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Abstract

Let G be a permutation group on a set Ω with no fixed points
in Ω and let m be a positive integer. If for each subset Γ of Ω the
size |Γg\Γ| is bounded, for gεG, we define the movement of g as the
max|Γg\Γ| over all subsets Γ of Ω. In this paper we classified all of
permutation groups on set Ω of size 3m + 1 with 2 orbits such that
has movement m .
2000 AMS classification subjects: 20B25

1 Introduction

Let G be a transitive permutation group on a set Ω such that G is not 2-group
and let m be a positive integer. In [ ], C.E.Oraeger shown that if |Γg \ Γ| ≤ m for
every subset Γ of Ω and all g ∈ G, | Ω |≤ b2mp

p−1 c, where p is the least odd prime
dividing | G |. If p = 3 the upper bounded for | Ω | is 3m, and the groups G
attaining this bound where classified in the work of Gardiner([2]), Mann and the
C.E.Praeger([3]). Here we show that if G be a intrasitve permutation group on
set Ω of size 3m + 1 with 2 orbits such that has movement m, and let B is the
semi-direct product of Z2

2 .Z3. Then G is satisfy one of the following : G1 = B×Hd

or G2 = A4 × Hd, where H = Z3 or S3, d = m − 2, and A4 is the permutation
group on 4 elements. Let G be a permutation group on a set Ω with no fixed
points in Ω and let m be a positive integer. If for a subset Γ of Ω the size |Γg \Γ| is
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bounded, for g ∈ G , we define the movement of Γ as move(Γ) = maxg∈G|Γg \ Γ|.
If move(Γ) ≤ m for all Γ ⊆ Ω,then G is said to have bounded movement and the
movement of G is define as the maximum of move(Γ) over all subsets Γ, that is,

m := move(G) := sup{|Γg \ Γ||Γ ⊆ Ω, g ∈ G}.

This notion was introduced in [3]. By [3,Theorem 1],if G has bounded movement
m,then Ω is finite. Moreover both the number of G-orbits in Ω and the length of
each G-orbit are bounded above by linear functions of m.In particular it was shown
that the number of G-orbits is at most 2m-1. 1.The main result is the following
theorem.
Theorem 1.1. Let G a permutation group on set Ω of size 3m + 1 with 2 orbits
such that has movement m, and let B is the semi-direct product of Z2

2 .Z3. Then
G is G1 = B ×Hd or G2 = A4 ×Hd, where H = Z3 or S3, d = m− 2, and A4 is
the permutation group on 4 elements.

Note that an orbit of a permutation group is non trivial if its length is greater
than 1. The groups described below are examples of permutation groups with
bounded movement equal to m which have exactly 1

2(3m−1)+ 1
p nontrivial orbits.

2 Examples and Preliminaries

Let 1 6= g ∈ G and suppose that g in its disjoint cycle
representations has t nontrivial cycles of lengths l1, ..., lt, say. We might represent
g as
g = (a1a2...al1)(b1b2...bl2

)...(z1z2...zlt). Let Γ(g) denote a subset of Ω consisting
bli/2c points from the ith cycle , for each i, chosen in such a way that Γ(g)g ⋂

Γ(g)
= Ø. For example ,we could choose
Γ(g) = {a2, a4, ..., ak1 , b2, b4, ..., bk2 , ..., z2, z4, ..., zkt}, where ki = li − 1 if li is odd
and ki = li if li is even . Note that Γ(g)is not uniquency determined as it depends
on the way each cycle is written . For any set Γ(g) consists of every point of very
cycle of g. From the definition of Γ(g) we see that

|Γ(g)g \ Γ(g)| = |Γ(g)| =
t∑

i=1

bli/2c.

The next lemma shows that this quantity is an upper bound for |Γg \ Γ| for an
arbitrary subset Γ of Ω.
Lemma 2.1. [5, Lemma 2.1]. Let G be a permutation group on a set Ω and
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suppose that Γ ⊆ Ω . Then for each g ∈ G, |Γg \ Γ| ≤
∑t

i=1bli/2c, where li is
the length of the ith cycle of g and t is the number of nontrivial cycles of g in its
disjoint cycle representation . This upper bound is attained for Γ = Γ(g) defined
above .
Now we will show that there certainly is an infinite family of 3-groups for which
the maximum bound obtained in Theorem 1.1 holds .
Example 2.2 . Let d be a positive integer Ω = Ω1 ∪ Ω2 be a set of size
7, such that Ω1 = {1, 2, 3} and Ω2 = {1´, 2´, 3´, 4´}. Moreover, suppose that
Z2

2
∼= 〈(1´2´)(3´4´), (1´3´)(2´4´)〉 and Z3

∼= 〈(123)(1´2´3´)〉. Then the semi-direct
product G = Z2

2Z3 with normal subgroup G = Z2
2 is a permutation group on

a set Ω with 2-orbits which movement 2, since each non-identity element of
G has two cycle of length 2 or two cycle of length 3.
Example 2.3 .Let Z2

2 = 〈x〉 and Z3 = 〈y〉, and write G = {xiyjz|z ∈ Zd
3}.

Note that y lies in G. If x lies in G, then G = (Z3.Z
2
2) × Z3. If x 6∈ G,x2

lies in G. We then consider a subgroup T = {z ∈ Zd
3 |z ∈ G} and a subset

S = {z ∈ Zd
3 |yz ∈ G} of Zd

3 . Let Ω1, ..., Ωd, d G − orbits and ∆ =
⋃d

i=1 Ωi,
∆́ = Ω\∆ and K the pointwise stabilizer on ∆. Since the permutation
group induced by G/K on is an elementary abelian 3-group Zd

3 , we have
T ∩ S = and T ∪ S = Zd

3 . If ź and z̋ lie in S, then yźyz̋ ∈ G and so does
źz̋ ∈ G. This means S ⊂ αT for some α ∈ Zd

3 \ T , and Zd
3 = T ∪ αT .

Hence G = {xiy3j+1αt|t ∈ T} ∪ {xiy3jt|t ∈ T} = {xi(yα)jt|t ∈ T}. Let
H = {xi(yα)j}. Then T ∩ H = {1} and HT = G. Since T and H are
normal subgroups of G, we have G = H × T . Since H = {xi(yα)j} ' Z3.Z

2
2

and T ' Z
(d−1)
3 , we have G ' (Z3.Z

2
2) × Zd

3 . This is complete the proof of
Theorem 1.1.
Corrolary For every m > 2, the theorem of this paper has answers .

3 Proof of Theorem 1.2.

In this section we prove Theorem 1.2, we show first that a minimal counterex-
ample to Theorem 1.2, must be a nonabelian simple group acting primitively
on Ω. If a group G has bounded movement equal to m for convenience we
shall say that G satisfies BM(m).
3.1.Proposition : Suppose that Theorem 1.2, is false and let m be the
least integer for which Theorem 1.2 false. Further let G be a counterexample
to Theorem 1.2, with | G | minimal. Then G is a nonabelian simple group
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acting primitively on Ω.
Proof : Since G is a counterexample to Theorem 1.2 with | G | minimal, it
follows that G is not a 2-group ,G is intransitive on Ω, G satisfies BM(m),
and | Ω |= 3m + 1. The proof proceeds in five steps.

Let Ω1, . . . , Ωt be t orbits of G of lengths n1, . . . , nt. Choose αi ∈ Ω and let
Hi := Gαi

, so that |G : Hi| = ni. For g ∈ G, let Γ(g) = {αi|αg
i 6= αi} be every

second point of every cycle of g and let γ(g) := |Γ(g)| . Since Γ(g)∩Γ(g)g = ∅
it follows that γ(g) ≤ m for all g ∈ G. Let Ω̄ := Ω1 ∪ . . . ∪ Ωt, and let Ḡ
and H̄1, . . . , H̄t denote the finite permutation groups on Ω̄ induced by G and
H1, . . . , Ht respectively. Then ni = |Ḡ1 : H̄i|.

For g ∈ G, let ḡ ∈ Ḡ denote the permutation of Ω̄ induced by g. Then as
γ(1G) = 0, we have

∑
ḡ∈Ḡ γ(g) < m|Ḡ|.

Now, Counting the pairs (ḡ, i) such that ḡ ∈ Ḡ and αg
i 6= αi gives∑

ḡ∈Ḡ

γ(g) =
∑

i

|{ḡ ∈ Ḡ|αg
i 6= αi}| =

∑
i

|{ḡ ∈ Ḡ|g /∈ Hi}| =
∑

i

(|Ḡ|−|H̄i|) = |Ḡ|
∑

i

(1− 1

ni

).

It follows that
∑

i(1 − 1
ni

) < m. Since ni ≥ 3, p for each i, it follows

that
∑

i(1 − 1
ni

) ≥ p−1
p

+ 2
3
(t − 1) and hence p−1

p
+ 2

3
(t − 1) < m, that is,

t ≤ 1
2
(3m− 1) + 1

p
.

Consequently G has at most 1
2
(3m− 1) + 1

p
orbits in Ω. Now Let m be a

positive integer greater than 1. Suppose that G ≤ Sym(Ω) with orbits,Ω2, ..., Ωt,
where t=1

2
(3m − 1) + 1

p
. Suppose further that Γ ⊆ Ω has move (Γ) = m

and that cuts across each of the G-orbits Ωi. For each i set ni = |Ωi| and
Γi = Γ ∩ Ωi. Note that 0 < |Γi| < ni.

Claim 3.1 If Theorem 2.3 holds for the special case in which |Γi| = 1 for
i = 1, ..., 1

2
(3m− 1) + 1

p
, then it holds in general .

Proof :Suppose that Theorem 2.3 holds for the case where each |Γi| = 1.
For i = 1, ..., t, define

∑
i := {Γg

i |g ∈ G}, and note that |∑i | ≥ 3 since Γ cuts
across Ωi. Set Σ = ∪i≥1

∑
i. Then G induces a natural action on Σ for which

the G-orbits are Σ1, ..., Σt . Let GΣ denote the permutation group induced
by G on Σ , and let K denote the kernel of this action.

We claim that the t-element subset ΓΣ = {Γ1, ..., Γt} ⊆ Σ has movement
equal to m relative to GΣ, and that ΓΣ cuts across each ΓΣ-orbit Σi. For
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each g ∈ G, |Γg − Γ| ≤ m and hence |Γg
Σ − ΓΣ| ≤ m. Thus move (ΓΣ) ≤ m.

Also, Since |Σi| ≥ 3 and ΓΣ ∩Σi Consists of the single element Γi of Σi , the
set ΓΣ cuts across each of the 1

2
(3m − 1) + 1

p
orbits Σi. However, it follows

that the number of GΣ- orbits is at most 1
2
(3.move(ΓΣ)− 1) + 1

p
, and hence

move (ΓΣ) = m.
Thus the hypotheses of theorem 2.3 hold for the subset ΓΣ ⊆ Σ relative

to GΣ, and ΓΣ meets each GΣ-orbit in exactly one point. By our assumption
it follows that t = 1

2
(p3r − 1)1

p
= 1

2
(3m − 1) + 1

p
for some r > 1, and that

GΣ = Zr
3 and each |Σi| = 3. Further, the subgroups Hi of G fixing Γi setwise

range over the 1
2
(p3r − 1) + 1

p
distinct subgroups which have index 3 in G

and which contain K. In particular, for each i, Hi is normal in G and hence
the Hi-orbits in Ωi are blocks of imprimitivity for G, and their number is at
most |G : H| = 3. Since Hi fixes Γi setwise it follows that Γi is an Hi -orbit
and ni = 3|Γi|.

Let g ∈ G \ K. Then in its action on Σ , g moves exactly m of the Γi.
Since the Γi are blocks of imprimitivity for G, each Γg

i is equal to either Γi

or Ωi − Γi. It follows that |Γg \ G| is equal to the sum of the sizes of the
m subsets Γi moved by g. However, since move (Γ) = m, each of these m
subsets Γi must have size 1. Since for each i we may choose an element g
which moves Γi , we deduce that each of the Γi has size 1, and that K is the
identify subgroup. It follows that theorem 2.3 hold for G . Thus the claim
is proved .

From now on we may and shall assume that each |Γi| = 1. Let Γi = {Ωi}.
Further we may assume that n1 ≤ n2 ≤ ... ≤ nt. For g ∈ G let c(g) denote
the number of integers I such that ωg

i = ωi. Note that since move (Γ) = m, we
have c(g) > t−m = 1

2
(3m−1)+ 1

p
−m = m−1

2
+ 1

p
and also c(1G) = t > m−1

2
+ 1

p
.

Lemma 3.2. If one of the orbits of G has length equal to p, then the rest
orbits of G has size 3.

Proof : Let X denote the number of pairs (g,i) such that g ∈ G,
1 ≤ i ≤ t , and ωg

i = ωi. Then X =
∑

g∈G c(g), and by our observations,
X > |G|.(m−1

2
+ 1

p
). On the other hand, for each i, the number of elements of

G which fix ωi is |Gωi
| = |G|

ni
, and hence X = |G|∑t

i=1 n−1
i If all the ni ≥ 3,

and one of ni is equal to p, then X ≤ |G|.(1
p
+ t−1

3
) = |G|(1

p
+ 3m−1

6
+ 1

3p
+ 1

3
) ≤
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|G|.(m−1
2

+ 1
p
) (since m ≥ 3 ) which is a contradiction. Hence n=3.

A similar argument to this enables us to show that except one of ni the
rest of ni is ni = 3, and hence that G is an 3− group.
Lemma 3.3. The group G = Zp.Z

r
3 for some r ≥ 2. Moreover for each

ni = 3, except one , the stabilizers Gωi
(2 ≤ i ≤ t) are pair wise distinct

subgroups of index 3 in G, and for each g 6= 1, c(g) = (m−1
2

+ 1
p
).

Proof: By Lemma 3.2, except one of ni the rest of ni is ni = 3. Thus
H := Gωi

is a subgroup of index 3. This time we compute the number Y
of pairs (g, i) such that g ∈ G \ H, 2 ≤ i ≤ t , and ωg

i = ωi. For each such
g, ωg

1 6= ω1 and hence there are c(g) of these pairs with first entry g. Thus

Y =
∑

g∈G\H c(g) ≥ |G\H|(3(m−1
2

+ 3
p
) = |G|(m−1

2
+ 1

p
).

On the other hand, for each i ≥ 2, the number of elements of G, which
fix ωi is |Gωi

\H|. If H = Gωi
then |Gωi

\H| = 0, while if Gωi
6= H, then

|Gωi
\H| = |Gωi |

3
= |G|

3ni
≤ |G|

9
. Hence

Y =
∑t

i=2 |Gωi
\H| ≤] |G|

3

∑t
i=2

1
ni
≤ |G|

3
(1

p
+ t−1

3
)

= |G|
3

(3+p(t−1)
3p

) < |G|(m−1
2

+ 1
p
)

It follows that equality holds in both of the displayed approximations for
Y . This means in particular that each ni = 2, Whence G = Zp.Z

r
3 for some

r. Further, for each i ≥ 3, Gωi
6= H and so r ≥ 2. Arguing in the same way

with H replaced by Gωi
, for some i ≥ 2, we see that Gωi

6= Gωj
if j 6= i, and

also if g ∈ Gωi
then c(g) = (m−1

2
+ 1

p
). Thus the stabilizers Gωi

(1 ≤ i ≤ t) are

pairwise distinct , and if g ≤ 1 then c(g) = (m−1
2

+ 1
p
). Finally we determine

m.
Lemma 3.4.. m = 3r−2

Proof: We use the information in lemma3.3 to determine precise the quantity
X =

∑
g∈G c(g) : X = t + (|G| − 1).(m−1

2
+ 1

p
) = 1

2
(3m − 1) + 1

p
+ (p.3r−1 −

1)(m−1
2

+ 1
p
). On the other hand, from the proof of lemma 2.1,

X = |G|
t∑

i=1

n−1
i = |G|.(1

p
+

t− 1)

3
) = p.3r−1.(

1

p
+

3m− 1

6
+

1

3p
− 1

3
).

Thus implies that m = 3r−2.
The proof of theorem 2.3 now follows from lemmas 3.2-3.4.
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