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Abstract

The results of the author’s theory of the inverse scattering with non-over-determined
data are described.

1 Introduction

There is a large literature on inverse scattering, see [1] and references therein. We consider the
potential scattering and the obstacle scattering.
The potential scattering problem consists of finding the scattering solution u(zx, «, k):

[V2+k*—q@)]u=0 in R (1)
u=uy+uv, uy=ervT (2)
v, —ikv=0(r"?), r— oo. (3)

Here r := |z|, a € 5% S? is the unit sphere in R? ¢ = ¢(x) € L} _(R?) is assumed to be
compactly supported. One has

eikr

v(z,a, k) = A(B, o, k) +0(r %), r—oo, f=u/r (4)

r
The A(S, a, k) is called the scattering amplitude, 8 € S? is the direction of the scattered wave.

The inverse scattering problem consists of finding ¢(z) from the scattering amplitude A.
The function A is a function of five variables. It is easy to prove that this function known
for all a, 8 € S? and Vk > 0 determines ¢ uniquely. In 1987 the author proved that a com-
pactly supported potential g is uniquely determined by fixed-energy scattering amplitude. More
precisely, the values of A(f,a, ko) for 8 and a running through fixed open subsets of S? and
k = ko > 0 fixed determine a compactly supported ¢ uniquely, see [3], [4], [5], [1]. The author
also gave stability estimates for ¢ in terms of the scattering amplitude, see [6], [1] and references
therein.
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However, the fixed-energy data is a function of four variable, while the ¢(x) is a function
of three variables. The non-over-determined data are the values of the scattering amplitude
which form a three-dimensional set. For example, the values A(—a, «, k) for all a € 5% and all
k > 0 is such a set. These are the back-scattering data at all energies. In fact, for compactly
supported potentials the author proved uniqueness of the solution to the inverse scattering
problem with the non-over-determined data A(—a, «, k) known for all k in an arbitrary small
open subset of [0, 00) and all « in an arbitrary small open subset of S2. The author proved that
for a compactly supported potential these data determine uniquely the values of A(—a, a, k)
for all k> 0 and all a € S2.

The other practically interesting example of non-over-determined data for which the au-
thor proved the uniqueness of the solution to the inverse scattering problem are the values of
A(B, ap, k) known for all £ in an arbitrary small open subset of [0, 00) and all 5 in an arbitrary
small open subset of S?, o = ag being fixed.

These results are first published in [13], [14], [15] and in the monograph [1].

The obstacle scattering problem consists of finding the scattering solution u(z, a, k). Let
D C R? be a bounded domain with a smooth connected boundary S, D’ := R®\ D. Then

(V24 EHu=0 in D', u|s=0, (5)
u=1uy+v, uy=er? (6)
v, —ikv = 0(r %), r = oo. (7)
One has "
v(z,a, k) = A(B, a,k)er +0(r %), r—oo, f=u/r (8)

The non-over-determined data are the values of A(S, «, k) on a two-dimensional subset of the
set 5% x 5% x [0, 00). For example, such is the set V3 € S?, a fixed @ = ap and a fixed k = ko > 0.

The author proved that these non-over-determined data determine uniquely the surface S
and the boundary condition on S. The boundary condition is assumed of the Dirichle, or
Neumann, or impedance type. The impedance boundary condition is

uy =Cu on S 9)
Here ¢ = ((s) is the boundary impedance and it is assumed that
Im¢ < 0. (10)

Assumption (10) guarantees the uniqueness of the solution to the obstacle scattering problem,
[11].

The uniqueness theorems for inverse obstacle scattering with non-over-determined data is
proved by the author in [8], [1], [16].

Let us assume that two obstacles Dy and D, generate the same scattering amplitude for all
B € 52, afixed a and a fixed ¥ = ky > 0, and prove that then D; = D, and the boundary
conditions are the same. If Dy = Dy := D then u; = us in D', 80 u; = uy and Uy = ugy on
S := 0D. Consequently, the boundary conditions are the same.

Let us prove that S; = Sy if A;(8) = Ax(B) for all § € 52, where A;(8) := A;(B, o, ko),
Jj =12 1If Ai(B) = Ax(P) then w(x, v, ko) = ua(x, ap, ko) for all x € D}, := Dy U Dy. This
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follows from Lemma 1.2.15 in [1], p.47. Let D' := Dy N Dy, Sio := 0D15, S := 0D'2. One
has u; = uy := u in R3\ D'2. By Green’s formula one gets

u=ug — / g(z, s)uyds, x € D] (11)
S1

and
U= ug — / g(z, s)uyds, x € Dj. (12)
Sa

Since u and ug are defined in R?\ D'?] so are the integrals in (11) and (12), and consequently
one obtains
/ g(x, s)uyds = / g(x,8)unds = € D1y \ D' (13)
S1 Sa
By Green’s formula one has

u = / g(x, s)uyds — / g(z,s)uyds =0, x € Dy, \ D™ (14)
SQ Sl

Since u is analytic function of z in R3\ D'? and vanishes in Dy, \ D'? it must vanish in D/,. This
is a contradiction since lim,|_,qo [u(, 0, ko)| = 1. This contradiction proves that Dy = Ds, so
51 - Sg. O

A study of the inverse scattering problems with non-over-determined data is of principal
interest because these are the minimal data from which the unknown scatterer can be uniquely
determined.
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