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Abstract

One of the millennium problems is discussed. The results of the author’s solution to
this problem are explained. The problem discussed is the Navier-Stokes problem in the
whole space.

1 Introduction

There is a large literature on the Navier-Stokes (NS) problem in R3 ( see [2], [3] and references
therein.) The global existence and uniqueness of a solution in R3 was not proved for a long
time. It is mentioned as one of the millennium problems in [3]. This problem was solved in
[9]. The goal of this paper is to explain briefly the new ideas in this solution and formulate the
results of this solution. Therefore parts of paper [9] are used verbally.

The NS problem in R3 consists of solving the equations

v′ + (v,∇)v = −∇p+ ν∆v + f, x ∈ R3, t ≥ 0, ∇ · v = 0, v(x, 0) = v0(x). (1)

Vector-functions v = v(x, t), f = f(x, t) and the scalar function p = p(x, t) decay as |x| → ∞
uniformly with respect to t ∈ R+ := [0,∞), v′ := vt, ν = const > 0, the velocity v and
the pressure p are unknown, v0 and f are known, ∇ · v0 = 0. Equations (1) describe viscous
incompressible fluid with density ρ = 1. By v complex conjugate of v is denoted.

We assume that |f |+ |∇f |+ |v0|+ |∇v0| decay sufficiently fast as |x| → ∞,
∫∞

0
N0(f)dt <∞

and N0(f) := ‖f‖L2(R3). By ∇v any of the first derivatives of v is understood.
We use the integral equation for v:

v(x, t) = F −
∫ t

0

ds

∫
R3

G(x− y, t− s)(v,∇)vdy. (2)

Equation (2) is equivalent to (1), see [7]. Formula for the tensor G is derived in [7]. The term
F = F (x, t) depends only on the data f and v0 (see equation (18) in [7]):

F :=

∫
R3

g(x− y)v0(y)dy +

∫ t

0

ds

∫
R3

G(x− y, t− s)f(y, s)dy. (3)
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The new idea in the author’s solution to to NS problem is to use the Fourier transformed
equation (2) and a new a priori estimate for v. We assume throughout that f and v0 are such
that F is bounded in all of the norms we use.

The author’s results in [9] can be described as follows:
a) The solution to NS problem exists for all t ≥ 0 in a suitable Banach space X of smooth

functions and is unique in X.
b) The solution depends continuously in a suitable norm on the data. It is assumed that the

data are smooth and decaying sufficiently fast as |x| → ∞, uniformly with respect to t ∈ [0, T ],
where T > 0 is an arbitrary large fixed number.

A consequence of these results is the conclusion that turbulent motion of fluid cannot occur
in the whole space, that is, in the space where no bodies with boundaries are placed.

Let X be the Banach space of continuous functions with respect to t with values in L2(R3)
with the norm ‖v‖ = ‖v‖X := supt∈[0,T ]‖v(x, t)‖L2(R3), where T > 0 is an arbitrary large fixed
number.

The new a priori estimate of the solution v is

N2
0 (∇v) :=

∫
|∇v(x, t)|2dx ≤ C,

∫
:=

∫
R3

, (4)

where C > 0 is a constant and the estimate (4) holds uniformly with respect to t ∈ [0, T ]. If
the data decay sufficiently fast with respect to x and t then C does not depend on t.

Let us prove that ψ(t) := N0(∇v) ≤ c(t).

Take the Fourier transform of (2), denote ṽ(ξ, t) := (2π)−
3
2

∫
R3 e

−iξ·xv(x, t)dx and let G̃
denote the Fourier transform of G. Then

ṽ = F̃ −
∫ t

0

G̃(ξ, t− s)ṽ ? (−iξṽ)ds := B(ṽ). (5)

Here ? denotes the convolution in R3 and for brevity we omitted the tensorial indices: instead
of G̃mpṽj ?(−iξj)ṽp, where one sums up over the repeated indices, we wrote G̃(ξ, t−s)ṽ ?(−iξṽ).

Let ψ(t) := N0(∇v) = N0(|ξ|ṽ), N0(v) = N0(ṽ), where the Parseval’s identity is used. From
(5) one gets

ψ(t) ≤ N0(|ξ|F̃ ) + c

∫ t

0

N0(|ξ||G̃(ξ, t− s)|)ψ(s)ds. (6)

Here and below c stands for various constants independent of t; we have used the a priori
estimate supt≥0N0(ṽ) ≤ c0 and the standard estimate |ṽ ? w̃| ≤ N0(ṽ)N0(w̃). One can check
that

N0(|G̃(ξ, t− s)|) ≤ c[ν(t− s)]−
3
4 , N0(|ξ||G̃(ξ, t− s)|) ≤ c[ν(t− s)]−

5
4 . (7)

In the derivation of (7) we use the estimate |G̃(ξ, t)| ≤ ce−νtξ
2
, where |G| is a norm of the

matrix, see formula (9) in [7]. We use below s ome lemmas proved in [9].
Lemma 1. The operator Af :=

∫ t
0
(t − s)pf(s)ds in the Banach space X0 := C([0, T ]) has

spectral radius r(A) = 0 for p > 0 and any fixed T > 0, 0 ≤ t ≤ T .
Lemma 2. Let A be a linear operator in a Banach space X. If f = Af + f0 and r(A) = 0,

then f =
∑∞

j=0A
jf0 for any element f0 ∈ X. If f0 = 0 then f = 0.

Denote Φλ(t) :=
tλ−1
+

Γ(λ)
, λ 6= 0,−1,−2, ..., where tλ−1

+ := 0 for t < 0 and tλ−1
+ := tλ−1 for

t > 0. This Φλ is defined as a distribution, Φλ ?Φµ = Φλ+µ, Φλ ?Φ−λ = I, where ? here denotes
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the convolution in [0,∞) and I is the identity operator whose kernel is the δ-function. The
convolution of the distribution Φλ(t) with any distribution vanishing for t < 0 is well defined,
see [1]. This holds also in the case when the convolution integral diveres in the classical sense.

The following lemma allows one to claim that a solution of an integral equation (inequality)
with a strongly singular kernel solves an integral equation (inequality) with an integrable kernel,
see [8].

Lemma 3.If h = h0 + Φ−λ ? h, then h = Φλ ? h− Φλ ? h0, λ > 0.
One has

∫ t
0
(t− s)− 5

4ψds = Γ(−1
4
)Φ− 1

4
? ψ, where the convolution is in R+ := [0,∞).

Inequality (6) can be written as

ψ ≤ ψ0 + cΓ(−1

4
)Φ− 1

4
? ψ, ψ0 := N0(|ξ|F̃ ), (8)

and Γ(−1
4
) = −4Γ(3/4) := −b−1, b > 0.

Let us prove (4). Applying to (8) the operator Φ1/4? and multiplying by c−1b one gets

ψ ≤ c−1bΦ1/4 ? ψ0 − c−1bΦ1/4 ? ψ. (9)

Using Lemmas 1 and 2 one derives from (9) by iterations that

ψ(t) ≤ h(t), (10)

where h(t) is the unique solution of the equation

h = c−1bΦ1/4 ? ψ0 − c−1bΦ1/4 ? h. (11)

Equation (11) is solvable by iterations and the iterations converge by Lemma 2. The solution
h is bounded by a constant depending only on the data, that is, on f, v0 and T , 0 ≤ t ≤ T . By
(10) the ψ is bounded by h. Since T > 0 is arbitrary, estimate (4) is proved. 2

Using formulas (2), (5) and (4) one can estimate |v(x, t)| and |ṽ(ξ, t)|.
Since problem (1) is equivalent to (2) and to (5), it is sufficient to prove that (5) has a

solution and this solution is unique in X.
Uniqueness proof. Let ṽ1 and ṽ2 solve equation (5). Define

w := ṽ1 − ṽ2, N0(w) := q, N0(|ξ|w) := Q. (12)

Subtracting from equation (5) for ṽ1 equation (5) for ṽ2, one gets the equation

w = −
∫ t

0

G̃[w ? (−iξṽ2) + ṽ2 ? (−iξw)]ds, (13)

where the ? is the convolution in R3. Taking the norm N0 of both sides of (13), denoting
z := q +Q, using estimates (4) and formulas (7) and (12) one derives the following relation:

z ≤ c
(

Γ(1/4)Φ1/4 ? z + Γ(−1

4
)Φ− 1

4
? z
)
, (14)

where ? here denotes the convolution in [0,∞). The operator Φλ? with λ > 0 maps the set
of non-negative functions (or distributions) into itself, it preserves inequality sign. Applying
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the operator Φ1/4? to (14), taking into account that Γ(−1
4
) = −4Γ(3/4), Φλ ? Φµ = Φλ+µ, and

Φλ ? Φ−λ = I, one gets:

4cΓ(3/4)z ≤ cΓ(1/4)Φ1/2 ? z − Φ1/4 ? z. (15)

It follows from (15) and (10) that z = 0 (because f0 = 0 in our case, see Lemma 2). This proves
the uniqueness of the solution to problem (1) in the space X for any T > 0, 0 ≤ t ≤ T . 2

Existence proof. Let us show that the operator B in (5) is a contraction in X for a
sufficiently small τ , 0 ≤ t ≤ τ . With w = ṽ1 − ṽ2 one obtains from (5) the following equation:

B(ṽ1)−B(ṽ2) = −
∫ t

0

G̃[w ? (−iξṽ1) + ṽ2 ? (−iξw)]ds. (16)

Here the ? denotes the convolution in R3. Using the second estimate (4) one derives:

|ṽ2 ? (−iξw)| ≤ N0(w)N0((|ξ|+ |ξ′|)ṽ2(ξ′)) ≤ cN0(w)(1 + |ξ|2)1/2. (17)

Using estimates (4), (7) and (17), one obtains from (16) the following inequality:

N0

(
B(ṽ1)−B(ṽ2)

)
≤ c
(∫ t

0

(t− s)−
3
4 qds+

∫ t

0

(t− s)−
5
4 qds

)
, q = N0(w). (18)

Using the formula t−
5
4? = −4Γ(3

4
)Φ− 1

4
, rewrite (18) as

N0

(
B(ṽ1)−B(ṽ2)

)
≤ c
(

Γ(1/4)Φ1/4 ? q − 4Γ(3/4)Φ− 1
4
? q
)
, (19)

where the ? denotes the convolution in [0,∞). Applying λ1Φ1/4? to (19), one gets

λ1Φ 1
4
? N0

(
B(ṽ1)−B(ṽ2)

)
≤ λ1cΓ(1/4)Φ1/2 ? q − q, λ−1

1 := 4cΓ(3/4) > 0. (20)

Since q ≥ 0 one has

λ1Φ 1
4
? N0

(
B(ṽ1)−B(ṽ2)

)
≤ λ1cΓ(1/4)Φ1/2 ? q. (21)

From (21) one derives

N0

(
B(ṽ1)−B(ṽ2)

)
≤ cΓ(1/4)Φ1/4 ? 1 sup

t∈[0,τ ]

q(t). (22)

Clearly, limt→0 Φ1/4 ? 1 = 0. Thus, B is a contraction on a ball BR, BR := {q : q ≤ R}, if τ is
sufficiently small, 0 ≤ t ≤ τ , and R > 0 is an arbitrary large fixed number. Consequently, the
operator B in (5) is a contraction on BR for t ≤ τ . Therefore the solution to (5) exists in X
for t ≤ τ . Estimate (4) does not depend on τ ≤ T . Therefore one can repeat the argument for
τ ≤ t ≤ 2τ considering the initial value to be ṽ(ξ, τ) and the free term to be F̃ (ξ, t), t ∈ [τ, 2τ ].
The solution ṽ is unique in X, as we have proved. So, one gets the existence of the solution on
0 ≤ t ≤ 2τ . Continue this process and in finitely many steps get the existence of the unique in
X solution in [0, T ]. Since T > 0 is arbitrary, the solution exists for all T > 0. 2

It follows from Theorem 2 that there cannot be turbulent motions of fluid in the NS problem
in the whole space R3 if the data f and v0 are smooth and rapidly decaying.
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