APPROXIMATION OF THE LOWER OPERATOR IN NONLINEAR DIFFERENTIAL GAMES WITH NON-FIXED TIME

I.M. Iskanadjiev

Approximate properties of the lower operator in nonlinear differential games with non-fixed time are studied.

Abstract

The generalization of the Pontryagin's second direct method [1-2] for nonlinear pursuit games led to the construction described by the operator \widetilde{T}^{t}, which is introduced in [3]. Operator's construction in nonlinear differential games was developed in [418]. In particular, lower analogue of the operator \widetilde{T}^{t} and its applications to study of qualitative structure of phase space of differential games of pursuit-evading were suggested [9].Problems of approximation and simplified schemes for construction of operator \widetilde{T}^{t} were studied in $[7,10,13]$. For the symmetry, \widetilde{T}_{t} will be denoted the lower analogue of the operator \widetilde{T}^{t}

In the present article we study approximation properties of the lower operator \widetilde{T}_{t} for differential games of pursuit with non-fixed time.

Let us consider the differential game

$$
\begin{equation*}
\dot{z}=f(z, u, v) \tag{1}
\end{equation*}
$$

where $z \in \mathbb{R}^{d}, u \in P, v \in Q, f: \mathbb{R}^{d} \times P \times Q \longrightarrow \mathbb{R}^{d}, P$ and Q are convex compact subsets of \mathbb{R}^{p} and \mathbb{R}^{q}, respectively. Along with the system (1) we also fix the set of $M, M \subset \mathbb{R}^{d}$, which is called terminal set.

We suppose that further the function f holds the following conditions.
A. function $f: \mathbb{R}^{d} \times P \times Q \longrightarrow \mathbb{R}^{d}$ is continuous and is locally Lipschitz type by z (i.e.the function f satisfies the Lipschitz condition on every compact set $D \subset \mathbb{R}^{d}$ with the the constant L_{D}, depending on compact D).
B. There is the constant $C \leq 0$ such that for all $z \in \mathbb{R}^{d}, u \in P, v \in Q$ the inequality

$$
|z \cdot f(z, u, v)| \leq C\left(1+|z|^{2}\right)
$$

holds.

C. The set $f(z, u, Q)$ is convex for all $z \in \mathbb{R}^{d}, u \in P$.

Let $X[\Delta]$ denote the set of all measurable functions $a(\cdot): \Delta \rightarrow X$. In the case of $\Delta=[\alpha, \beta]$, we simply write $X[\alpha, \beta]$. We call every function $u(\cdot) \in P[\alpha, \beta]$ (respectively $v(\cdot) \in Q[\alpha, \beta]$) as admissible control of pursuer(respectively evader).

We denote by $z(t, u(\cdot), v(\cdot), \xi)$ solution of equation (1), which corresponds to admissible controls $u(t), v(t)$ and initial point ξ.

Definition 1. Operator T_{ε} associates every set $A \subset \mathbb{R}^{d}$ with the set $T_{\varepsilon} A$ of all points $\xi \subset \mathbb{R}^{d}$, such that there is admissible control pursuer $u(\cdot) \in P[0, \varepsilon]$ for any admissible control of evader $v(\cdot) \in Q[0, \varepsilon]$ the corresponding trajectory $z(t, u(\cdot), v(\cdot), \xi)$ with the beginning at the point $\xi \subset \mathbb{R}^{d}$ hits $A \subset \mathbb{R}^{d}$ in time not greater than ε, i.e. $z\left(t_{*}\right) \in A$ for of certain $t_{*} \in[0, \varepsilon]$.

By means of operations of association and intersection we can write the operator T_{ε} as follows:

$$
T_{\varepsilon} A=\bigcup_{u(\cdot) \in P[0, \varepsilon]} \bigcap_{v(\cdot) \in Q[0, \varepsilon]} \bigcup_{t_{*} \in[0, \varepsilon]}\left[\xi \subset \mathbb{R}^{d} \mid z\left(t_{*}, u(\cdot), v(\cdot), \xi\right) \in A\right] .
$$

Let $\omega=\left\{\tau_{0}, \tau_{1}, \tau_{2}, \ldots, \tau_{n}=t\right\}$ be partition of segment $[0, t]$ and $\delta_{i}=\tau_{i}-\tau_{i-1}$, $|\omega|=t$. We assume

$$
T_{\omega} M=T_{\delta_{1}} T_{\delta_{2}} T_{\delta_{3}} \ldots T_{\delta_{n}} M
$$

where $\delta_{i}=\tau_{i}-\tau_{i-1}, \quad i=1,2, \ldots n$.
Definition 2. $\tilde{T}_{t}=\bigcup_{|\omega|=t} T_{\omega} M$.
The operator \tilde{T}_{t} is called the lower operator of nonlinear differential games pursuit with non-fixed time.

In what follows, we shall assume that the boundary of $M(\partial M)$ is compact. We denote by D_{*} the set of all points of $\xi \in \mathbb{R}^{d}$, of which it is possible to achieve the set ∂M (the boundary of M) at the appropriate admissible controls $u(\cdot)$ and $v(\cdot)$ for a time not exceeding θ. Let $D=D_{*}+H$ and constants is the quantity that can depend only on the function f, sets P, Q, D and we shall suppose $t \leq \theta$. Condition B guarantees boundedness of the set D [14]. We assume
$K=\max \{|f(z, u, v)| z \in D, u \in P, v \in Q\}$ and L_{1} is the constant Lipshitz of f on the set D.

Let operator \bar{T}_{ε} differs from the operator T_{ε} in that in Definition 1 only constant controls $u(\cdot)=u \in P$ are taken instead of arbitrary admissible controls $u(\cdot) \in$ $P[0, \varepsilon]$.

Let $\omega=\left\{\tau_{0}, \tau_{1}, \tau_{2}, \ldots, \tau_{n}=t\right\}$ be partition of segment $[0, t]$.

$$
\bar{T}_{\omega} M=\bar{T}_{\delta_{1}} \bar{T}_{\delta_{2}} \ldots \bar{T}_{\delta_{n}}
$$

where $\delta_{i}=\tau_{i}-\tau_{i-1}, \quad i=1,2, \ldots n$.
Definition 3. $\bar{T}_{t} M=\bigcup_{|\omega|=t} \bar{T}_{\omega} M$.
For completeness, we present some well-known properties of the operator \widetilde{T}_{t}.
Theorem 1 [15]. If M is an open subset of \mathbb{R}^{d}, then

$$
\widetilde{T}_{t} M=\bar{T}_{t} M
$$

We note that for arbitrary family A_{α} the following inclusion

$$
\bigcup_{\alpha} \bar{T}_{\varepsilon} A_{\alpha} \subset \bar{T}_{\varepsilon} \bigcup_{\alpha} A_{\alpha}
$$

is valid.
Lemma 1 [10]. Let $A_{\alpha} \subset \mathbb{R}^{d}$ non-decreasing direction of open sets. Then following equality holds

$$
\bigcup_{\alpha} \bar{T}_{\varepsilon} A_{\alpha}=\bar{T}_{\varepsilon} \bigcup_{\alpha} A_{\alpha}
$$

Lemma 2 [10]. Let ω_{k} be infinitely reducing sequence of partitions of the $\operatorname{segment}[0, t]$ i.e. $\omega_{k} \subset \omega_{k+1},\left|\omega_{k}\right|=t, \max \left|\tau_{i}^{k}-\tau_{i-1}^{k}\right| \rightarrow 0$ for $k \rightarrow \infty$. Then the following equality holds

$$
\bar{T}_{t} M=\bigcup_{k \geq 1} \bar{T}_{\omega_{k}} M
$$

for open set $M \subset \mathbb{R}^{d}$.
A simplified schemes for constructing of alternating integral were proposed in [10,13].

For nonlinear differential games the problem of working out a simplified schemes for the construction of the operator $\widetilde{T}_{t} M$ is relevant.

Consider the following operator

$$
\Theta_{\varepsilon} B=\bigcup_{u \in P} \bigcap_{v \in Q} \bigcup_{0 \leq t_{*} \leq \varepsilon}\left\{\xi \in R^{d} \mid z(\varepsilon, u, v, \xi)=\xi+t_{*} f(\xi, u, v) \in B .\right\}
$$

The definition of the operator $\widetilde{\Theta}_{t}$ is similar to the definition of the operator \widetilde{T}_{t}.
In the present article we consider the problem of approximation of the operator \tilde{T}_{t} by means of iteration of operator Θ_{ε} and its application to the problem of pursuit.

Lemma 3. There is a positive number L such that the following inclusions

$$
\begin{equation*}
\bar{T}_{\varepsilon}\left(A \npreceq 2 L \varepsilon^{2} H\right) \subset \Theta_{\varepsilon}\left(A \underline{\star} L \varepsilon^{2} H\right) \subset \bar{T}_{\varepsilon} A \tag{2}
\end{equation*}
$$

hold.
Proof. The first we prove the left-side of the inclusion (2). Let $\xi \in \bar{T}_{\varepsilon}\left(A \not 22 L \varepsilon^{2} H\right)$. Then, there exists an admissible control of the pursuer $u \in P$ such that for any admissible control evader $v(\cdot) \in Q[0, \varepsilon]$, there is $t_{*} \in[0, \varepsilon]$ for trajectory $z\left(t_{*}, u, v(\cdot), \xi\right)$ corresponding to controls $u \in P, v(\cdot) \in Q$ and the initial point $\xi \in \mathbb{R}^{d}$ the following inclusion $z\left(t_{*}, u, v(\cdot), \xi\right) \in A \underline{\star} 2 L \varepsilon^{2} H$ holds. i.e.

$$
\begin{equation*}
z\left(t_{*}, u, v(\cdot), \xi\right)=\xi+\int_{0}^{t_{*}} f\left(z(t), u, v(t) d t+2 L \varepsilon^{2} H \in A\right. \tag{3}
\end{equation*}
$$

By virtue of the condition A for arbitrary controls $u \in P, v(\cdot) \in Q$ and the initial point $\xi \in \mathbb{R}^{d}$ we have the relation

$$
\begin{equation*}
|f(z(t), u, v(t))-f(\xi, u, v(t))| \leq L_{1}|z(t)-\xi| \tag{4}
\end{equation*}
$$

On the other hand,

$$
|z(t, u, v(\cdot), \xi)-\xi| \leq K \varepsilon, t \in[0, \varepsilon] .
$$

Hence, using the inequality (4), we obtain

$$
\begin{equation*}
|f(z(t), u, v(t))-f(\xi, u, v(t))| \leq L \varepsilon \tag{5}
\end{equation*}
$$

where $L=L_{1} K$.

Now we prove that for any $v(\cdot) \in Q[0, \varepsilon]$ there is a constant control $v \in Q$ for which the equality

$$
\begin{equation*}
\xi+t_{*} f(\xi, u, v)=\xi+\int_{0}^{t_{*}} f(\xi, u, v(t)) d t \tag{6}
\end{equation*}
$$

is fulfilled.
By virtue of the condition C , the set $f(\xi, u, Q)$ is convex for any $u \in P$. Therefore

$$
\int_{0}^{t_{*}} f\left(\xi, u, v(t) d t \in t_{*} f(\xi, u, Q)\right.
$$

It follows that there is a $v \in Q$ such that

$$
\int_{0}^{t_{*}} f(\xi, u, v(t)) d t=t_{*} f(\xi, u, v)
$$

Therefore, for any $v(\cdot) \in Q[0, \varepsilon]$ there is a constant control $v \in Q$ for which equality

$$
\xi+\int_{0}^{t_{*}} f(\xi, u, v(t)) d t=\xi+t_{*} f(\xi, u, v)
$$

holds.
Applying inequality (5) to the right side of equality (6) we have

$$
\xi+t_{*} f(\xi, u, v) \in \xi+\int_{0}^{t_{*}} f(z(t), u, v(t)) d t+L \varepsilon^{2} H
$$

Hence, using the condition (3) we obtain

$$
\xi+t_{*} f(\xi, u, v)+L \varepsilon^{2} H \subset \xi+\int_{0}^{t a s t} f(z(t), u, v(t)) d t+2 L \varepsilon^{2} H \subset A
$$

Consequently,

$$
\xi \in \Theta_{\varepsilon}\left(A \notin L \varepsilon^{2} H\right)
$$

Similarly, the right side of the turn proved (2).
Lemma 4. The following inclusions

$$
\begin{equation*}
\Theta_{\varepsilon}\left(A \underline{*} L \delta^{2}\left(1+L_{1} \varepsilon\right) H\right)+L \delta^{2} H \subset \Theta_{\varepsilon} A \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\bar{T}_{\varepsilon}\left(A \underline{\underline{*}} L \delta^{2}\left(1+L_{1} \varepsilon\right) H\right)+L \delta^{2} H \subset \bar{T}_{\varepsilon} A \tag{8}
\end{equation*}
$$

hold. Proof. Let η be an arbitrary element from the left part of the inclusion (7). Then there is $\xi \in \Theta_{\varepsilon}\left(A_{\underline{*}} L \delta^{2}\left(1+L_{1} \varepsilon\right) H\right)$ such that

$$
\begin{equation*}
|\eta-\xi| \leq L \delta^{2} \tag{9}
\end{equation*}
$$

By virtue of condition A, we have

$$
|f(\xi, u, v)-f(\eta, u, v)| \leq L_{1}|\eta-\xi|
$$

From inequality (9) we get

$$
\begin{equation*}
|f(\xi, u, v)-f(\eta, u, v)| \leq L_{1} L \delta^{2} \tag{10}
\end{equation*}
$$

Consider the sum $\eta+t_{*} f(\eta, u, v)$. Using inequality (9) and (10) we have
$\eta+t_{*} f(\eta, u, v) \in \xi+L \delta^{2} H+t_{*}\left(f(\eta, u, v)+L_{1} L \delta^{2} H\right) \subset \xi+t_{*} f(\xi, u, v)+L \delta^{2}\left(1+L_{1} \varepsilon\right)$.
Now, considering that $\xi \in \Theta_{\varepsilon}\left(A_{\underline{*}} L \delta^{2}\left(1+L_{1} \varepsilon\right) H\right)$ we come to the inclusion $\eta+$ $t_{*} f(\eta, u, v) \in A$. this implies $\eta \in \Theta_{\varepsilon}(M)$. This was to be proved. Similarly, the inclusion (8) will be proved. Lemma 4 is proved.

Further, we consider only uniform partitions of the segments $[0, \mathrm{t}]$. Let $\omega_{n}=$ $\{0, \varepsilon, 2 \varepsilon, \ldots, n \varepsilon=t\}$, where $\varepsilon=\frac{t}{n}$. Let $\Gamma(n, \varepsilon)=L \varepsilon^{2} \sum_{k=1}^{n}\left(1+L_{1} \varepsilon\right)^{k-1}$. We assume

$$
\Theta_{2 \varepsilon} A=\Theta_{\varepsilon} \Theta_{\varepsilon} A, \Theta_{k \varepsilon} A=\Theta_{\varepsilon} \Theta_{(k-1) \varepsilon} A, \quad \Theta_{\omega_{n}} A=\Theta_{n \varepsilon} A
$$

Note that the notation $\bar{T}_{k \varepsilon}$ is entered in the same way as $\Theta_{k \varepsilon}$
Theorem 2. The following inclusions

$$
\begin{equation*}
\bar{T}_{\omega_{n}}\left(M_{\underline{*}} 2 \Gamma(n, \varepsilon) H\right) \subset \Theta_{\omega_{n}}\left(M_{\underline{*}}(n, \varepsilon) H\right) \subset \bar{T}_{\omega_{n}}(M) \tag{11}
\end{equation*}
$$

hold.
Proof. We prove the right side of inclusions (11). Let $\omega_{n}=\{0, \varepsilon, \quad 2 \varepsilon=t\}$, where $\varepsilon=\frac{t}{2}$. From Lemma 3 it follows that

$$
\Theta_{\varepsilon}\left(M \underset{*}{ } L \varepsilon^{2} H\right) \subset \bar{T}_{\varepsilon} M
$$

Now using the inclusion (7) we have

$$
\left.\Theta_{2 \varepsilon}\left(M_{\underline{*}}(2, \varepsilon) H\right) \subset \Theta_{\varepsilon}\left(\Theta_{\varepsilon}\left(M_{\underline{*}} \Gamma(1, \varepsilon) H\right)\right) \underline{L} L \varepsilon^{2} H\right) .
$$

Applying Lemma 3 to the right-hand side of this inclusion, we arrive at the following relation

$$
\Theta_{2 \varepsilon}(M \underset{*}{ }(2, \varepsilon) H) \subset \bar{T}_{\varepsilon}\left(\Theta_{\varepsilon}\left(M \underline{*} L \varepsilon^{2} H\right)\right) .
$$

Using again Lemma 3, we obtain

$$
\Theta_{2 \varepsilon}(M * \Gamma(2, \varepsilon) H) \subset \bar{T}_{\varepsilon} \bar{T}_{\varepsilon} M=\bar{T}_{2 \varepsilon} M
$$

Suppose

$$
\begin{equation*}
\Theta_{p \varepsilon}(M \nsubseteq \Gamma(p, \varepsilon) H) \subset \bar{T}_{p \varepsilon} M \tag{12}
\end{equation*}
$$

We shall prove the validity of the following relation

$$
\begin{equation*}
\Theta_{(p+1) \varepsilon}(M \underset{*}{ }(p+1, \varepsilon) H) \subset \bar{T}_{(p+1) \varepsilon} M . \tag{13}
\end{equation*}
$$

Let us consider the set

$$
\left.\Theta_{(p+1) \varepsilon}(M \uplus \Gamma(p+1, \varepsilon) H)=\Theta_{\varepsilon} \Theta_{p \varepsilon}(M \circledast \Gamma(p, \varepsilon) H) \nsubseteq L \varepsilon^{2}\left(1+L_{1} \varepsilon\right)^{p} H\right)
$$

Applying Lemma 4 to the right side of this inclusion p-times we have

By virtue of Lemma 3 one obtains

$$
\Theta_{(p+1) \varepsilon}(M * \Gamma(p+1, \varepsilon) H) \subset \bar{T}_{\varepsilon} \Theta_{p \varepsilon}(M * \Gamma(p, \varepsilon) H)
$$

Now due to the inclusion (12) we have

$$
\Theta_{(p+1) \varepsilon}(M \underset{*}{ }(p+1, \varepsilon) H) \subset \bar{T}_{\varepsilon} \bar{T}_{p \varepsilon} M=\bar{T}_{(p+1) \varepsilon}
$$

This implies the inclusion

$$
\Theta_{n \varepsilon}(M \underline{*} \Gamma(n, \varepsilon) H) \subset \bar{T}_{n \varepsilon} M
$$

is valid for any $n \in \mathbb{N}$. Consequently, $\Theta_{\omega_{n}}\left(M_{\underline{*}}(n, \varepsilon) H\right) \subset \bar{T}_{\omega_{n}} M$. Similarly of that ,the left side of the inclusion (11) will established. Theorem 2 is proved.

Theorem 3. The following equality holds

$$
\bar{T}_{t} M=\bigcup_{\delta>0} \Theta_{t}\left(M_{\underline{*}} \delta H\right),
$$

for open $M, M \subset \mathbb{R}^{d}$.
Proof. Consider the quantity $\Gamma(\varepsilon)=L \varepsilon^{2} \sum_{k=1}^{n}\left(1+L_{1} \varepsilon\right)^{k}$. It is not difficult to see that $\Gamma(\varepsilon) \leq \varepsilon L\left(e^{L_{1} \theta}-1\right)$. We choose ε such that $\Gamma(\varepsilon) \leq \varepsilon L\left(e^{L \theta}-1\right)<\delta$, i.e. $\varepsilon<\frac{\delta}{L\left(e^{L_{1} \theta}-1\right)}$. By virtue of this, inclusion (11) implies

$$
\bar{T}_{\omega_{n}}(M \underline{\text { ast }} 2 \delta H) \subset \Theta_{\omega_{n}}(M \underline{*} \delta H) \subset \bar{T}_{\omega_{n}}(M) .
$$

Passing to the union over all ω_{n} in these relations by term, we obtain

$$
\bar{T}_{t}(M \underset{\underline{*}}{ } \delta H) \subset \Theta_{t}\left(M_{\underline{*}} H\right) \subset \bar{T}_{t} M
$$

Turning to the union over all $\delta>0$ in these inclusions, we arrive to the following inclusions

$$
\bigcup_{\delta>0} \bar{T}_{t}\left(M_{\Perp} 2 \delta H\right) \subset \bigcup_{\text {delta>0 }} \Theta_{t}\left(M_{\underline{*}} \delta H\right) \subset \bar{T}_{t} M .
$$

It follows, by Lemmas 1 and 2, we have

$$
\bar{T}_{t} M=\bigcup_{\delta>0} \Theta_{t}\left(M_{\underline{*}} \delta H\right) .
$$

Theorem 3 is proved.
Theorems 1 and Theorems 3 imply
Corollary. The following equality holds

$$
T_{t} M=\bigcup_{\delta>0} \Theta_{t}\left(M_{\underline{*}} \delta H\right),
$$

for open $M, M \subset \mathbb{R}^{d}$.

Reference

[1].Pontyagin L.S., On linear differential games II, Soviet Math.Dokl. 8 (1967):910-912.
[2].Pontyagin L.S., Linear differential games of pursuit , Math.USSR Sb. 40(1981):285-303.
[3].Pshenichnyi B.N., The structura of differenial games, Soviet Math.Dokl., 10(1969):70-72
[4].Pshenichnyi B.N., Sagaidak M.I., Differential games with fixed time, Kibernetika, 2 (1970):54-63(in Russian).English trans.in Cybernetics 6 (1970)
[5].Gusyatnikov B.P., On the information available to players at
in a differential game, Prikl.Mat.Mech,36(5):917-924,1972(in Russian).
English trans.in J.App.Math.Mech.36(1972).
[6].Polovinkin,E.S. Nonautonomous differential games, Diff.Uravn. 15(6): 1007-1017,1979(in Russian).
[7] Остапенко
[8].Azamov A., On Pontryagin's second method in linear differential games of pursuit, Math.USSR sbornik, 46(3):429-437,1983.
[9].Azamov A. On alternative for differential games of pursuit - evasion on infinite time interval, Prik.Mat.Mekh.,50(4):564-567,1986 (in Russian).
[10].Azamov A., Semistability and duality in the theory of the Pontryagin alternating integral Soviet Math. Dokl.,37(2):355-359,1988.
[11].Ushakov V.N., Ershov V.N., K решению задач управления с фиксированным моментом окончания, Vestn.Udmurts.Univ.Mat. 26(4):276-291,2016(in Russian).
[12].Ershov A.A.,Ushakov V.N., О сближении управляемой системы, содержащей неопределенный параметр,Mat.sb.208(9):106-122,2017(in Russian).
[13].Nikol'skii M.S.,On the alternating integral of Pontryagin, Math.USSR.Sbor., 44(1):125-132,1983.
[14].Filipov A.F. On some questions of the theory of optimal control, Vestn. Mosk. Univ.,2:25-32,1959.
[15].Iskanadjiev I.M., Simplified formulae for construction of the lower operators Pontryagin and Pshenichnyi for nonlinear differential games of pursuit, Uzbek Matem Journ., 2: 22-29,2013 (in Russian)
[16].Iskanadjiev I.M., Semi-stability of main operators in differential games with non-fixed times, Jorn.Automat.and inform.Scien.46(4):49-55,2014.
[17].Krasovskiy N.N., Subbotin A.I. Possitional Differential Games, Springer, 1988.
[18].Petrosyan L.A., Tomsky V.G., Dynamic games and their application, izd.vo LGU,Leningrad, 1977 (in Russian)

