the desired order for the D operator 

and variables.. 
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1) Introduction  

The two-body problem with variable mass was considered mathematical problem since none of the physicists 

worked in it, until Jeans, 1924 [1] was the first to pose this as astrophysical problem basing his studies on the 

theories of Eddington on the relationship between luminosity and star mass. 

 Physically different cases of the problem of two bodies with variable masses are classified by Razbitnaya,[2] , 

where he listed twenty-two of Meshcherskii equation for two basic classes: the generalized two-body problem 

with both bodies moving in the inertial system, and the confined two-body problem, with the central body at 

rest in the inertial system. Their obtained when the masses vary according to the hypothesis of Mescherskii [3]. 

Berkovich [4,5] has published several research papers on the properties of the Gylden-Meshherskii equations, 

and the feasibility of converting them into the form autonomous equations. He analyzed the integrable cases 

and established all possible laws of mass change under which the unperturbed Gylden-Meshcherskii problem is 

reducible to the autonomous form. 

Salmassi [6], introduced paper to discuss the second order adiabatic invariants in the two-body problem with 

slowly varying mass. in his search, he used action and angle variables, adiabatic invariants to order one are 

found. 

An ample list can be found in the published works of Polyakova [7] and Prieto [8]. The specific case which lead 

to slow isotropic mass loss, many researcher have been their focus like, for instance, Hadjidemetriou [9, 10],  Van 

Der Laan and Verhulst [11], Verhulst [12, 13], Verhulst and Eckhaus [14]. The vast majority of these, in search of 

the stellar application, have taken the so-called Eddington-Jeans law , Jeans [15] as a law of the variation of 

mass. 

 𝑚̇ = −𝛼𝑚𝑛 (1) 
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where α and n are real numbers, the first of them positive proximate to zero and n varying between 1.4 and 

4.4. So, for example,  Hadjidemetriou used this to integrate the Lagrange equations, first numerically and then 

analytically, considering the problem as one of two-body perturbation. 

Prieto & Docobo [16, 17], found an approximate analytic solution of the two-body problem with slowly 

decreasing mass which is obtained through the integration of the Hamilton equations using Deprit’s method of 

perturbations. The solution, resolved from the law of mass variation, Eqn. (1), is put into practice in a specific 

case and compared with Mestschersky’s exact equation; n=2; and with that which results from numerically 

integrating the equations. 

Considering this problem of celestial mechanics, it has been addressed by, Docobo, Blanco and Abelleira [18], 

Andrade and Docobo [19], and others. 

 In [20], Andrade analyzed the dynamics of binary systems with time dependent mass loss and periastron effect 

i.e., a supposed enhanced mass loss during periastron passage- by means of analytical and numerical 

techniques. 

Andrade and Docobo [21] studied the dynamics of binary systems with small parameter perturbation model, 

the time-dependence of the whole set of orbital elements, concluded, could be calculated over long timescales 

and even for high eccentricities. In these models, they studied the following time- and distance-dependent 

mass-loss law: 

 𝜇̇(𝑡; 𝑟; 𝑃𝜃) = 𝜇̇(𝑡) − 𝛽
𝑃𝜃

𝑟2             

 

(2) 

Where the first term represent time-dependent mass loss, and the last one introduces the periastron effect 

where "r" is the distance between the two components, Pθ is the total angular momentum and β is another 

small parameter close to zero.  

Rahoma et al., [22], presented a scientific paper about the two-body problem with varying mass in case of 

isotropic mass loss from both components of the binary systems. The law of mass variation used gives rise to a 

perturbed Keplerian problem depending on two small parameters. The problem is treated analytically in the 

Hamiltonian frame-work and the equations of motion are integrated using the Lie series developed and applied, 

separately by Delva [23] and Hanslmeier [24]. A second order theory of the two bodies eject mass is constructed, 

returning the terms of the rate of change of mass up to second order in the small parameters of the problem. 

Amirah [25] , she worked on providing research for the two bodies with slowly varying mass, was obtained taking 

into consideration the periastron effect. The solution was obtained through constructing a second order 

canonical transformation using “Hori’s” method developed by “Kamel”. The elements of the transformation as 

well as the inverse transformation were obtained too. The final solution of the problem was derived using “Delva-

Hanslmeier” method. During the analysis, there was a secular perturbation in the argument of periastron due to 

the varying mass. The equation for the variable associated to the variable mass was derived. The equations  for 

calculating the perturbed orbital. 
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2) Materials and Methods 

ɪ-The Hamiltonian of The Problem 

The Hamiltonian for the two-body problem expressed in term Delanuay variables, which derived firstly by Deprit, 

A.[26], is: 

 𝐻(𝑞1. 𝑄1. 𝑄2; 𝑡) =  −
1

2

𝜇2

𝑄1
2 +

𝜇̇

𝜇
𝑄1𝑒 sin 𝐸   (3) 

 

where the usual Delaunay Variable defined by: 

𝑞1 = 𝑀𝑒𝑎𝑛 𝑎𝑛𝑎𝑚𝑜𝑙𝑦 .        𝑞2 = 𝜔   .      𝑞3 = Ω  

  𝑄1 = √𝜇𝑎    .        𝑄2 =  𝑄1√1 − 𝑒2  .       𝑄3 =  𝑄2𝑐𝑜𝑠𝐼 

𝑞𝑖
′𝑠 are considered as the coordinates, while 𝑄𝑖

′𝑠 are their corresponding conjugate momenta. 

   The variation of  μ may be retained from one of the two masses m_1  or m_2 , and this is the case of one 

body eject mass. We will concern with the first case. 

The Hamiltonian 𝐻 represented by Eq. (3) is depending implicitly on time through the variable mass 𝜇  and its 

time derivative 𝜇 ̇ .  By modifying Docobo’s law for the rate of change of mass assigned by eq. (3) and use 

Jeans law described by Eq. (2), we get: 

 𝜇̇(𝑟, 𝑡, 𝜇) = −𝛼𝜇𝑛 − 𝛽
𝑄2𝜇2

𝑄1
4 (

𝑎

𝑟
)

2

  

   

(4) 

Substituting from Eq. (4) into Eq. (3) yields: 

 𝐻 = −
1

2

𝜇2

𝑄1
2 +

𝜇̇(𝑡)

𝜇
𝑄1𝑒 sin 𝐸 − 𝛽

𝑄2 𝑒𝜇

𝑄1
3  (

𝑎

𝑟
)

2

sin 𝐸   (5) 

Since the variable mass, μ, and its time derivatives can be expressed as a Taylor series expansion, then the 

Hamiltonian (5) can be expressed as: 

 𝐻 = −
𝜇0

2

2 𝑄1
2 +

𝛼

𝑄1
2  𝜇0

𝑛+1 (𝑡 − 𝑡0) −  
𝛼2

2𝑄1
2  𝜇0

2 𝑛 (𝑛 + 1)(𝑡 − 𝑡0)2 −

 𝛼 𝑄1 𝑒𝜇0
𝑛−1  sin 𝐸 + 𝛼2𝑄1 𝑒𝜇0

2 𝑛−2 (𝑛 − 1)(𝑡 − 𝑡0) sin 𝐸 −

𝛽
𝑄2 𝑒𝜇0

𝑄1
3  (

𝑎

𝑟
)

2

sin 𝐸 +𝛽𝛼
𝑄2

𝑄1
3  𝑒 𝜇0

𝑛 (𝑡 − 𝑡0) (
𝑎

𝑟
)

2

 sin 𝐸      

 

 

 𝐻 = 𝐻 = 𝐻0 + 𝐻𝛼 + 𝐻𝛽 + 𝐻𝛼𝛽     (6) 

 

Where; 

𝐻0 =  −
𝜇0

2

2 𝑄1
2 

 𝐻𝛼 =   
𝛼

𝑄1
2  𝜇0

𝑛+1 (𝑡 − 𝑡0) −  
𝛼2

2𝑄1
2  𝜇0

2 𝑛 (𝑛 + 1)(𝑡 − 𝑡0)2 −  𝛼 𝑄1 𝑒𝜇0
𝑛−1  sin 𝐸 + 𝛼2𝑄1 𝑒𝜇0

2 𝑛−2 (𝑛 − 1)(𝑡 − 𝑡0) sin 𝐸 ,  
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𝐻𝛽 = −𝛽
𝑄2

𝑄1
3  𝑒 𝜇0 (

𝑎

𝑟
)

2

 sin 𝐸  

𝐻𝛼𝛽 = 𝛽𝛼
𝑄2

𝑄1
3  𝑒 𝜇0

𝑛 (𝑡 − 𝑡0) (
𝑎

𝑟
)

2

 sin 𝐸        

The potential due to radiation pressure 𝑈𝑅can be derived assuming the conservative force relation: 

 UR =
𝚽

𝑄1
2   𝑹(𝜸) [𝜇0 − 𝛼𝜇0

𝑛(𝑡 − 𝑡0) +
1

2!
𝛼2𝜇0

2𝑛−1𝑛(𝑡 − 𝑡0)2]      (7) 

With, Φ =
𝑎

𝑟
 and 𝑅(𝛾) =

𝐴

𝑚

𝑆0

𝑐
(1 + 𝛼)𝑟0

2 𝑐𝑜𝑠2𝛾     

 In last equation, 
𝐴

𝑚
 , c, and 𝑆0  are the area to mass ratio for the spacecraft, speed of light and the luminosity of 

the radiated object with radius r0   respectively. While 𝛼   and  𝛾  are the reflection coefficient of the spacecraft 

surface and the angle of incident of the radiation with the normal to the surface respectively. 

After performing the Hamilton for the varying mass, represented by Eqn. (6), and the radiation pressure, 

represented by Eqn. (7), the final Hamilton function can written as: 

 ℋ = T + U      

 

 ℋ = H0 + Hα + Hβ + Hαβ  + UR      (8) 

 

ɪɪ-Method of Soluation 

There are several cases in celestial mechanics, the series development of the disturbing function is a difficult 

problem and complicated. To avoid this the procedure can be performed with an operator. A special linear 

differential operator, the Lie operator, produce a Lie series; The convergence of the Lie series is the same as a 

Taylor series, because it is considered another analytical from of a Taylor series.  

• Delva-Hanslmeier Method 

Consider the Hamiltonian, ℋ(𝑥, 𝑦, 𝑋, 𝑌)   is function of the angle variables, 𝑋, 𝑌   and there conjugate 

momenta 𝑥, 𝑦 . Then the equation of motion are: 

𝑥̇ =
𝑑𝑥

𝑑𝑡
=

𝜕ℋ

𝜕𝑥 .  
               𝑋 =

𝑑𝑥 .

𝑑𝑡
= −

𝜕ℋ

𝜕𝑥
  

        𝑦̇ =
𝑑𝑦

𝑑𝑡
=

𝜕ℋ

𝜕𝑦 .  
               𝑌 =

𝑑𝑦 .

𝑑𝑡
= −

𝜕ℋ

𝜕𝑦
 

The linear Lie operator has the general form: 

 
D =

∂

∂x

dx

dt
+

∂

∂y

dy

dt
+

∂

∂x .

dx .

dt
+

∂

∂y.

dy.

dt
+

∂

∂t
   

    

 

The solution 𝑥⃗(𝑥, 𝑦, 𝑋, 𝑌, 𝑡) , 𝑦⃗(𝑥, 𝑦, 𝑋, 𝑌, 𝑡), 𝑋⃗(𝑥, 𝑦, 𝑋, 𝑌, 𝑡)  𝑎𝑛𝑑 𝑌⃗⃗(𝑥, 𝑦, 𝑋, 𝑌, 𝑡) are then given by the Lie series: 
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𝑥⃗(𝑥, 𝑦, 𝑋, 𝑌, 𝑡) = [{𝑒𝑥𝑝(𝑡 − 𝑡0)𝐷}𝑥]𝑥=𝑥0
 

= ∑[𝐷𝑗 𝑥⃗]𝑥0

(𝑡 − 𝑡0)𝑗

𝑗!
𝑗=0

 

𝑦⃗(𝑥, 𝑦, 𝑋, 𝑌, 𝑡) = [{𝑒𝑥𝑝(𝑡 − 𝑡0)𝐷}𝑦]𝑦⃗⃗=𝑦⃗⃗0
 

= ∑[𝐷𝑗𝑦⃗]𝑦⃗⃗0

(𝑡 − 𝑡0)𝑗

𝑗!
𝑗=0

 

𝑋⃗(𝑥, 𝑦, 𝑋, 𝑌, 𝑡) = [{𝑒𝑥𝑝(𝑡 − 𝑡0)𝐷}𝑋]𝑋⃗⃗=𝑋⃗⃗0
 

= ∑[𝐷𝑗𝑋⃗]𝑋⃗⃗0

(𝑡 − 𝑡0)𝑗

𝑗!
𝑗=0

 

𝑌⃗⃗(𝑥, 𝑦, 𝑋, 𝑌, 𝑡) = [{𝑒𝑥𝑝(𝑡 − 𝑡0)𝐷}𝑌]𝑌⃗⃗=𝑌⃗⃗0
 

= ∑[𝐷𝑗 𝑌⃗⃗]𝑌⃗⃗0

(𝑡 − 𝑡0)𝑗

𝑗!
𝑗=0

 

where 𝐷𝑗 𝑥⃗, 𝐷𝑗𝑦⃗, 𝐷𝑗𝑋⃗, 𝑎𝑛𝑑  𝐷𝑗 𝑌⃗⃗ are to be evaluated for initial conditions 

𝑥0⃗⃗⃗⃗⃗(𝑥0, 𝑦0, 𝑋0, 𝑌0, 𝑡0). 𝑦0⃗⃗⃗⃗⃗(𝑥0, 𝑦0, 𝑋0, 𝑌0, 𝑡0), 𝑋0
⃗⃗⃗⃗⃗(𝑥0, 𝑦0, 𝑋0, 𝑌0, 𝑡0) and 𝑌0

⃗⃗⃗⃗ (𝑥0, 𝑦0, 𝑋0, 𝑌0, 𝑡0) 

ɪɪɪ- Algorithms for Computation 

➢ The first step 

1- Formulate the Hamiltonian of the problem under concern, ( )H x, y  . Where ( )x, y are 2 n vector. 

2- Using the Hamilton canonical equations of motion to obtain the rate of change in the canonical 

elements: 

               
( )i

i

H x, ydx

dt y


=


  and   

( )i

i

H x, ydy

dt x


= −


 

➢ The second step  

1- Constructing the Lie operator “D” for the problem. 

 n

i i

i 1 i i

dx dyd
D

dt x dt y dt t=

   
= = + + 

   
  

(9) 

 

2- Constructing the solution of the problem in the form of Lie series 
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( ) ( )

( )

i i o
S S

j

oj

S
J 0

S x , y exp t t DS

t t
D S

j!

=



=

 = −
 

−
 =
 

, 

where S is any one of the canonical variable and 0S its value at time t0. 

➢ The third step 

Apply the above two steps into the system of equation to get the solution for the problem. 

3) Results and Discussion 

In this part we will apply the steps of the Delva-Hanselmier method, by finding the equation of motion for 

problem under concern. The solution will be evaluated during the steps was described in the last part. 

ɪ- Development of the Hamiltonian. 

 

    If we assume that β and α has the same order of magnitude (M. Andrade; 2003) then the second order 

Hamiltonian of the problem can written as: 

       𝐻 = 𝐻0 + 𝐻𝛼 + 𝐻𝛽 + 𝐻𝛼𝛽  + UR  

Such that; 

𝐻0 =  −
𝜇0

2

2 𝑄1
2  

𝐻𝛼 =  ∑ 𝛼𝑖(𝐴𝑖  𝜏
𝑖 + 𝐵𝑖  𝜏𝑖−1𝑆𝑖𝑛𝐸)2

𝑖=1   

𝐻𝛽 = 𝐴𝛽Φ2  sin 𝐸  

𝐻𝛼𝛽 = 𝐴𝛽𝛼  Φ2  sin 𝐸  

UR = Φ ∑ 𝛼𝑖𝐴𝑅𝑃.  𝑖  𝜏
𝑖2

𝑖=0   

Where; 

 = (𝑡 − 𝑡0)  

Φ =
𝑎

𝑟
  

𝐴1 =
1

𝑄1
2  𝜇0

𝑛+1  

𝐴2 = − 
1

2𝑄1
2  𝜇0

2 𝑛 (𝑛 + 1)  

𝐵1 = −  𝑄1 𝑒𝜇0
𝑛−1   

𝐵2 = 𝑄1 𝑒𝜇0
2 𝑛−2 (𝑛 − 1)   
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𝐴𝛽 = −𝛽
𝑄2

𝑄1
3  𝑒 𝜇0  

𝐴𝛽𝛼 = 𝛽𝛼
𝑄2

𝑄1
3  𝑒 𝜇0

𝑛  

    𝐴𝑅𝑃.  0 =  
𝜇0

𝑄1
2   𝑅(𝛾)  

   𝐴𝑅𝑃.1 =  −
𝜇0

𝑛

𝑄1
2   𝑅(𝛾)  

 𝐴𝑅𝑃.  2 = 𝑛 𝜇0
2𝑛−1 𝟏

2𝑄1
2   𝑅(𝛾) 

ɪɪ- Evaluating D operator. 

     To evaluate the D operator, first we will find the variation in the orbital elements using Hamilton’s 

equations of motion. 

 

    𝑞𝑖̇ =
∂𝐻

∂𝑄𝑖
  and  𝑄𝑖

̇ = −
∂𝐻

∂𝑞𝑖
   𝑖 = 1,2  

➢ Evaluation of 𝑞1̇ 

   To calculate 𝑞1̇ we use Hamiltonian's equation of motion. 

Then; 

 𝑞1̇ =
∂𝐻

∂𝑄1
=  

∂[𝐻0+𝐻𝛼+𝐻𝛽+𝐻𝛼𝛽 +UR]

∂𝑄1
  (10) 

 

After calculating the required dervatives in (10) we get: 

 𝑞̇1 = ∑ 𝑗
(1)

 Φ2 𝑗 sin 𝐸2
𝑗=0 + ∑ 𝑗

(2)
 Φ𝑗 sin 2𝐸4

𝑗=1 + ∑ [𝑗
(0)

 Φ3𝑐𝑜𝑠 𝑗𝐸 + 𝑗
′(0)

 Φ𝑗]1
𝑗=0   (11) 

 

Where; 

0
(1)

= ∑ 𝛼𝑖𝜏𝑖−1𝐵𝑖;𝑄1
2
𝑖=1     1

(1)
= 𝐴𝛽;𝑄1

+  𝐴𝛽𝛼;𝑄1
 

 2
(1)

= −2 𝑒 (𝐴𝛽
′ + 𝐴𝛽𝛼

′  ) 

1
(2)

= ∑
1

2
 𝛼𝑖𝜏𝑖−1𝐵𝑖

′2
𝑖=1     2

(2)
= 0 

3
(2)

=
1

2
(𝐴𝛽

′ + 𝜏 𝐴𝛽𝛼
′ )    4

(2)
= 𝐴𝛽

′ + 𝜏 𝐴𝛽𝛼
′ = 2 3

(2)
  

0
(0)

= − ∑ 𝛼𝑖𝜏𝑖𝑒 𝐴′
𝑅𝑃.  𝑖  

2
𝑖=0 = −𝑒1

(0)
  1

(0)
= ∑ 𝛼𝑖𝜏𝑖𝐴′

𝑅𝑃.  𝑖
2
𝑖=0  

0
′(0)

=  
𝜇0

2

 𝑄1
3 + ∑ 𝛼𝑖𝐴𝑖;𝑄1

 𝜏𝑖2
𝑖=1   1

′(0)
= ∑ 𝛼𝑖𝜏𝑖𝐴𝑅𝑃.  𝑖;𝑄1

2
𝑖=0  

With ; 
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𝐴1;𝑄1
=

−2

𝑄1
3 𝜇0

𝑛+1  

𝐴2;𝑄1
=

1

𝑄1
3 𝜇0

2𝑛(𝑛 + 1)  

𝐵1;𝑄1
= −𝑒𝜇0

𝑛−1  

𝐵2;𝑄1
= 𝑒𝜇0

2𝑛−2(𝑛 − 1)   

𝐵1
′ = 𝐵1

𝑄2
2

 𝑒 𝑄1
3 = −  

𝑄2
2

  𝑄1
2 𝜇0

𝑛−1    ,   𝐵2
′ = 𝐵2

𝑄2
2

 𝑒 𝑄1
3 =  

𝑄2
2

  𝑄1
2 𝜇0

2 𝑛−2 (𝑛 − 1) 

𝐴𝛽;𝑄1
= 𝛽 (3𝑒

𝑄2

𝑄1
4 𝜇0 −

𝑄2
3

𝑒𝑄1
6 𝜇0)   

𝐴𝛽
′ = 𝐴𝛽

𝑄2
2

𝑒 𝑄1
3 = −𝛽

𝑄2
3

𝑄1
6   𝜇0  

 𝐴𝛽𝛼;𝑄1
= −𝛽𝛼 (3𝑒

𝑄2

𝑄1
4 𝜇0

𝑛 −
𝑄2

3

𝑒𝑄1
6 𝜇0

𝑛)   

𝐴𝛽𝛼
′ = 𝐴𝛽𝛼

𝑄2
2

𝑒 𝑄1
3 = 𝛽𝛼

𝑄2
3

𝑄1
6  𝜇0

𝑛  

𝐴′
𝑅𝑃.𝑖 =

𝑄2
2

𝑒𝑄1
3 𝐴𝑅𝑃.  𝑖     . 𝑖 = 1,2  

𝐴∗
𝑅𝑃.  𝑖 = −

𝑄2
2

𝑄1
3 𝐴𝑅𝑃.  𝑖   

𝐴𝑅𝑃.0;𝑄1
= −

2

𝑄1
3 𝜇0𝑅(𝛾)  

𝐴𝑅𝑃.  1;𝑄1
=

2

𝑄1
3 𝜇0

𝑛𝑅(𝛾)  

𝐴𝑅𝑃.  2;𝑄1
= −𝑛

𝜇0
2𝑛−1

𝑄1
3 𝑅(𝛾)  

➢ Evaluation of 𝑞2̇ 

Again using Hamilton equation of motion to calculate
2

q ,  

 𝑞2̇ =
∂𝐻

∂𝑄2
=  

∂[𝐻0+𝐻𝛼+𝐻𝛽+𝐻𝛼𝛽 +UR]

∂𝑄2
  

  

(12) 

After calculating the required derivatives in (12) we get: 

 𝑞̇2 = ∑ 𝑗
(1)

 Φ2 𝑗 sin 𝐸2
𝑗=0 + ∑ 𝑗

(2)
 Φ𝑗 sin 2𝐸4

𝑗=1 + ∑ 𝑗
(0)

 Φ3𝑐𝑜𝑠 𝑗𝐸 + +0
 ′(0)

 1
𝑗=0   (13) 

 

Where; 
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0
(1)

= ∑ 𝛼𝑖𝜏𝑖−1𝐵𝑖;𝑄2
2
𝑖=1  , 1

(1)
= 𝐴𝛽;𝑄2

+  𝐴𝛽𝛼;𝑄2
 

2
(1)

= −2  (𝐶𝛽 − 𝜏 𝐶𝛽𝛼)    ,             1
(2)

= − ∑  𝛼𝑖𝜏𝑖−1𝐵𝑖
′′2

𝑖=1  , 2
(2)

= 0 

3
(2)

=
1

2
(𝐶𝛽

′ + 𝜏𝐶𝛽𝛼
′ )  , 4

(2)
= 𝐶𝛽

′ − 𝜏𝐶𝛽𝛼
′   

0
(0)

= ∑ 𝛼𝑖𝐶𝑅𝑃,𝑖  
2
𝑖=0  ,      1

(0)
= − ∑ 𝛼𝑖𝐴′′

𝑅𝑃.  𝑖
2
𝑖=0  

0
 ′(0)

= ∑ 𝛼𝑖𝐴𝑖;𝑄2
 𝜏𝑖2

𝑖=1             

With ; 

𝐶𝛽 = 𝐴𝛽
𝑄2

 𝑄1
2 = −𝛽

𝑄2
2

𝑄1
5  𝑒 𝜇0    ,  𝐶𝛽𝛼 = 𝐴𝛽𝛼

Q2

 𝑄1
2 = 𝛽𝛼

𝑄2
2

𝑄1
5   𝑒 𝜇0

𝑛 

𝐶𝛽
′ = 𝐴𝛽

𝑄2

 𝑒𝑄1
2 = −𝛽

𝑄2
2

𝑄1
5   𝜇0    ,  𝐶𝛽𝛼

′ = 𝐴𝛽𝛼
Q2

 𝑒𝑄1
2 = 𝛽𝛼

𝑄2
2

𝑄1
5   𝜇0

𝑛 

𝐴𝑅𝑃,0
′′ =

𝑄2

𝑒𝑄1
2 𝐴𝑅𝑃,0 =

𝜇0𝑄2

𝑒𝑄1
4 𝑅(𝛾)      , 𝐴𝑅𝑃,1

′′ =
𝑄2

𝑒𝑄1
2 𝐴𝑅𝑃,1 = −

𝜇0
𝑛𝑄2

𝑒𝑄1
4 𝑅(𝛾)     

𝐴𝑅𝑃,2
′′ =

𝑄2

𝑒𝑄1
2 𝐴𝑅𝑃,2 = 𝑛 𝜇0

2𝑛−1 𝑄2

2𝑒𝑄1
4   𝑅(𝛾)  

 𝐶𝑅𝑃,𝑖 = 𝑒 𝐴′′
𝑅𝑃.  𝑖 

𝐴𝑖;𝑄2
= 0   . 𝑖 = 1.2    ,   𝐵1;𝑄2

=
𝑄2

𝑒𝑄1
𝜇0

𝑛−1  

𝐵2;𝑄2
= −

𝑄2

𝑒𝑄1
 𝜇0

2𝑛−2  ,  

 𝐵1
′′ = 𝐵1

Q2

2 𝑒 𝑄1
2 = −  

𝑄2

2 𝑄1
𝜇0

𝑛−1  , 𝐵2
′′ = 𝐵2

Q2

2 𝑒 𝑄1
2 =

𝑄2

2 𝑄1
𝜇0

2 𝑛−2 (𝑛 − 1)  

𝐴𝛽;𝑄2
= 𝛽 (−

𝑒

𝑄1
3 𝜇0 +

𝑄2
2

𝑒𝑄1
5 𝜇0)   ,  𝐴𝛽𝛼;𝑄2

= 𝛽𝛼 (
𝑒

𝑄1
3 𝜇0

𝑛 −
𝑄2

2

𝑒𝑄1
5 𝜇0

𝑛)   

 𝐴𝑅𝑃.  𝑖;𝑄2
= 0     , 𝑖 = 0,1,2  

➢ Evaluation of 𝑄1̇ 

Again using Hamilton equation of motion to calculate
1

Q ,  

 𝑄1̇ = −
∂𝐻

∂𝑞1
= − 

∂[𝐻0+𝐻𝛼+𝐻𝛽+𝐻𝛼𝛽 +UR]

∂𝑞1
  

  

(14) 

 

    After calculating the required derivatives in (14) we get: 

 𝑄1̇ = ∑ [𝑖
(1)

 Φ(2 𝑖+1)𝑐𝑜𝑠 𝐸 + 𝑖
(2)

 Φ4𝑐𝑜𝑠 2𝐸 ]1
𝑖=0 + ∑ ̃𝑗

(2)
 Φ𝑗𝑠𝑖𝑛 𝐸3

𝑗=0 + ̃0
 ′(0)

   

  

(15) 
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for j = 1, E must equal 
𝜋

2
 

where; 

0
(1)

= − ∑ 𝛼𝑖𝜏𝑖−1𝐵𝑖
2
𝑖=1        ,      1

(1)
= −(𝐴𝛽 +  𝐴𝛽𝛼) 

0
(2)

= −(Ψ4 + 𝜏Ψ5) , 1
(2)

= 0 = ̃1
(2)

 

̃0
(2)

= ∑ 𝛼𝑖Ψ3
2
𝑖=1 𝜏𝑖−2   

̃2
(2)

= −Ψ6 ,     ̃3
(2)

= ∑ 𝛼𝑖Ψ7
2
𝑖=1 𝜏𝑖 

̃0
 ′(0)

= ∑ 𝛼𝑖[Ψ𝑖𝜏𝑖−1]2
𝑖=1 + Ψ4 Φ4 + Ψ5Φ4𝜏 + ∑ 𝛼𝑖[−Ψ8+𝑖𝜏

𝑖−1Φ]2
𝑖=0   

  With; 

Ψ𝑖 = −𝑖𝐴𝑖
𝑄1

3

𝜇2  . 𝑖 = 1.2   &  Ψ3 = −(𝑖 − 1)𝐵𝑖
𝑄1

3

𝜇2 

Ψ4 = 𝐴𝛽𝑒    ,   Ψ5 = 𝐴𝛽𝛼𝑒 

Ψ6 = 𝐴𝛽𝛼
𝑄1

3

𝜇2 
    , Ψ7 = 𝑒𝐴𝑅𝑃.  𝑖 

Ψ8+𝑖 = 𝑖𝐴𝑅𝑃.𝑖

𝑄1
3

𝜇2
  ,    𝑖 = 0,1,2 

𝐴𝑅𝑃.  𝑖;𝑞1
= 0 . 𝑓𝑜𝑟 𝑖 = 0,1,2 

➢ Evaluation of 𝑄2̇ 

Again using Hamilton equation of motion to calculate
2

Q ,  

 𝑄2̇ = −
∂𝐻

∂𝑞2
= 0  (16) 

ɪɪɪ- The first order soluation 

    The linear Lie operator D, in terms of Delaunay elements, has the general form: 

 
D =

d𝑞1

dt

∂

∂𝑞1

+
d𝑞2

dt

∂

∂𝑞2

+
d𝑄1

dt

∂

∂𝑄1

+
d𝑄2

dt

∂

∂𝑄2

+
∂

∂t
 

 

(17) 

Applying the operator D to 𝑞1, 𝑞2, 𝑄1, 𝑄2and t yields the first order solution for the required variable. Then, 

➢ 𝐷𝑞1 =
d𝑞1

dt
+

∂𝑞1

∂t
= 𝑞1̇ + 𝑛̃ 

Where 𝑛̃  is the mean motion. Using (11) yields: 

 𝑞⃗1(𝑞1, 𝑞2, 𝑄1, 𝑄2, 𝑡) = ∑ [𝐷𝑗 𝑞⃗1]𝑞⃗⃗1=𝑞⃗⃗10

(𝑡−𝑡0)𝑗

𝑗!

1
𝑗=0   =  𝑞10 + 𝐷𝑞1|𝑞1=𝑞0

𝜏  
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 = 𝑞10 + |∑ 𝑗
(1)

 Φ2 𝑗 sin 𝐸2
𝑗=0 + ∑ 𝑗

(2)
 Φ𝑗 sin 2𝐸4

𝑗=1 + ∑ [𝑗
(0)

 Φ3𝑐𝑜𝑠 𝑗𝐸 +1
𝑗=0

𝑗
′(0)

 Φ𝑗] + 𝑛̃|
𝑞1=𝑞10

𝜏 

(18) 

 

➢ 𝐷𝑞2 =
d𝑞2

dt
= 𝑞1̇ 

Using (13) yields: 

 𝑞⃗2(𝑞1, 𝑞2, 𝑄1, 𝑄2, 𝑡) = ∑ [𝐷𝑗 𝑞⃗2]𝑞⃗⃗2=𝑞⃗⃗20

(𝑡−𝑡0)𝑗

𝑗!

1
𝑗=0    

= 𝑞20 + 𝐷𝑞2|𝑞2=𝑞0
𝜏  

                        = 𝑞20 + |∑ 𝑗
(1)

 𝚽2 𝑗 sin 𝐸2
𝑗=0 + ∑ 𝑗

(2)
 𝚽𝑗 sin 2𝐸4

𝑗=1 +

                                           ∑ 𝑗
(0)

 𝚽3𝑐𝑜𝑠 𝐸 + 0
 ′(0)

 1
𝑗=0 |

𝑞2=𝑞20
𝜏  

 

(19) 

 

➢ 𝐷𝑄1 =
d𝑄1

dt
= 𝑞1̇ 

Using (15) yields: 

 𝑄⃗⃗1(𝑞1, 𝑞2, 𝑄1, 𝑄2, 𝑡) = ∑ [𝐷𝑗 𝑄⃗⃗1]
𝑄⃗⃗1=𝑄⃗⃗10

(𝑡−𝑡0)𝑗

𝑗!

1
𝑗=0   

                                 = 𝑄10 + 𝐷𝑄1|𝑄1=𝑄0
. 𝜏 

= 𝑄10 + |∑ [𝑖
(1)

 𝚽(2 𝑖+1)𝑐𝑜𝑠 𝐸 + 𝑖
(2)

 𝚽4𝑐𝑜𝑠 2𝐸 ]1
𝑖=0 + ∑ ̃𝑗

(2)
 𝚽𝑗𝑠𝑖𝑛 𝐸3

𝑗=0 +

̃0
 ′(0)

|
𝑄1=𝑄0

𝜏  

 

(20) 

 

➢ 𝐷𝑄2 =
d𝑄2

dt
= 𝑄1̇ 

  𝑄⃗⃗2(𝑞1, 𝑞2, 𝑄1, 𝑄2, 𝑡) = ∑ [𝐷𝑗 𝑄⃗⃗2]
𝑄⃗⃗20

(𝑡−𝑡0)𝑗

𝑗!

1
𝑗=0          

                                = 𝑄⃗⃗20
 

 

(20) 

 

4) Conclusions 

The Hamiltonian function for the motion of spacecraft's around radiated varying mass body was constructed. 

Perturbation method depending on Lie series and Lie operator was outlined. The algorithm for the sequence of 

computation was introduced. According to our model, the D operator was derived in terms of Delaunay 

variables. The solution of the problem, for first order, is obtained. For farther computation, we suggest to apply 

our model for space craft known its state vector, 𝑆0 , at time 𝑡0 to predict its state vector, S ,  , at any time t.   
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