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Abstract. Given any a := (a1, a2, . . . , an) and b := (b1, b2, . . . , bn) in Rn.
The n-fold convex function defined on [a,b], a,b ∈ Rn with a < b is a convex
function in each variable separately. In this work we prove an inequality of
Hermite-Hadamard type for n-fold convex functions. Namely, we establish the
inequality

f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f (x) dx ≤ 1

2n

∑
c

f (c),

where
∑
c
f (c) :=

∑
ci∈{ai,bi}

1≤i≤n

f (c1, c2, . . . , cn). Some other related result are

given.

1. Introduction

The classical Hermite-Hadamard inequality

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (t) dt ≤ f (a) + f (b)

2
(1.1)

holds for all convex functions defined on a real interval [a, b].

Along the past thirty years, several authors give an attention for various kind
of this inequality and related type inequalities. Indeed the history of (1.1) is very
long to summarize in one or two paragraph, however, we can simply say without
any worry, the real work over all these thirty years started in 1992 by Dragomir
[5]. In literature, the referenced work [5] was considered as base to study and
investigate (1.1) by many other authors later.

A progressive work make many interested authors to generalize (1.1) and estab-
lish a number of formulation in various forms. In sequence of papers, Dragomir
proved various inequalities of Hermite-Hadamard type for several assumption for
the functions involved; e.g., convex mappings defined on a disk in the plane and
convex mappings defined on a ball in the space . For a comprehensive work
regarding (1.1) the reader may refer to [5].

In 2006, de la Cal and Cárcamo [3] studied the Hermite-Hadamard type for
convex functions on n-dimensional convex bodies by translating the problem into
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of finding appropriate majorants of the involved random vector for the usual con-
vex order. Two main results was obtained in [3] the first one regarding mappings
defined on polytopes in Rn, while the second result discussed (1.1) for symmetric
random vectors taking values in a closed ball for a given (but arbitrary) norm
on Rn, (see also [4]). In 2008, a formulation on simplicies was presented; the key
idea of the presented approach was passed through a volume type formula and
its higher dimensional generalization. In 2009, by using of a stochastic approach,
de la Cal et. al. established a multidimensional version of the classical Hermite-
Hadamard inequalities which holds for convex functions on general convex bodies.
In 2012, Yang [13] proved an extension of (1.1) for functions defined on a con-
vex subsets of R3, indeed the author introduced a version of (1.1) for function
f defined on an annulus domain. Recently, Moslehian [11] introduced several
matrix and operator inequalities of Hermite-Hadamard type and presented some
operator inequalities of Hermite-Hadamard type in which the classical convexity
was used instead of the operator convexity. For more details, generalization and
counterparts the reader may refer to [1]–[13] and the references therein.

Let us consider the bi-dimensional interval ∆ := [a, b]× [c, d] in R2 with a < b
and c < d. Recall that the mapping f : ∆→ R is convex in ∆ if

f (λx+ (1− λ) z, λy + (1− λ)w) ≤ λf (x, y) + (1− λ) f (z, w)

holds for all (x, y), (z, w) ∈ ∆ and λ ∈ [0, 1].

Dragomir [6] established a new concept of convexity which is called the co–
ordinated convex function, as follows:

A function f : ∆ → R is convex in ∆ is called co–ordinated convex on ∆
if the partial mappings fy : [a, b] → R, fy (u) = f (u, y) and fx : [c, d] → R,
fx (v) = f (x, v), are convex for all y ∈ [c, d] and x ∈ [a, b].

In [6], Dragomir established the following similar inequality of Hadamard’s
type for co–ordinated convex mapping on a rectangle from the plane R2.

Theorem 1.1. Suppose that f : ∆→ R is co–ordinated convex on ∆. Then one
has the inequalities

f

(
a+ b

2
,
c+ d

2

)
≤ 1

(b− a) (d− c)

b∫
a

d∫
c

f (x, y) dydx

≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
(1.2)

The above inequalities are sharp.

In [1], Alomari proved the weighted version of (1.2) which is known as Fejér
inequality, as follows:
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Theorem 1.2. Let f : [a, b]× [c, d]→ R be a co–ordinated convex function, Then
the double inequality

f

(
a+ b

2
,
c+ d

2

)
≤

b∫
a

d∫
c

f (x, y) p (x, y) dydx

b∫
a

d∫
c

p (x, y) dydx

(1.3)

≤ f (a, c) + f (c, d) + f (b, c) + f (b, d)

4

holds, where p : [a, b] × [c, d] → R is positive, integrable, and symmetric about
x = a+b

2
and y = c+d

2
. The above inequalities are sharp.

In this work, a new inequality of Hermite-Hadamard type on hypercuboid is
proved.

2. n-fold convex functions

Given any a := (a1, a2, . . . , an) and b := (b1, b2, . . . , bn) in Rn, we define

a ≤ b⇐⇒ ai ≤ bi,∀i, 1 ≤ i ≤ n.

Clearly, this is a partial order on Rn, and it may be called the product order
or the componentwise order on Rn. If n > 1, then the product order on Rn

is not a total order; for example, if x := (1, 0, 0, · · · , 0) and y := (0, 1, 0, · · · , 0),
then neither x ≤ y nor y ≤ x.

Let

Ia,b :=
n∏

i=1

Iai,bi = Ia1,b1 × · · · × Ian,bn .

A subset I of Rn is said to be an n-interval if Ia,b ⊆ I for every a,b ∈ I.
For example, if I1, . . . , In are intervals in R, then I1 × · · · × In is an n-interval.
Furthermore, an n-interval of the form I1×· · ·×In, where each of the I1×· · ·×In
is a closed and bounded interval in R, is called a hypercuboid in Rn.

Throughout this paper, we will consider, for all ai, bi ∈ R, [a,b] :=
∏

1≤i≤n
[ai, bi],

and c = (c1, c2, . . . , cn), ci ∈ {ai, bi}, 1 ≤ i ≤ n. Also, for xi, yi ∈ [ai, bi] and
ti ∈ [0, 1], define

tx = (t1x1, t2x2, . . . , tnxn) ,

and
(1− t) y = ((1− t1) y1, (1− t2) y2, . . . , (1− tn) yn) .

Let f : [a,b] ⊆ Rn → R, for the vector c, we define∑
c

f (c) :=
∑

ci∈{ai,bi}
1≤i≤n

f (c1, c2, . . . , cn),

for all possible choices of ci ∈ {ai, bi}, (i = 1, 2, · · · , n).

Definition 2.1. A subset D ⊆ Rn is said to be n-fold convex if and only if
whenever x,y ∈ D then tx + (1− t) y ∈ D.
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Corollary 2.2. Every convex subset of Rn is an n-fold convex, and the converse
is not true in general.

Proof. Follows directly from the definition. �

There is a subset D ⊆ Rn which is n-fold convex but is not convex. For example,
consider D ⊂ R2, in the Figure (1). On the other hand, there is a subset D ⊆ Rn

Figure 1. 2-fold convex set which is not convex.

which is not convex nor n-fold, see the Figure (2).

Figure 2. A non convex set nor 2-fold convex.

Definition 2.3. A function f : [a,b]→ R is said to be n-fold convex or convex
on the coordinates if and only if the inequality

f (tx + (1− t) y) ≤

( ∏
1≤i≤n

pi

)∑
c

f (c), (2.1)

holds, for all x,y ∈ [a,b] and t ∈ [0,1], where,

pi =

{
ti, if ci = ai
1− ti, if ci = bi

(2.2)

for all 1 ≤ i ≤ n. Equivalently, f is said to be n-fold convex on [a,b] iff f is
convex in each coordinate separately on [ai, bi] for all i = 1, 2, · · · , n. On the
other hand, f is called n-fold concave if the inequality (2.1) is reversed.
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Corollary 2.4. Every convex function defined on [a,b] ⊆ Rn is n-fold convex,
and the converse is not true in general.

Proof. Consider f : [a,b] → R be an n-fold convex function. We carry out our
proof using induction.

Let

P (n) : f (tx + (1− t) y) ≤

( ∏
1≤i≤n

pi

)∑
c

f (c), n ∈ N (2.3)

holds, for all x,y ∈ [a,b] and t ∈ [0,1], where,∑
c

f (c) =
∑

ci∈{xi,yi}
1≤i≤n

f (c1, c2, . . . , cn),

for all possible choices of ci ∈ {xi, yi}, and

pi =

{
ti, if ci = xi
1− ti, if ci = yi

for all 1 ≤ i ≤ n.
For n = 2, let [a,b] = [a1, b1]× [a2, b2], for each pair x,y ∈ [a,b]; x = (x1, x2)

and y = (y1, y2), since f is convex on [a,b], then

P (2) :f (t1x1 + (1− t1) y1, z)
≤ t1f (x1, z) + (1− t1) f (y1, z)

= t1f (x1, t2x2 + (1− t2) y2) + (1− t1) f (y1, t2x2 + (1− t2) y2)
≤ t1t2f (x1, x2) + t1 (1− t2) f (x1, y2) + (1− t1) t2f (y1, x2)

+ (1− t1) (1− t2) f (y1, y2)

=

(
2∏

i=1

pi

) ∑
ci∈{xi,yi}
1≤i≤2

f (c), (2.4)

where c = (c1, c2), which mean that f is 2-fold convex on [a,b].

For n = k, assume that P (k) holds, and let [a,b] =
k∏

i=1

[ai, bi], x = (x1, x2, · · · , xk)

and y = (y1, y2, · · · , yk), since f is k-fold convex on [a,b], then

f (tx + (1− t) y) ≤

(
k∏

i=1

pi

) ∑
ci∈{xi,yi}
1≤i≤k

f (c) (2.5)

for all t ∈ [0, 1] and x,y ∈ [a,b], where

pi =

{
ti, if ci = xi
1− ti, if ci = yi

for all i = 1, 2, · · · , k.
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It remains to show that P (n) holds when n = k + 1, therefore

P (k + 1) : f (t1x1 + (1− t1) y1, . . . , tk+1xk+1 + (1− tk+1) yk+1)

= f (t1x1 + (1− t1) y1, . . . , tkxk + (1− tk) yk, tk+1xk+1 + (1− tk+1) yk+1)

=

(
k∏

i=1

pi

) ∑
ci∈{xi,yi}
1≤i≤k

f (c, tk+1xk+1 + (1− tk+1) yk+1)

≤ tk+1

(
k∏

i=1

pi

) ∑
ci∈{xi,yi}
1≤i≤k

f (c, xk+1)

+ (1− tk+1)

(
k∏

i=1

pi

) ∑
ci∈{xi,yi}
1≤i≤k

f (c, yk+1), (follows from (2.5))

=

(
k+1∏
i=1

pi

) ∑
ci∈{xi,yi}
1≤i≤k+1

f (c)

where,

pi =

{
ti, if ci = xi
1− ti, if ci = yi

for all i = 1, 2, · · · , k + 1. Hence, by mathematical induction, P (n) holds for
all n ∈ N. On the other hand, the function f : [0, 1]2 → [0,∞), f(x, y) = y is
2-fold convex on [0, 1]2 but is not convex. The reverse of (2.1) follows directly by
replacing f by −f , and thus the proof is completely established. �

The following Jensen’s type inequality holds:

Theorem 2.5. Let f : [a,b]→ R be k-fold convex. Let x
(r)
i be a finite sequence

of real numbers, for all i, r = 1, 2, · · · , k, and consider x =
(
x
(1)
i , x

(2)
i , . . . , x

(k)
i

)
,

α =
(
α
(1)
i , α

(2)
i , . . . , α

(k)
i

)
, with

∑
α = 1, i.e.,

k∑
i=1

α
(r)
i = 1, for all r = 1, 2, · · · , k.

Then the inequality

f
(∑

αx
)
≤

( ∏
1≤i≤k

γi

)
·
∑
c

f (c) (2.6)

holds, where

∑
αx :=

(
k∑

i=1

α
(1)
i x

(1)
i ,

k∑
i=1

α
(2)
i x

(2)
i , . . . ,

k∑
i=1

α
(k)
i x

(k)
i

)
,
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c := (c1, c2, . . . , ck) , ci ∈
{
x
(j)
i

}k

j=1
and

γi =


α
(1)
i , ci = x

(1)
i

α
(2)
i , ci = x

(2)
i

...

α
(k)
i , ci = x

(k)
i

If f is n-fold concave then the inequality (2.6) is reversed.

Proof. Use the definition of n-fold convex and apply the classical Jensen’s in-
equality for convex function of one variable in each variable. �

The following Hermite-Hadamard inequality holds:

Theorem 2.6. Let f : [a,b]→ R be n-fold convex. Then the inequality

f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f (x) dx ≤ 1

2n

∑
c

f (c), (2.7)

holds, where ∑
c

f (c) :=
∑

ci∈{ai,bi}
1≤i≤n

f (c1, c2, . . . , cn).

The inequality (2.7) is sharp. If f is n-fold concave then the inequality (2.7) is
reversed.

Proof. Since f is n-fold convex on [a,b], then for all t ∈ [0,1], we have

f (ta + (1− t) b) ≤
∑
c

( ∏
1≤i≤n

pi

)
f (c). (2.8)

Integrating (2.8) with respect to t on [0,1] we get∫ 1

0

f (ta + (1− t) b) dt ≤
∫ 1

0

(∑
c

( ∏
1≤i≤n

pi

)
f (c)

)
dt

=

(∑
c

f (c)

)∫ 1

0

( ∏
1≤i≤n

pi

)
dt

=
1

2n

∑
c

f (c) (2.9)

where, pi is defined in (2.2).
On the other hand, again since f is n-fold convex on [a,b], then for t ∈ [0,1],

we have

f

(
a + b

2

)
= f

(
ta + (1− t) b

2
+

tb + (1− t) a

2

)
≤ 1

2
[f (ta + (1− t) b) + f (tb + (1− t) a)] . (2.10)
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Integrating inequality (2.10) with respect to t on [0,1] we get

f

(
a + b

2

)
≤ 1

2

∫ 1

0

[f (ta + (1− t) b) + f (tb + (1− t) a)] dt

=
1

2

∫ 1

0

f (ta + (1− t) b) dt +
1

2

∫ 1

0

f (tb + (1− t) a) dt. (2.11)

By putting 1− t = s, in the second integral on the right-hand side of (2.11), we
get

f

(
a + b

2

)
≤ 1

2

∫ 1

0

f (ta + (1− t) b) dt +
1

2

∫ 1

0

f (tb + (1− t) a) dt

=

∫ 1

0

f (ta + (1− t) b) dt. (2.12)

From (2.9) and (2.12), we get

f

(
a + b

2

)
≤
∫ 1

0

f (ta + (1− t) b) dt ≤ 1

2n

∑
c

f (c). (2.13)

By putting ta + (1− t) b = x in the integral involved in (2.13), it is easy to
observe that ∫ 1

0

f (ta + (1− t) b) dt =
1

b− a

∫ b

a

f (x) dx. (2.14)

which proves the inequality (2.7). The sharpness follows by taking the function
f (x) =

∏
i=1,...,n

xi. If f is n-fold concave, replacing −f instead of f in (2.7) we get

the required result. �

Next, we consider a weighted version of (2.7) which is known as Fejér inequality,
before that we need the following preliminary lemma:

Lemma 2.7. Let f : [a,b]→ R be n-fold convex function. Let x1 =
(
x
(1)
1 , . . . , x

(n)
1

)
,x2 =(

x
(1)
2 , . . . , x

(n)
2

)
,y1 =

(
y
(1)
1 , . . . , y

(n)
1

)
,y2 =

(
y
(1)
2 , . . . , y

(n)
2

)
be any vectors in

[a,b] such that a ≤ y1 ≤ x1 ≤ x2 ≤ y2 ≤ b, with x1+x2 = y1+y2. Then, for the
convex partial mappings fi : [ai, bi] → R, fi (ti) = f (z1, . . . , zi−1, ti, zi+1, . . . , zn),
for all fixed zj ∈ [aj, bj] (j = 1, 2, · · · , n) with j 6= i. the following inequality
holds:

f
(
z1, . . . , zi−1, x

(i)
1 , zi+1, . . . , zn

)
+ f

(
z1, . . . , zi−1, x

(i)
2 , zi+1, . . . , zn

)
≤ f

(
z1, . . . , zi−1, y

(i)
1 , zi+1, . . . , zn

)
+ f

(
z1, . . . , zi−1, y

(i)
2 , zi+1, . . . , zn

)
(2.15)

Proof. Consider fi : [ai, bi] → R, fi (ti) = f (z1, . . . , zi−1, ti, zi+1, . . . , zn), for all
fixed zj ∈ [aj, bj] (j = 1, 2, · · · , n) with j 6= i. If y1 = y2 then we are done.
Suppose y1 6= y2 and write

x
(i)
1 =

y
(i)
2 − x

(i)
1

y
(i)
2 − y

(i)
1

y
(i)
1 +

x
(i)
1 − y

(i)
1

y
(i)
2 − y

(i)
1

y
(i)
2 ,
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and

x
(i)
2 =

y
(i)
2 − x

(i)
2

y
(i)
2 − y

(i)
1

y
(i)
1 +

x
(i)
2 − y

(i)
1

y
(i)
2 − y

(i)
1

y
(i)
2 ,

for all i = 1, 2, · · · , n.
Since fi is convex on [ai, bi], we have

f
(
z1, . . . , zi−1, x

(i)
1 , zi+1, . . . , zn

)
+ f

(
z1, . . . , zi−1, x

(i)
2 , zi+1, . . . , zn

)
≤ y

(i)
2 − x

(i)
1

y
(i)
2 − y

(i)
1

f
(
z1, . . . , zi−1, y

(i)
1 , zi+1, . . . , zn

)
+
x
(i)
1 − y

(i)
1

y
(i)
2 − y

(i)
1

f
(
z1, . . . , zi−1, y

(i)
2 , zi+1, . . . , zn

)
+
y
(i)
2 − x

(i)
2

y
(i)
2 − y

(i)
1

f
(
z1, . . . , zi−1, y

(i)
1 , zi+1, . . . , zn

)
+
x
(i)
2 − y

(i)
1

y
(i)
2 − y

(i)
1

f
(
z1, . . . , zi−1, y

(i)
2 , zi+1, . . . , zn

)

=
2y

(i)
2 −

(
x
(i)
1 + x

(i)
2

)
y
(i)
2 − y

(i)
1

f
(
z1, . . . , zi−1, y

(i)
1 , zi+1, . . . , zn

)

+

(
x
(i)
1 + x

(i)
2

)
− 2y

(i)
1

y
(i)
2 − y

(i)
1

f
(
z1, . . . , zi−1, y

(i)
2 , zi+1, . . . , zn

)
= f

(
z1, . . . , zi−1, y

(i)
1 , zi+1, . . . , zn

)
+ f

(
z1, . . . , zi−1, y

(i)
2 , zi+1, . . . , zn

)
,

for all i = 1, 2, · · · , n, which shows that (2.15) holds. �

A Fejěr type inequality may be stated as follows:

Theorem 2.8. Let f : [a,b]→ R be n-fold convex. Then the double inequality

f

(
a + b

2

)
≤
∫ b

a
p (x) f (x) dx∫ b

a
p (x) dx

≤ 1

2n

∑
c

f (c) (2.16)

holds, where p : [a,b]→ R is positive, integrable, and symmetric about xi = ai+bi
2

for all i = 1, 2, · · · , n. The above inequalities are sharp.
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Proof. Since p is positive, integrable, and symmetric about xi = ai+bi
2

for all
i = 1, 2, · · · , n. Then, by Lemma 2.7 one has:

f

(
a + b

2

) b∫
a

p (x) dx =

∫ a+b
2

a

f

(
a + b

2

)
p (x) dx

+

∫ a+b
2

a

f

(
a + b

2

)
p (a + b− x) dx

=

∫ a+b
2

a

[
f

(
a + b

2

)
+ f

(
a + b

2

)]
p (x) dx

≤
∫ a+b

2

a

[f (x) + f (a + b− x)] p (x) dx

=

∫ a+b
2

a

f (x) p (x) dx +

∫ b

a+b
2

f (x) p (x) dx

=

∫ b

a

p (x) f (x) dx

and

1

2n

∑
c

f (c)

∫ b

a

p (x) dx

=

∫ a+b
2

a

[
1

2n

∑
c

f (c)

]
p (x)dx +

∫ b

a+b
2

[
1

2n

∑
c

f (c)

]
p (a + b− x)dx

=

∫ a+b
2

a

[
1

2n

∑
c

f (c)

]
p (x)dx

≥
∫ a+b

2

a

[f (x) + f (a + b− x)] p (x) dx

=

∫ a+b
2

a

p (x) f (x)dx +

∫ b

a+b
2

p (x) f (x)dx

=

∫ b

a

p (x) f (x) dx,

which proves (2.16). To prove the sharpness in (2.16), take p(x) = 1, then the
inequality (2.16) is reduced to the double inequality (2.7), and therefore if we
choose f(x

¯
) =

∏
i=1,...,n

xi, in (2.16), then the equality holds, which shows that

(2.16) is sharp, and thus the proof is completely finished. �
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3. A Matrix version of H.–H. Inequality

A matrix function, f(A), or function of a matrix can have several different
meanings. It can be an operation on a matrix producing a scalar, such as tra(A)
and det (A); it can be a mapping from a matrix space to a matrix space, like
f(A) = A2; it can also be entrywise operations on the matrix, for instance,
g(A) = (aij)

2.
A natural generalization of the classical Hermite–Hadamard inequality (1.1) to

Hermitian matrices could be the double inequality

f

(
A+B

2

)
≤
∫ 1

0

f (tA+ (1− t)B) dt ≤ f (A) + f (B)

2
(3.1)

which is however not true, in general as shown recently in [11].
Moslehian [11] introduced several matrix and operator inequalities of Hermite-

Hadamard type and he presented some operator inequalities of Hermite-Hadamard
type in which the classical convexity was used instead of the operator convexity.

In this section, we introduce a matrix version of Hermite–Hadamard inequality
for function of a matrix producing a scalar.

Let Mn×n(R) be the set of all real (n× n)–matrices with real entries, given a
function f :Mn×n(R)→ R and A,B ∈Mn×n(R). Clearly, each square n-matrix

is just a point in Rn2
. For example a 2×2-matrix is just a point in R4; i.e., it has

four real coordinates; e.g., the matrix

(
1 2
3 4

)
is just the vector (1, 2, 3, 4). At

first this may seem an oversimplification because it ignores the matrix product.
Thus we define M2×2(R) to be in R4 with the following product defined in it

(a, b, c, d) (u, v, x, y) = (au+ bx, av + by,cu+ dx, cv + dy)

which is just the matrix product(
a b
c d

)(
u v
x y

)
written as a vector in R4. Finally, the integration limits A,B are just vectors in
Rn2

(with n = 2 in our case). Thus the integral is really multiple integral.
To state our result we need to understand the following terminologies:

X = (xij)n×n = (x11, . . . , x1n, x21, . . . , x2n, . . . , xn1, . . . , xnn)

A ≤ B ⇔ aij ≤ bij,∀i, j = 1, · · · , n.

Given a matrix function of real variables F : Mn×n(R) → R. For a matrix
C = (cij)n×n, we define∑

C

F (C) :=
∑

cij∈{aij ,bij}
1≤i,j≤n

F
(
(cij)n×n

)
.

for all possible choices of cij ∈ {aij, bij}.
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We define the matrix-interval to be [A,B] =
n∏

j=1

n∏
i=1

[aij, bij], with length to be

B−A =
n∏

j=1

n∏
i=1

(bij − aij). Depending on this, we understand
∫ B

A
f (X) dX to be:∫ B

A

f (X) dX =

∫ bnn

ann

· · ·
∫ b11

a11

f (x11, . . . , xnn) dx11 · · · dxnn.

Next result illustrate a matrix version of H.–H. inequality for function of a
matrix producing a scalar:

Theorem 3.1. Let A,B ∈Mn×n(R) with A < B. Let f : [A,B]→ R be n2-fold
convex. Then the inequality

f

(
A+B

2

)
≤ 1

B − A

∫ B

A

f (X) dX ≤ 1

2n2

∑
C=(cij)n×n

cij∈{aij ,bij}
1≤i,j≤n

f (C). (3.2)

holds, where ∑
C

f (C) :=
∑

C=(cij)n×n

cij∈{aij ,bij}
1≤i,j≤n

f (c11, c12, · · · , , cnn).

The inequality (3.2) is sharp. If f is n2-fold concave then the inequality (3.2) is
reversed.

Proof. The proof follows directly from Theorem 2.6. �

Remark 3.2. A Jensen’s type inequality for matrix functions used above; may be
deduced in a similar manner as in Theorem 2.5.

References

1. M. Alomari, Fejér inequality for double integrals, Facta Uuniversitatis (NIŠ) 24 (2009),
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9. L. Matej́ıčka, Elementary proof of the left multidimensional Hermite-Hadamard inequality
on certain convex sets, J. Math. Ineq. 4 (2010), no. 2, 259–270.



THE HERMITE–HADAMARD INEQUALITY ON HYPERCUBOID 13

10. F.C. Mitroi and E. Symeonidis, The converse of the Hermite–Hadamard inequality on sim-
plices, Expo. Math. 30 (2012), 389–396.

11. M.S. Moslehian, Matrix Hermite–Hadamard type inequalities, Houston J. Math. 39 (2013),
no. 1, 177–189.

12. Sz. Wasowicz, A. Witkowski, On some inequality of Hermite-Hadamard type, Opuscula
Math. 32 (2012), no. 3, 591–600.

13. W.H. Yang, A generalization of Hadamards inequality for convex functions, Applied Math-
ematics Letters 21 (2008) 254–257.

Department of Mathematics, Faculty of Science and Information Technology,
Irbid National University, 2600 Irbid 21110, Jordan.

Email address: mwomath@gmail.com


	1. Introduction
	2. n-fold convex functions
	3. A Matrix version of H.–H. Inequality
	References

