DOI: https://doi.org/10.24297/jam.v16i0.8091

Intransitive Permutation Groups with Bounded Movement Having Maximum Degree

Behname Razzaghmaneshi
Department of Mathematics
Islamic Azad University, Talesh Branch, Talesh, Iran
Email: behnamrazagi@yahoo.com

Abstract

Let G be a permutation group on a set Ω with no fixed points in Ω and let m be a positive integer. If for each subset Γ of Ω the size $|\Gamma^g \setminus \Gamma|$ is bounded, for $g \in G$, we define the movement of g as the $\max |\Gamma^g \setminus \Gamma|$ over all subsets Γ of Ω . In this paper we classified all of permutation groups on set Ω of size 3m+1 with 2 orbits such that has movement m.

2000 AMS classification subjects: 20B25

1 Introduction

Let G be a transitive permutation group on a set Ω such that G is not 2-group and let m be a positive integer. In $[\]$, C.E.Oraeger shown that if $|\Gamma^g \setminus \Gamma| \leq m$ for every subset Γ of Ω and all $g \in G$, $|\ \Omega| \leq \lfloor \frac{2mp}{p-1} \rfloor$, where p is the least odd prime dividing $|\ G|$. If p=3 the upper bounded for $|\ \Omega|$ is 3m, and the groups G attaining this bound where classified in the work of Gardiner([2]), Mann and the C.E.Praeger([3]). Here we show that if G be a intrasitve permutation group on set Ω of size 3m+1 with 2 orbits such that has movement m, and let B is the semi-direct product of $Z_2^2.Z_3$. Then G is satisfy one of the following : $G_1 = B \times H^d$ or $G_2 = A_4 \times H^d$, where $H = Z_3$ or S_3 , d = m-2, and A_4 is the permutation group on 4 elements. Let G be a permutation group on a set Ω with no fixed points in Ω and let m be a positive integer. If for a subset Γ of Ω the size $|\Gamma^g \setminus \Gamma|$ is

Date of Submission: 2019-01-22 Date of Publication: 2019-01-30 bounded, for $g \in G$, we define the movement of Γ as $\text{move}(\Gamma) = \text{max}_{g \in G} | \Gamma^g \setminus \Gamma |$. If $\text{move}(\Gamma) \leq m$ for all $\Gamma \subseteq \Omega$, then G is said to have bounded movement and the movement of G is define as the maximum of $\text{move}(\Gamma)$ over all subsets Γ , that is,

$$m := move(G) := sup\{|\Gamma^g \setminus \Gamma||\Gamma \subseteq \Omega, g \in G\}.$$

This notion was introduced in [3]. By [3,Theorem 1], if G has bounded movement m, then Ω is finite. Moreover both the number of G-orbits in Ω and the length of each G-orbit are bounded above by linear functions of m. In particular it was shown that the number of G-orbits is at most 2m-1. 1. The main result is the following theorem.

Theorem 1.1. Let G a permutation group on set Ω of size 3m+1 with 2 orbits such that has movement m, and let B is the semi-direct product of $Z_2^2.Z_3$. Then G is $G_1 = B \times H^d$ or $G_2 = A_4 \times H^d$, where $H = Z_3$ or S_3 , d = m-2, and A_4 is the permutation group on 4 elements.

Note that an orbit of a permutation group is non trivial if its length is greater than 1. The groups described below are examples of permutation groups with bounded movement equal to m which have exactly $\frac{1}{2}(3m-1)+\frac{1}{p}$ nontrivial orbits.

2 Examples and Preliminaries

Let $1 \neq g \in G$ and suppose that g in its disjoint cycle representations has t nontrivial cycles of lengths $l_1, ..., l_t, say$. We might represent g as

 $g = (a_1 a_2 ... a_{l_1})(b_1 b_2 ... b_{l_2})...(z_1 z_2 ... z_{l_t})$. Let $\Gamma(g)$ denote a subset of Ω consisting $\lfloor l_i/2 \rfloor$ points from the *i*th cycle, for each i, chosen in such a way that $\Gamma(g)^g \cap \Gamma(g) = \emptyset$. For example, we could choose

 $\Gamma(g) = \{a_2, a_4, ..., a_{k_1}, b_2, b_4, ..., b_{k_2}, ..., z_2, z_4, ..., z_{k_t}\}$, where $k_i = l_i - 1$ if l_i is odd and $k_i = l_i$ if l_i is even . Note that $\Gamma(g)$ is not uniquency determined as it depends on the way each cycle is written . For any set $\Gamma(g)$ consists of every point of very cycle of g. From the definition of $\Gamma(g)$ we see that

$$|\Gamma(g)^g \setminus \Gamma(g)| = |\Gamma(g)| = \sum_{i=1}^t \lfloor l_i/2 \rfloor.$$

The next lemma shows that this quantity is an upper bound for $|\Gamma^g \setminus \Gamma|$ for an arbitrary subset Γ of Ω .

Lemma 2.1. [5, Lemma 2.1]. Let G be a permutation group on a set Ω and

suppose that $\Gamma \subseteq \Omega$. Then for each $g \in G$, $|\Gamma^g \setminus \Gamma| \leq \sum_{i=1}^t \lfloor l_i/2 \rfloor$, where l_i is the length of the *i*th cycle of g and t is the number of nontrivial cycles of g in its disjoint cycle representation. This upper bound is attained for $\Gamma = \Gamma(g)$ defined above.

Now we will show that there certainly is an infinite family of 3-groups for which the maximum bound obtained in Theorem 1.1 holds .

Example 2.2. Let d be a positive integer $\Omega = \Omega_1 \cup \Omega_2$ be a set of size 7, such that $\Omega_1 = \{1, 2, 3\}$ and $\Omega_2 = \{1, 2, 3, 4\}$. Moreover, suppose that $Z_2^2 \cong \langle (12)(34), (13)(24) \rangle$ and $Z_3 \cong \langle (123)(123) \rangle$. Then the semi-direct product $G = Z_2^2 Z_3$ with normal subgroup $G = Z_2^2$ is a permutation group on a set Ω with 2-orbits which movement 2, since each non-identity element of G has two cycle of length 2 or two cycle of length 3.

Example 2.3 Let $Z_2^2 = \langle x \rangle$ and $Z_3 = \langle y \rangle$, and write $G = \{x^i y^j z | z \in Z_3^d\}$. Note that y lies in G. If x lies in G, then $G = (Z_3.Z_2^2) \times Z_3$. If $x \notin G, x^2$ lies in G. We then consider a subgroup $T = \{z \in Z_3^d | z \in G\}$ and a subset $S = \{z \in Z_3^d | yz \in G\}$ of Z_3^d . Let $\Omega_1, ..., \Omega_d, d G - orbits$ and $\Delta = \bigcup_{i=1}^d \Omega_i, \Delta' = \Omega \setminus \Delta$ and K the pointwise stabilizer on Δ . Since the permutation group induced by G/K on is an elementary abelian 3-group Z_3^d , we have $T \cap S = \text{and } T \cup S = Z_3^d$. If z' and z' lie in S, then $yz'yz' \in G$ and so does $zz' \in G$. This means $S \subset \alpha T$ for some $\alpha \in Z_3^d \setminus T$, and $Z_3^d = T \cup \alpha T$. Hence $G = \{x^i y^{3j+1} \alpha t | t \in T\} \cup \{x^i y^{3j} t | t \in T\} = \{x^i (y\alpha)^j t | t \in T\}$. Let $H = \{x^i (y\alpha)^j\}$. Then $T \cap H = \{1\}$ and HT = G. Since T and H are normal subgroups of G, we have $G = H \times T$. Since $H = \{x^i (y\alpha)^j\} \cong Z_3.Z_2^2$ and $T \cong Z_3^{(d-1)}$, we have $G \cong (Z_3.Z_2^2) \times Z_3^d$. This is complete the proof of Theorem 1.1.

Corrolary For every m > 2, the theorem of this paper has answers.

3 Proof of Theorem 1.2.

In this section we prove Theorem 1.2, we show first that a minimal counterexample to Theorem 1.2, must be a nonabelian simple group acting primitively on Ω . If a group G has bounded movement equal to m for convenience we shall say that G satisfies BM(m).

3.1.Proposition: Suppose that Theorem 1.2, is false and let m be the least integer for which Theorem 1.2 false. Further let G be a counterexample to Theorem 1.2, with |G| minimal. Then G is a nonabelian simple group

acting primitively on Ω .

Proof : Since G is a counterexample to Theorem 1.2 with |G| minimal, it follows that G is not a 2-group G is intransitive on G, G satisfies BM(m), and |G| = 3m + 1. The proof proceeds in five steps.

Let $\Omega_1, \ldots, \Omega_t$ be t orbits of G of lengths n_1, \ldots, n_t . Choose $\alpha_i \in \Omega$ and let $H_i := G_{\alpha_i}$, so that $|G: H_i| = n_i$. For $g \in G$, let $\Gamma(g) = \{\alpha_i | \alpha_i^g \neq \alpha_i\}$ be every second point of every cycle of g and let $\gamma(g) := |\Gamma(g)|$. Since $\Gamma(g) \cap \Gamma(g)^g = \emptyset$ it follows that $\gamma(g) \leq m$ for all $g \in G$. Let $\bar{\Omega} := \Omega_1 \cup \ldots \cup \Omega_t$, and let \bar{G} and $\bar{H}_1, \ldots, \bar{H}_t$ denote the finite permutation groups on $\bar{\Omega}$ induced by G and H_1, \ldots, H_t respectively. Then $n_i = |\bar{G}_1: \bar{H}_i|$.

For $g \in G$, let $\bar{g} \in \bar{G}$ denote the permutation of $\bar{\Omega}$ induced by g. Then as $\gamma(1_G) = 0$, we have $\sum_{\bar{g} \in \bar{G}} \gamma(g) < m|\bar{G}|$.

Now, Counting the pairs (\bar{g}, i) such that $\bar{g} \in \bar{G}$ and $\alpha_i^g \neq \alpha_i$ gives

$$\sum_{\bar{g} \in \bar{G}} \gamma(g) = \sum_{i} |\{\bar{g} \in \bar{G} | \alpha_i^g \neq \alpha_i\}| = \sum_{i} |\{\bar{g} \in \bar{G} | g \notin H_i\}| = \sum_{i} (|\bar{G}| - |\bar{H}_i|) = |\bar{G}| \sum_{i} (1 - \frac{1}{n_i}).$$

It follows that $\sum_{i} (1 - \frac{1}{n_i}) < m$. Since $n_i \ge 3, p$ for each i, it follows that $\sum_{i} (1 - \frac{1}{n_i}) \ge \frac{p-1}{p} + \frac{2}{3}(t-1)$ and hence $\frac{p-1}{p} + \frac{2}{3}(t-1) < m$, that is, $t \le \frac{1}{2}(3m-1) + \frac{1}{p}$.

Consequently G has at most $\frac{1}{2}(3m-1)+\frac{1}{p}$ orbits in Ω . Now Let m be a positive integer greater than 1. Suppose that $G \leq Sym(\Omega)$ with orbits, $\Omega_2, ..., \Omega_t$, where $t=\frac{1}{2}(3m-1)+\frac{1}{p}$. Suppose further that $\Gamma \subseteq \Omega$ has move $(\Gamma)=m$ and that cuts across each of the G-orbits Ω_i . For each i set $n_i=|\Omega_i|$ and $\Gamma_i=\Gamma\cap\Omega_i$. Note that $0<|\Gamma_i|< n_i$.

Claim 3.1 If Theorem 2.3 holds for the special case in which $|\Gamma_i| = 1$ for $i = 1, ..., \frac{1}{2}(3m-1) + \frac{1}{p}$, then it holds in general.

Proof: Suppose that Theorem 2.3 holds for the case where each $|\Gamma_i| = 1$. For i = 1, ..., t, define $\Sigma_i := \{\Gamma_i^g | g \in G\}$, and note that $|\Sigma_i| \geq 3$ since Γ cuts across Ω_i . Set $\Sigma = \bigcup_{i \geq 1} \Sigma_i$. Then G induces a natural action on Σ for which the G-orbits are $\Sigma_1, ..., \Sigma_t$. Let G^{Σ} denote the permutation group induced by G on Σ , and let K denote the kernel of this action.

We claim that the t-element subset $\Gamma_{\Sigma} = \{\Gamma_1, ..., \Gamma_t\} \subseteq \Sigma$ has movement equal to m relative to G^{Σ} , and that Γ_{Σ} cuts across each Γ^{Σ} -orbit Σ_i . For

each $g \in G$, $|\Gamma^g - \Gamma| \le m$ and hence $|\Gamma_{\Sigma}^g - \Gamma_{\Sigma}| \le m$. Thus move $(\Gamma_{\Sigma}) \le m$. Also, Since $|\Sigma_i| \ge 3$ and $\Gamma_{\Sigma} \cap \Sigma_i$ Consists of the single element Γ_i of Σ_i , the set Γ_{Σ} cuts across each of the $\frac{1}{2}(3m-1) + \frac{1}{p}$ orbits Σ_i . However, it follows that the number of G^{Σ} - orbits is at most $\frac{1}{2}(3.move(\Gamma_{\Sigma}) - 1) + \frac{1}{p}$, and hence move $(\Gamma_{\Sigma}) = m$.

Thus the hypotheses of theorem 2.3 hold for the subset $\Gamma_{\Sigma} \subseteq \Sigma$ relative to G^{Σ} , and Γ_{Σ} meets each G^{Σ} -orbit in exactly one point. By our assumption it follows that $t = \frac{1}{2}(p3^r - 1)\frac{1}{p} = \frac{1}{2}(3m - 1) + \frac{1}{p}$ for some r > 1, and that $G^{\Sigma} = Z_3^r$ and each $|\Sigma_i| = 3$. Further, the subgroups H_i of G fixing Γ_i setwise range over the $\frac{1}{2}(p3^r - 1) + \frac{1}{p}$ distinct subgroups which have index 3 in G and which contain K. In particular, for each i, H_i is normal in G and hence the H_i -orbits in Ω_i are blocks of imprimitivity for G, and their number is at most |G:H| = 3. Since H_i fixes Γ_i setwise it follows that Γ_i is an H_i -orbit and $n_i = 3|\Gamma_i|$.

Let $g \in G \setminus K$. Then in its action on Σ , g moves exactly m of the Γ_i . Since the Γ_i are blocks of imprimitivity for G, each Γ_i^g is equal to either Γ_i or $\Omega_i - \Gamma_i$. It follows that $|\Gamma^g \setminus G|$ is equal to the sum of the sizes of the m subsets Γ_i moved by g. However, since move $(\Gamma) = m$, each of these m subsets Γ_i must have size 1. Since for each i we may choose an element g which moves Γ_i , we deduce that each of the Γ_i has size 1, and that K is the identify subgroup. It follows that theorem 2.3 hold for G. Thus the claim is proved .

From now on we may and shall assume that each $|\Gamma_i| = 1$. Let $\Gamma_i = \{\Omega_i\}$. Further we may assume that $n_1 \leq n_2 \leq ... \leq n_t$. For $g \in G$ let c(g) denote the number of integers I such that $\omega_i^g = \omega_i$. Note that since move $(\Gamma) = m$, we have $c(g) > t - m = \frac{1}{2}(3m - 1) + \frac{1}{p} - m = \frac{m - 1}{2} + \frac{1}{p}$ and also $c(1_G) = t > \frac{m - 1}{2} + \frac{1}{p}$.

Lemma 3.2. If one of the orbits of G has length equal to p, then the rest orbits of G has size 3.

Proof: Let X denote the number of pairs (g,i) such that $g \in G$, $1 \le i \le t$, and $\omega_i^g = \omega_i$. Then $X = \sum_{g \in G} c(g)$, and by our observations, $X > |G|.(\frac{m-1}{2} + \frac{1}{p})$. On the other hand, for each i, the number of elements of G which fix ω_i is $|G_{\omega_i}| = \frac{|G|}{n_i}$, and hence $X = |G| \sum_{i=1}^t n_i^{-1}$ If all the $n_i \ge 3$, and one of n_i is equal to p, then $X \le |G|.(\frac{1}{p} + \frac{t-1}{3}) = |G|(\frac{1}{p} + \frac{3m-1}{6} + \frac{1}{3p} + \frac{1}{3}) \le 1$

 $|G| \cdot (\frac{m-1}{2} + \frac{1}{p})$ (since $m \ge 3$) which is a contradiction. Hence n=3.

A similar argument to this enables us to show that except one of n_i the rest of n_i is $n_i = 3$, and hence that G is an 3 - group.

Lemma 3.3. The group $G = Z_p.Z_3^r$ for some $r \geq 2$. Moreover for each $n_i = 3$, except one, the stabilizers $G_{\omega_i}(2 \leq i \leq t)$ are pair wise distinct subgroups of index 3 in G, and for each $g \neq 1, c(g) = (\frac{m-1}{2} + \frac{1}{p})$.

Proof: By Lemma 3.2, except one of n_i the rest of n_i is $n_i = 3$. Thus $H := G_{\omega_i}$ is a subgroup of index 3. This time we compute the number Y of pairs (g,i) such that $g \in G \setminus H, 2 \le i \le t$, and $\omega_i^g = \omega_i$. For each such $g, \omega_1^g \ne \omega_1$ and hence there are c(g) of these pairs with first entry g. Thus $Y = \sum_{g \in G \setminus H} c(g) \ge |G \setminus H| (\frac{3(m-1}{2} + \frac{3}{p}) = |G| (\frac{m-1}{2} + \frac{1}{p})$. On the other hand, for each $i \ge 2$, the number of elements of G, which

On the other hand, for each $i \geq 2$, the number of elements of G, which fix ω_i is $|G_{\omega_i}\backslash H|$. If $H = G_{\omega_i}$ then $|G_{\omega_i}\backslash H| = 0$, while if $G_{\omega_i} \neq H$, then $|G_{\omega_i}\backslash H| = \frac{|G_{\omega_i}|}{3} = \frac{|G|}{3n_i} \leq \frac{|G|}{9}$. Hence

$$Y = \sum_{i=2}^{t} |G_{\omega_i} \backslash H| \le \frac{|G|}{3} \sum_{i=2}^{t} \frac{1}{n_i} \le \frac{|G|}{3} \left(\frac{1}{p} + \frac{t-1}{3}\right)$$
$$= \frac{|G|}{3} \left(\frac{3+p(t-1)}{3p}\right) < |G| \left(\frac{m-1}{2} + \frac{1}{p}\right)$$

It follows that equality holds in both of the displayed approximations for Y. This means in particular that each $n_i=2$, Whence $G=Z_p.Z_3^r$ for some r. Further, for each $i\geq 3$, $G_{\omega_i}\neq H$ and so $r\geq 2$. Arguing in the same way with H replaced by G_{ω_i} , for some $i\geq 2$, we see that $G_{\omega_i}\neq G_{\omega_j}$ if $j\neq i$, and also if $g\in G_{\omega_i}$ then $c(g)=(\frac{m-1}{2}+\frac{1}{p})$. Thus the stabilizers $G_{\omega_i}(1\leq i\leq t)$ are pairwise distinct, and if $g\leq 1$ then $c(g)=(\frac{m-1}{2}+\frac{1}{p})$. Finally we determine m.

Lemma 3.4. $m = 3^{r-2}$

Proof: We use the information in lemma 3.3 to determine precise the quantity $X = \sum_{g \in G} c(g) : X = t + (|G| - 1).(\frac{m-1}{2} + \frac{1}{p}) = \frac{1}{2}(3m-1) + \frac{1}{p} + (p.3^{r-1} - 1)(\frac{m-1}{2} + \frac{1}{p})$. On the other hand, from the proof of lemma 2.1,

$$X = |G| \sum_{i=1}^{t} n_i^{-1} = |G| \cdot (\frac{1}{p} + \frac{t-1}{3}) = p \cdot 3^{r-1} \cdot (\frac{1}{p} + \frac{3m-1}{6} + \frac{1}{3p} - \frac{1}{3}).$$

Thus implies that $m = 3^{r-2}$.

The proof of theorem 2.3 now follows from lemmas 3.2-3.4.

References

- [1] C.E.Praeger, On permutation groups with bounded movement, *J. Algebra*, 144(1991), 436-442.
- [2] C.E.Praeger, The separation theorem for group actions, in "ordered Groups and Infinite Groups" (W.charles Holland, Ed.), *Kluwer Academic, Dordrecht/ Boston/ Lond*, 1995.
- [3] A.Hassani, M.Khayaty, E.I.Khukhro and C.E.Praeger, Transitive permutation groups with bounded movement having maximum degree. *J. Algebra*, **214**(1999), 317-337.
- [4] A.Gardiner, C.E. Praeger, Transitive permutation groups with bounded movement, J. Algebra **168**(1994)798-803.
- [5] A.Mann, C.E. Praeger, ransitive permutation groups of minimal movement, J. Algebra **181**(1996)903-911.
- [6] H.Wielandt, Finite Permutation Groups, Academic Press, New York, 1968.
- [7] P.S.Kim, Y.Kim, Certain groups with bounded movement having the maximal number of orbits, J.Algebra **252**(2002)74-83.
- [8] L.Brailovsky, Structure of quasi-invariant sets, Arch.Math.,59 (1992),322-326.
- [9] L.Brailovsky, D.Pasechnix, C.E.Praeger, Subsets close to invariant subset of quasi-invariant subsets for group actions, *Proc.Amer. Math.Soc.*, 123(1995),2283-2295.
- [10] J.R.Cho, P.S.Kim, and C.E.Praeger, The maximal number of orbits of a permutation Group with Bounded Movement, *J.Algebra*, **214** (1999),625-630.
- [11] P.M.Neumann, The structure of finitary Permutation groups, *Arch. Math. (Basel)* **27**(1976),3-17.
- [12] B.H.Neumann, Groups covered by permutable subsets, J. London Math soc., **29**(1954), 236-248.

[13] P.M.Neumann, C.E.Praeger, On the Movement of permutation Group, $J.Algebra,\ {\bf 214},\ (1999)631-635.$