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Approximate properties of the lower operator in nonlinear differential games with

non-fixed time are studied.

The generalization of the Pontryagin’s second direct method [1–2] for nonlinear

pursuit games led to the construction described by the operator T̃ t, which is introduced

in [3]. Operator’s construction in nonlinear differential games was developed in [4 -

18]. In particular, lower analogue of the operator T̃ t and its applications to study

of qualitative structure of phase space of differential games of pursuit-evading were

suggested [9].Problems of approximation and simplified schemes for construction of

operator T̃ t were studied in [7,10,13]. For the symmetry, T̃t will be denoted the lower

analogue of the operator T̃ t

In the present article we study approximation properties of the lower operator

T̃t for differential games of pursuit with non-fixed time.

Let us consider the differential game

ż = f(z, u, v), (1)

where z ∈ Rd, u ∈ P, v ∈ Q, f : Rd × P ×Q −→ Rd, P and Q are convex compact

subsets of Rp and Rq, respectively. Along with the system (1) we also fix the set of

M , M ⊂ Rd, which is called terminal set.

We suppose that further the function f holds the following conditions.

A. function f : Rd×P ×Q −→ Rd is continuous and is locally Lipschitz type by

z (i.e.the function f satisfies the Lipschitz condition on every compact set D ⊂ Rd

with the the constant LD, depending on compact D).

B. There is the constant C ≤ 0 such that for all z ∈ Rd, u ∈ P, v ∈ Q the

inequality

| z · f(z, u, v) |≤ C(1+ | z |2)

holds.
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C. The set f(z, u,Q) is convex for all z ∈ Rd, u ∈ P .

Let X[∆] denote the set of all measurable functions a(·) : ∆ → X. In the

case of ∆ = [α, β], we simply write X[α, β]. We call every function u(·) ∈ P [α, β]

(respectively v(·) ∈ Q[α, β]) as admissible control of pursuer(respectively evader).

We denote by z(t, u(·), v(·), ξ) solution of equation (1), which corresponds to

admissible controls u(t) , v(t) and initial point ξ.

Definition 1. Operator Tε associates every set A ⊂ Rd with the set TεA of

all points ξ ⊂ Rd, such that there is admissible control pursuer u(·) ∈ P [0, ε]

for any admissible control of evader v(·) ∈ Q[0, ε] the corresponding trajectory

z(t, u(·), v(·), ξ) with the beginning at the point ξ ⊂ Rd hits A ⊂ Rd in time not

greater than ε, i.e. z(t∗) ∈ A for of certain t∗ ∈ [0, ε] .

By means of operations of association and intersection we can write the operator

Tε as follows:

TεA =
⋃

u(·)∈P [0,ε]

⋂
v(·)∈Q[0,ε]

⋃
t∗∈[0,ε]

[
ξ ⊂ Rd | z(t∗, u(·), v(·), ξ) ∈ A

]
.

Let ω = {τ0, τ1, τ2, ..., τn = t} be partition of segment [0, t] and δi = τi − τi−1,

| ω |= t. We assume

TωM = Tδ1Tδ2Tδ3 ...TδnM,

where δi = τi − τi−1, i = 1, 2, ...n.

Definition 2. T̃t =
⋃
|ω|=t

TωM .

The operator T̃t is called the lower operator of nonlinear differential games pursuit

with non-fixed time.

In what follows, we shall assume that the boundary of M (∂M) is compact.

We denote by D∗ the set of all points of ξ ∈ Rd, of which it is possible to achieve

the set ∂M (the boundary of M) at the appropriate admissible controls u(·) and

v(·) for a time not exceeding θ. Let D = D∗ + H and constants is the quantity

that can depend only on the function f , sets P,Q,D and we shall suppose t ≤ θ.

Condition B guarantees boundedness of the set D [14]. We assume
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K = max{| f(z, u, v) | z ∈ D, u ∈ P, v ∈ Q} and L1 is the constant Lipshitz of

f on the set D.

Let operator T ε differs from the operator Tε in that in Definition 1 only constant

controls u(·) = u ∈ P are taken instead of arbitrary admissible controls u(·) ∈

P [0, ε].

Let ω = {τ0, τ1, τ2, ..., τn = t} be partition of segment [0, t].

T ωM = T δ1T δ2 ...T δn ,

where δi = τi − τi−1, i = 1, 2, ...n.

Definition 3. T tM =
⋃
|ω|=t

T ωM.

For completeness, we present some well-known properties of the operator T̃t.

Theorem 1 [15]. If M is an open subset of Rd, then

T̃tM = T tM

.

We note that for arbitrary family Aα the following inclusion

⋃
α

T εAα ⊂ T ε
⋃
α

Aα

is valid.

Lemma 1 [10]. Let Aα ⊂ Rd non-decreasing direction of open sets. Then

following equality holds ⋃
α

T εAα = T ε
⋃
α

Aα.

Lemma 2 [10]. Let ωk be infinitely reducing sequence of partitions of the

segment [0, t] i.e. ωk ⊂ ωk+1 , | ωk |= t,max | τ ki − τ ki−1 |→ 0 for k →∞. Then the

following equality holds

T tM =
⋃
k≥1

T ωkM

for open set M ⊂ Rd.

A simplified schemes for constructing of alternating integral were proposed in

[10,13].
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For nonlinear differential games the problem of working out a simplified schemes

for the construction of the operator T̃tM is relevant.

Consider the following operator

ΘεB =
⋃
u∈P

⋂
v∈Q

⋃
0≤t∗≤ε

{ξ ∈ Rd | z(ε, u, v, ξ) = ξ + t∗f(ξ, u, v) ∈ B.}

The definition of the operator Θ̃t is similar to the definition of the operator T̃t.

In the present article we consider the problem of approximation of the operator

T̃t by means of iteration of operator Θε and its application to the problem of pursuit.

Lemma 3. There is a positive number L such that the following inclusions

T ε(A∗2Lε2H) ⊂ Θε(A? Lε
2H) ⊂ T εA (2)

hold.

Proof. The first we prove the left-side of the inclusion (2). Let ξ ∈ T ε(A∗2Lε2H).

Then, there exists an admissible control of the pursuer u ∈ P such that for any

admissible control evader v(·) ∈ Q[0, ε], there is t∗ ∈ [0, ε] for trajectory z(t∗, u, v(·), ξ)

corresponding to controls u ∈ P , v(·) ∈ Q and the initial point ξ ∈ Rd the following

inclusion z(t∗, u, v(·), ξ) ∈ A∗2Lε2H holds. i.e.

z(t∗, u, v(·), ξ) = ξ +

∫ t∗

0

f(z(t), u, v(t)dt+ 2Lε2H ∈ A. (3)

By virtue of the condition A for arbitrary controls u ∈ P , v(·) ∈ Q and the

initial point ξ ∈ Rd we have the relation

| f(z(t), u, v(t))− f(ξ, u, v(t)) |≤ L1 | z(t)− ξ | . (4)

On the other hand,

| z(t, u, v(·), ξ)− ξ |≤ Kε, t ∈ [0, ε].

Hence, using the inequality (4), we obtain

| f(z(t), u, v(t))− f(ξ, u, v(t)) |≤ Lε, (5)

where L = L1K.
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Now we prove that for any v(·) ∈ Q[0, ε] there is a constant control v ∈ Q for

which the equality

ξ + t∗f(ξ, u, v) = ξ +

∫ t∗

0

f(ξ, u, v(t))dt (6)

is fulfilled.

By virtue of the condition C, the set f(ξ, u,Q) is convex for any u ∈ P . Therefore

∫ t∗

0

f(ξ, u, v(t)dt ∈ t∗f(ξ, u,Q).

It follows that there is a v ∈ Q such that

∫ t∗

0

f(ξ, u, v(t))dt = t∗f(ξ, u, v).

Therefore, for any v(·) ∈ Q[0, ε] there is a constant control v ∈ Q for which

equality

ξ +

∫ t∗

0

f(ξ, u, v(t))dt = ξ + t∗f(ξ, u, v)

holds.

Applying inequality (5) to the right side of equality (6) we have

ξ + t∗f(ξ, u, v) ∈ ξ +

∫ t∗

0

f(z(t), u, v(t))dt+ Lε2H.

Hence, using the condition (3) we obtain

ξ + t∗f(ξ, u, v) + Lε2H ⊂ ξ +

∫ t ast

0

f(z(t), u, v(t))dt+ 2Lε2H ⊂ A.

Consequently,

ξ ∈ Θε(A∗Lε2H).

Similarly, the right side of the turn proved (2).

Lemma 4. The following inclusions

Θε(A∗Lδ2(1 + L1ε)H) + Lδ2H ⊂ ΘεA (7)
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,

T ε(A∗Lδ2(1 + L1ε)H) + Lδ2H ⊂ T εA (8)

hold. Proof. Let η be an arbitrary element from the left part of the inclusion (7).

Then there is ξ ∈ Θε(A∗Lδ2(1 + L1ε)H) such that

| η − ξ |≤ Lδ2. (9)

By virtue of condition A, we have

| f(ξ, u, v)− f(η, u, v) |≤ L1 | η − ξ | .

From inequality (9) we get

| f(ξ, u, v)− f(η, u, v) |≤ L1Lδ
2. (10)

Consider the sum η + t∗f(η, u, v). Using inequality (9) and (10) we have

η+t∗f(η, u, v) ∈ ξ+Lδ2H+t∗(f(η, u, v)+L1Lδ
2H) ⊂ ξ+t∗f(ξ, u, v)+Lδ2(1+L1ε).

Now, considering that ξ ∈ Θε(A∗Lδ2(1 + L1ε)H) we come to the inclusion η +

t∗f(η, u, v) ∈ A. this implies η ∈ Θε(M). This was to be proved. Similarly, the

inclusion (8) will be proved. Lemma 4 is proved.

Further, we consider only uniform partitions of the segments [0, t]. Let ωn =

{0, ε, 2ε, ..., nε = t}, where ε = t
n
. Let Γ(n, ε) = Lε2

∑
n
k=1(1+L1ε)

k−1. We assume

Θ2εA = ΘεΘεA,ΘkεA = ΘεΘ(k−1)εA, ΘωnA = ΘnεA.

Note that the notation T kε is entered in the same way as Θkε

Theorem 2. The following inclusions

T ωn(M∗2Γ(n, ε)H) ⊂ Θωn(M∗Γ(n, ε)H) ⊂ T ωn(M) (11)

hold.

Proof. We prove the right side of inclusions (11). Let ωn = {0, ε, 2ε = t},

where ε = t
2
. From Lemma 3 it follows that

Θε(M∗Lε2H) ⊂ T εM.
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Now using the inclusion (7) we have

Θ2ε(M∗Γ(2, ε)H) ⊂ Θε(Θε(M∗Γ(1, ε)H))∗Lε2H).

Applying Lemma 3 to the right-hand side of this inclusion, we arrive at the following

relation

Θ2ε(M∗Γ(2, ε)H) ⊂ T ε(Θε(M∗Lε2H)).

Using again Lemma 3, we obtain

Θ2ε(M∗Γ(2, ε)H) ⊂ T εT εM = T 2εM.

Suppose

Θpε(M∗Γ(p, ε)H) ⊂ T pεM. (12)

We shall prove the validity of the following relation

Θ(p+1)ε(M∗Γ(p+ 1, ε)H) ⊂ T (p+1)εM. (13)

Let us consider the set

Θ(p+1)ε(M∗Γ(p+ 1, ε)H) = ΘεΘpε(M∗Γ(p, ε)H)∗Lε2(1 + L1ε)
pH)

Applying Lemma 4 to the right side of this inclusion p-times we have

Θ(p+1)ε(M∗Γ(p+ 1, ε)H) ⊂ Θε((Θpε(M∗Γ(p, ε)H))∗Lε2H).

By virtue of Lemma 3 one obtains

Θ(p+1)ε(M∗Γ(p+ 1, ε)H) ⊂ T εΘpε(M∗Γ(p, ε)H).

Now due to the inclusion (12) we have

Θ(p+1)ε(M∗Γ(p+ 1, ε)H) ⊂ T εT pεM = T (p+1)ε.

This implies the inclusion

Θnε(M∗Γ(n, ε)H) ⊂ T nεM,
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is valid for any n ∈ N. Consequently, Θωn(M∗Γ(n, ε)H) ⊂ T ωnM. Similarly of

that ,the left side of the inclusion (11) will established. Theorem 2 is proved.

Theorem 3. The following equality holds

T tM =
⋃
δ>0

Θt(M∗δH),

for open M , M ⊂ Rd.

Proof. Consider the quantity Γ(ε) = Lε2
n∑
k=1

(1 + L1ε)
k. It is not difficult to see

that Γ(ε) ≤ εL(eL1θ − 1). We choose ε such that Γ(ε) ≤ εL(eLθ − 1) < δ, i.e.

ε < δ
L(eL1θ−1) . By virtue of this, inclusion (11) implies

T ωn(M ast2δH) ⊂ Θωn(M∗δH) ⊂ T ωn(M).

Passing to the union over all ωn in these relations by term, we obtain

T t(M∗2δH) ⊂ Θt(M∗δH) ⊂ T tM.

Turning to the union over all δ > 0 in these inclusions, we arrive to the following

inclusions ⋃
δ>0

T t(M∗2δH) ⊂
⋃

delta>0

Θt(M∗δH) ⊂ T tM.

It follows, by Lemmas 1 and 2, we have

T tM =
⋃
δ>0

Θt(M∗δH).

Theorem 3 is proved.

Theorems 1 and Theorems 3 imply

Corollary. The following equality holds

TtM =
⋃
δ>0

Θt(M∗δH),

for open M , M ⊂ Rd.
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