DOI: https://doi.org/10.24297/jam.v16i0.8089

Inverse scattering with non-over-determined data

Alexander G. Ramm

Department of Mathematics, Kansas State University,
Manhattan, KS 66506, USA
ramm@math.ksu.edu

http://www.math.ksu.edu/~ramm

Abstract

The results of the author's theory of the inverse scattering with non-over-determined data are described.

1 Introduction

There is a large literature on inverse scattering, see [1] and references therein. We consider the potential scattering and the obstacle scattering.

The potential scattering problem consists of finding the scattering solution $u(x, \alpha, k)$:

$$[\nabla^2 + k^2 - q(x)]u = 0 \quad in \quad \mathbb{R}^3, \tag{1}$$

$$u = u_0 + v, \quad u_0 = e^{ik\alpha \cdot x} \tag{2}$$

$$v_r - ikv = O(r^{-2}), \quad r \to \infty.$$
 (3)

Here $r := |x|, \ \alpha \in S^2$, S^2 is the unit sphere in \mathbb{R}^3 , $q = q(x) \in L^2_{loc}(\mathbb{R}^3)$ is assumed to be compactly supported. One has

$$v(x,\alpha,k) = A(\beta,\alpha,k)\frac{e^{ikr}}{r} + O(r^{-2}), \quad r \to \infty, \ \beta = x/r.$$
(4)

The $A(\beta, \alpha, k)$ is called the scattering amplitude, $\beta \in S^2$ is the direction of the scattered wave. The inverse scattering problem consists of finding q(x) from the scattering amplitude A. The function A is a function of five variables. It is easy to prove that this function known for all $\alpha, \beta \in S^2$ and $\forall k > 0$ determines q uniquely. In 1987 the author proved that a compactly supported potential q is uniquely determined by fixed-energy scattering amplitude. More precisely, the values of $A(\beta, \alpha, k_0)$ for β and α running through fixed open subsets of S^2 and $k = k_0 > 0$ fixed determine a compactly supported q uniquely, see [3], [4], [5], [1]. The author also gave stability estimates for q in terms of the scattering amplitude, see [6], [1] and references therein.

MSC: 35P25, 45Q0581U40.

Key words: inverse scattering with non-over-determined data.

However, the fixed-energy data is a function of four variable, while the q(x) is a function of three variables. The non-over-determined data are the values of the scattering amplitude which form a three-dimensional set. For example, the values $A(-\alpha, \alpha, k)$ for all $\alpha \in S^2$ and all k > 0 is such a set. These are the back-scattering data at all energies. In fact, for compactly supported potentials the author proved uniqueness of the solution to the inverse scattering problem with the non-over-determined data $A(-\alpha, \alpha, k)$ known for all k in an arbitrary small open subset of $[0, \infty)$ and all α in an arbitrary small open subset of S^2 . The author proved that for a compactly supported potential these data determine uniquely the values of $A(-\alpha, \alpha, k)$ for all k > 0 and all $\alpha \in S^2$.

The other practically interesting example of non-over-determined data for which the author proved the uniqueness of the solution to the inverse scattering problem are the values of $A(\beta, \alpha_0, k)$ known for all k in an arbitrary small open subset of $[0, \infty)$ and all β in an arbitrary small open subset of S^2 , $\alpha = \alpha_0$ being fixed.

These results are first published in [13], [14], [15] and in the monograph [1].

The obstacle scattering problem consists of finding the scattering solution $u(x, \alpha, k)$. Let $D \subset \mathbb{R}^3$ be a bounded domain with a smooth connected boundary $S, D' := \mathbb{R}^3 \setminus D$. Then

$$(\nabla^2 + k^2)u = 0$$
 in D' , $u|_S = 0$, (5)

$$u = u_0 + v, \quad u_0 = e^{ik\alpha \cdot x} \tag{6}$$

$$v_r - ikv = O(r^{-2}), \quad r \to \infty.$$
 (7)

One has

$$v(x,\alpha,k) = A(\beta,\alpha,k)\frac{e^{ikr}}{r} + O(r^{-2}), \quad r \to \infty, \ \beta = x/r.$$
(8)

The non-over-determined data are the values of $A(\beta, \alpha, k)$ on a two-dimensional subset of the set $S^2 \times S^2 \times [0, \infty)$. For example, such is the set $\forall \beta \in S^2$, a fixed $\alpha = \alpha_0$ and a fixed $k = k_0 > 0$.

The author proved that these non-over-determined data determine uniquely the surface S and the boundary condition on S. The boundary condition is assumed of the Dirichle, or Neumann, or impedance type. The impedance boundary condition is

$$u_N = \zeta u \quad on \quad S. \tag{9}$$

Here $\zeta = \zeta(s)$ is the boundary impedance and it is assumed that

$$Im\zeta \le 0. \tag{10}$$

Assumption (10) guarantees the uniqueness of the solution to the obstacle scattering problem, [11].

The uniqueness theorems for inverse obstacle scattering with non-over-determined data is proved by the author in [8], [1], [16].

Let us assume that two obstacles D_1 and D_2 generate the same scattering amplitude for all $\beta \in S^2$, a fixed α and a fixed $k = k_0 > 0$, and prove that then $D_1 = D_2$ and the boundary conditions are the same. If $D_1 = D_2 := D$ then $u_1 = u_2$ in D', so $u_1 = u_2$ and $U_{1N} = u_{2N}$ on $S := \partial D$. Consequently, the boundary conditions are the same.

Let us prove that $S_1 = S_2$ if $A_1(\beta) = A_2(\beta)$ for all $\beta \in S^2$, where $A_j(\beta) := A_j(\beta, \alpha_j, k_0)$, j = 1, 2. If $A_1(\beta) = A_2(\beta)$ then $u_1(x, \alpha_0, k_0) = u_2(x, \alpha_0, k_0)$ for all $x \in D'_{12} := D_1 \cup D_2$. This

follows from Lemma 1.2.15 in [1], p.47. Let $D^{12}:=D_1\cap D_2$, $S_{12}:=\partial D_{12}$, $S^{12}:=\partial D^{12}$. One has $u_1=u_2:=u$ in $\mathbb{R}^3\setminus D^{12}$. By Green's formula one gets

$$u = u_0 - \int_{S_1} g(x, s) u_N ds, \quad x \in D_1'$$
 (11)

and

$$u = u_0 - \int_{S_2} g(x, s) u_N ds, \quad x \in D'_2.$$
 (12)

Since u and u_0 are defined in $\mathbb{R}^3 \setminus D^{12}$, so are the integrals in (11) and (12), and consequently one obtains

$$\int_{S_1} g(x,s)u_N ds = \int_{S_2} g(x,s)u_N ds \quad x \in D_{12} \setminus D^{12}.$$
 (13)

By Green's formula one has

$$u = \int_{S_2} g(x, s) u_N ds - \int_{S_1} g(x, s) u_N ds = 0, \quad x \in D_{12} \setminus D^{12}.$$
 (14)

Since u is analytic function of x in $\mathbb{R}^3 \setminus D^{12}$ and vanishes in $D_{12} \setminus D^{12}$ it must vanish in D'_{12} . This is a contradiction since $\lim_{|x| \to \infty} |u(x, \alpha_0, k_0)| = 1$. This contradiction proves that $D_1 = D_2$, so $S_1 = S_2$.

A study of the inverse scattering problems with non-over-determined data is of principal interest because these are the minimal data from which the unknown scatterer can be uniquely determined.

References

- [1] A.G.Ramm, Scattering by obstacles and potentials, World Sci. Publ., Singapore, 2017.
- [2] A.G.Ramm, A uniqueness theorem in scattering theory. Phys, Rev. Lett., 52, N1, (1984), 13.
- [3] A.G.Ramm, Completeness of the products of solutions to PDE and uniqueness theorems in inverse scattering, Inverse problems, 3, (1987), L77-L82
- [4] A.G.Ramm, Multidimensional inverse problems and completeness of the products of solutions to PDE, J. Math. Anal. Appl. 134, 1, (1988), 211-253; 139, (1989) 302.
- [5] A.G.Ramm, Completeness of the products of solutions of PDE and inverse problems, Inverse Probl. 6, (1990), 643-664.
- [6] A.G.Ramm, Stability of solutions to inverse scattering problems with fixed-energy data, Milan Journ of Math., 70, (2002), 97-161.
- [7] A.G.Ramm, Inverse scattering with under-determined scattering data, Math. Meth. in Natur. Phenomena, (MMNP), 9, N5, (2014), 244-253.
- [8] A.G.Ramm, Uniqueness of the solution to inverse obstacle scattering with non-over-determined data, Appl. Math. Lett., 58, (2016), 81-86.
- [9] A.G.Ramm, A numerical method for solving 3D inverse scattering problem with non-over-determined data, J. Pure Appl. Math., 1, N1, (2017), 1-3.
 open access Journal
- [10] A.G.Ramm, On the denseness of the set of scattering amplitudes, International Review of Physics, 11, N4, (2017), 96-98.
- [11] A.G.Ramm, Creating materials with a desired refraction coefficient, IOP Concise Physics, Morgan and Claypool Publishers, San Rafael, CA, USA, 2017.
- [12] A.G.Ramm, Cong Van, A numerical algorithm for solving 3D inverse scattering problem with non-over-determined data, J. Appl. Math. Stat. App., 2, N1, (2018), 11-13.
 open access Journal
- [13] A.G.Ramm, Uniqueness theorem for inverse scattering problem with non-overdetermined data, J.Phys. A, FTC, 43, (2010), 112001.
- [14] A.G.Ramm, Uniqueness of the solution to inverse scattering problem with backscattering data, Eurasian Math. Journ (EMJ), 1, N3, (2010), 97-111.
 open access Journal.
- [15] A.G.Ramm, Uniqueness of the solution to inverse scattering problem with scattering data at a fixed direction of the incident wave, J. Math. Phys., 52, 123506, (2011).
- [16] A.G.Ramm, Inverse obstacle scattering with non-over-determined data, Global Journ. of Math. Anal. (GJMA), 6 (1), (2018), 2–6.