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Abstract

Let G be a permutation group on a set {2 with no fixed points
in Q and let m be a positive integer. If for each subset I' of {2 the
size |[I'9\I'| is bounded, for geG, we define the movement of g as the
maz|TI\I'| over all subsets I" of Q. In this paper we classified all of
permutation groups on set €2 of size 3m + 1 with 2 orbits such that
has movement m .

2000 AMS classification subjects: 20B25

1 Introduction

Let G be a transitive permutation group on a set {2 such that G is not 2-group
and let m be a positive integer. In [ ], C.E.Oraeger shown that if [I'Y \ I'| < m for
every subset I" of Q and all g € G, | 2 |< L%J, where p is the least odd prime
dividing | G |. If p = 3 the upper bounded for | 2 | is 3m, and the groups G
attaining this bound where classified in the work of Gardiner([2]), Mann and the
C.E.Praeger([3]). Here we show that if G be a intrasitve permutation group on
set ) of size 3m + 1 with 2 orbits such that has movement m, and let B is the
semi-direct product of Z2.Z3. Then G is satisfy one of the following : G1 = B x H?
or Gy = Ay x H? where H = Z3 or S5, d = m — 2, and Ay is the permutation
group on 4 elements. Let G be a permutation group on a set {2 with no fixed
points in © and let m be a positive integer. If for a subset I" of Q the size [['Y\T'| is
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bounded, for g € G, we define the movement of I" as move(I') = max,eq|I'9 \ T'.
If move(I') < m for all ' C Q,then G is said to have bounded movement and the
movement of G is define as the maximum of move(I") over all subsets I', that is,

m := move(G) := sup{|TI\T|II' C Q,g € G}.

This notion was introduced in [3]. By [3,Theorem 1],if G has bounded movement
m,then (Q is finite. Moreover both the number of G-orbits in 2 and the length of
each G-orbit are bounded above by linear functions of m.In particular it was shown
that the number of G-orbits is at most 2m-1. 1.The main result is the following
theorem.
Theorem 1.1. Let G a permutation group on set 2 of size 3m + 1 with 2 orbits
such that has movement m, and let B is the semi-direct product of Z2.Z3. Then
Gis Gi =B x H% or Gy = Ag x H%, where H = Z3 or S5, d =m — 2, and Ay is
the permutation group on 4 elements.

Note that an orbit of a permutation group is non trivial if its length is greater
than 1. The groups described below are examples of permutation groups with
bounded movement equal to m which have exactly %(3m—1) +I% nontrivial orbits.

2 Examples and Preliminaries

Let 1 # g € G and suppose that g in its disjoint cycle

representations has ¢ nontrivial cycles of lengths [y, ..., l;, say. We might represent
g as

g = (alag...all)(blbg...bl2)...(zlzg...zlt). Let I'(g) denote a subset of Q consisting
|l;/2] points from the ith cycle , for each i, chosen in such a way that I'(g)? N T'(g)
= (). For example ,we could choose

F(g) = {ag,a4, ceey Afeq s bg, b4, ceey bkz, ceey B2y R4y onny Zkt}, where k‘i = li —1if li is odd
and k; = [; if [; is even . Note that I'(g)is not uniquency determined as it depends
on the way each cycle is written . For any set I'(g) consists of every point of very
cycle of g. From the definition of T'(g) we see that

t

IC(g)? \T(9)l = IT(g)l = >_Lli/2].

i=1

The next lemma shows that this quantity is an upper bound for |[I'Y \ T'| for an
arbitrary subset I" of €.
Lemma 2.1. [5, Lemma 2.1]. Let G be a permutation group on a set { and



suppose that I' € © . Then for each g € G, [T9\T'| < Yt |l;/2], where [; is
the length of the ith cycle of g and ¢ is the number of nontrivial cycles of g in its
disjoint cycle representation . This upper bound is attained for I' = I'(g) defined
above .

Now we will show that there certainly is an infinite family of 3-groups for which
the maximum bound obtained in Theorem 1.1 holds .

Example 2.2 . Let d be a positive integer 2 = €2y U {25 be a set of size
7, such that Q; = {1,2,3} and Q, = {1,2,3,4}. Moreover, suppose that
72 = ((12)(34),(13)(24)) and Zs = ((123)(123)). Then the semi-direct
product G' = Z2Z3 with normal subgroup G = Z2 is a permutation group on
a set {2 with 2-orbits which movement 2, since each non-identity element of
G has two cycle of length 2 or two cycle of length 3.

Example 2.3 .Let Z7 = (x) and Z3 = (y), and write G = {2%y/z|2 € Z¢}.
Note that y lies in G. If z lies in G, then G = (Z3.Z3) x Z3. If v & G,x?
lies in G. We then consider a subgroup 7' = {z € Z¢|z € G} and a subset
S ={z¢€ Zdlyz € G} of Z¢. Let Q,...,Qq, d G — orbits and A = [J%_, Q;,
A = OQ\A and K the pointwise stabilizer on A. Since the permutation
group induced by G/K on is an elementary abelian 3-group Z¢, we have
TNS=and TUS = ZJ. If 7 and # lie in S, then yzyz' € G and so does
77 € G. This means S C oT for some a € Z¢\ T, and Z¢ = T U T.
Hence G = {z'y¥atlt € T} U {z'y*t|t € T} = {2'(ya)t|t € T}. Let
H = {z'(ya)’}. Then TN H = {1} and HT = G. Since T and H are
normal subgroups of G, we have G = H x T. Since H = {z'(ya)’} ~ Z3.73
and T ~ ZY we have G ~ (Z5.72) x ZZ. This is complete the proof of
Theorem 1.1.

Corrolary For every m > 2, the theorem of this paper has answers .

3 Proof of Theorem 1.2.

In this section we prove Theorem 1.2, we show first that a minimal counterex-
ample to Theorem 1.2, must be a nonabelian simple group acting primitively
on €. If a group G has bounded movement equal to m for convenience we
shall say that G satisfies BM(m).

3.1.Proposition : Suppose that Theorem 1.2, is false and let m be the
least integer for which Theorem 1.2 false. Further let G be a counterexample
to Theorem 1.2, with | G | minimal. Then G is a nonabelian simple group



acting primitively on €.
Proof : Since G is a counterexample to Theorem 1.2 with | G | minimal, it
follows that G is not a 2-group ,G is intransitive on 2, G satisfies BM(m),
and | Q |= 3m + 1. The proof proceeds in five steps.

Let €y, ..., be t orbits of GG of lengths ny, ..., n;. Choose o; € €2 and let
H; := G,,,sothat |G : H;| = n;. For g € G, let I'(g) = {a|af # a;} be every
second point of every cycle of g and let v(g) := |T'(g)| . Since I'(¢)NT'(g)? =0
it follows that v(g) < m forall g € G. Let Q :== Q U...UQ,, and let G
and Hi, ..., H; denote the finite permutation groups on  induced by G and
Hy, ..., H; respectively. Then n; = |Gy : Hjy.

For g € G, let § € G denote the permutation of ) induced by g. Then as

Y(1g) = 0, we have Y-;cqav(g) < m|G|. )
Now, Counting the pairs (g,¢) such that g € G and of # «; gives

5 7(9) = Y- Ha € Gla? # s} = Y- {g € Gl ¢ Hi}| = S(GI-|i) = 16 (1),

It follows that >;(1 — n%) < m. Since n; > 3,p for each i, it follows
that >,(1 — n%) > pp%l + 2(t — 1) and hence % + 2(t — 1) < m, that is,
t<3@Bm—1)+.

Consequently G has at most %(3m - 1)+ % orbits in 2. Now Let m be a
positive integer greater than 1. Suppose that G < Sym/(£2) with orbits,Qs, ..., Qy,
where t=1(3m — 1) + %. Suppose further that I' C 2 has move (I') = m
and that cuts across each of the G-orbits ;. For each i set n; = [€;| and
[, =T N Q. Note that 0 < |I';| < n,.

Claim 3.1 If Theorem 2.3 holds for the special case in which |I';| = 1 for
i=1,..,3B3m—-1)+ zla’ then it holds in general .
Proof :Suppose that Theorem 2.3 holds for the case where each |I';| = 1.
Fori=1,...,t, define 3, := {I'Y|g € G}, and note that | }°; | > 3 since I cuts
across §2;. Set ¥ = U;>1>_;. Then G induces a natural action on ¥ for which
the G-orbits are 31,...,3; . Let G* denote the permutation group induced
by G on ¥ , and let K denote the kernel of this action.

We claim that the t-element subset I'y, = {I'y,...,I';} C ¥ has movement
equal to m relative to G*, and that I's; cuts across each I'*-orbit ¥;. For
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each g € G, [T —T'| < m and hence [T — I's| < m. Thus move (I's) < m.
Also, Since |3;] > 3 and I'y N'Y; Consists of the single element T'; of ¥; | the
set I'y, cuts across each of the %(3m —1)+ % orbits ¥;. However, it follows
that the number of G¥- orbits is at most 3 (3.move(I's) — 1) + %, and hence
move (I'y) = m.

Thus the hypotheses of theorem 2.3 hold for the subset I'y; C ¥ relative
to G*, and I's; meets each G*-orbit in exactly one point. By our assumption
it follows that t = $(p3" — 1)217 =1iBm—1)+ % for some r > 1, and that
G* = Z5 and each |3;| = 3. Further, the subgroups H; of G fixing I'; setwise
range over the (p3" — 1) + % distinct subgroups which have index 3 in G
and which contain K. In particular, for each i, H; is normal in G and hence
the H;-orbits in §2; are blocks of imprimitivity for G, and their number is at
most |G : H| = 3. Since H; fixes I'; setwise it follows that I'; is an H; -orbit
and n; = 3|[|.

Let g € G\ K. Then in its action on ¥ , g moves exactly m of the I';.
Since the T'; are blocks of imprimitivity for G, each T'Y is equal to either T
or Q; — I';. Tt follows that |I'Y \ G| is equal to the sum of the sizes of the
m subsets I'; moved by g. However, since move (I') = m, each of these m
subsets I'; must have size 1. Since for each i we may choose an element g
which moves I'; , we deduce that each of the I'; has size 1, and that K is the
identify subgroup. It follows that theorem 2.3 hold for G . Thus the claim
is proved .

From now on we may and shall assume that each |I';] = 1. Let I'; = {{;}.
Further we may assume that n; < ny < ... < n;. For g € G let ¢(g) denote
the number of integers I such that w{ = w;. Note that since move (I') = m, we
have ¢(g) > t—m = %(3m—1)+%—m = mT_l—i-% and also ¢(1g) =t > mT_le%.

Lemma 3.2. If one of the orbits of G has length equal to p, then the rest
orbits of GG has size 3.

Proof : Let X denote the number of pairs (g,i) such that ¢ € G,
1 <i<t,and w) =w;. Then X = ¥ csc(g), and by our observations,
X > |G.(™1 + %) On the other hand, for each 4, the number of elements of
G which fix w; is |Gy, | = %, and hence X = |G| X!, n; ! If all the n; > 3,

and one of n; is equal to p, then X < |G|(%+%) = |G|(%+3mﬁ_l+$+%) <




IGl.(21 + %) (since m > 3 ) which is a contradiction. Hence n=3.

A similar argument to this enables us to show that except one of n; the
rest of n; is n; = 3, and hence that G is an 3 — group.
Lemma 3.3. The group G = Z,.Z; for some r > 2. Moreover for each
n; = 3, except one , the stabilizers G, (2 < i < t) are pair wise distinct
subgroups of index 3 in G, and for each g # 1,¢(g) = (%5 + %)
Proof: By Lemma 3.2, except one of n; the rest of n; is n; = 3. Thus
H := G,, is a subgroup of index 3. This time we compute the number Y
of pairs (g,4) such that g € G\ H,2 < i <t , and w/ = w;. For each such
g, w{ # wy and hence there are ¢(g) of these pairs with first entry g. Thus
Y = %yeamclg) > IG\H|(20 1 2) — |G|(m1 4 1),

On the other hand, for each ¢ > 2, the number of elements of G, which
fix w; is |G, \H] If H = G, then \G A\H| = 0, while if G, # H, then

|G, \H| = |G“” 16] <5 il Hence

~ 3n;

Y = ¥, |G \H| <]

= (D) < o2

|G| 1 G| /1 t—1
? 7§?%+T)
m—

It follows that equality holds in both of the displayed approximations for
Y. This means in particular that each n; = 2, Whence G = Z,,.Z5 for some
r. Further, for each @ > 3,G,, # H and so r > 2. Arguing in the same way
with H replaced by G,,, for some i > 2, we see that G, # G, if j # i, and
also if g € G, then ¢(g) = (Z5+ + %) Thus the stabilizers G, (1 <1i < t) are
pairwise distinct , and if g <1 then ¢(g) = (%5 + %) Finally we determine
m.
Lemma 3.4.. m = 372
Proof: We use the information in lemmad.3 to determine precise the quantity
X =Ygecelg) : X =t+ (|G =1).(" + 1) = 5Bm = 1) + 1+ (p.377" =
(2t + %) On the other hand, from the proof of lemma 2.1,

! 1 t—1) 1 3m-1 1 1

X = L |G (- 4+ —2) =p3 (= — =)
GI2 i =GO+ —57) =p3C 4+ ——+ 5.~ 3)

Thus implies that m = 372
The proof of theorem 2.3 now follows from lemmas 3.2-3.4.
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