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ABSTRACT 

In this paper, we will study the effect of some epidemic concepts such as immigrants and vaccine on the dynamical 
behaviour of epidemic models. The existence, uniqueness and boundedness of the solution are investigated. The local 
stability analyses of the system is carried out .The global dynamics of the system is investigated numerically. 
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1.INTRODUCTION  

Because of many infectious disease causing death and varying total population, the study of epidemic models become 
one of the important area in the mathematical theory of epidemiology. Epidemic model with vaccination is one of the most 
important models in decreasing the spread of many diseases. In [8] Kribs-Zaleta and Velasco- Hernandez presented a 
simple two dimensional SIS model with vaccination exhibiting backward bifurcation. Farringten [2] derived relation 
between vaccine efficacy against transmission and analyzed the impact of vaccination program on the transmission 
potential of the infection in large populations. In [3] Gumel and Moghadas proposed a model for the dynamics of an 

infectious disease in the presence of a preventive vaccine considering non-linear incidence rate
I
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1
. Liu et al. [4,13] 

proposed more realistic models that assume non-linear incidence rate given by
hI
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with .0,,, hk    Eunha 

Shim [11] assumed that the total population is asymptotically constant, and supposed the incidence rate 
N


where  is 

the transmission rate. In this paper, we will study the SVIS model with non-linear incidence rate 
2
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. The effect 

of immigrants on the dynamical behaviour of SVIS model is considered analytically. And the sufficient condition for the 
existence and stability of the endemic equilibrium point is obtained .The global dynamics of the model is studied by solving 
it numerically for different sets of initial values and for different sets of parameters values. 

2 Model formulation 

 Consider an SIS disease when a vaccination program is in effect and there is a constant flow of incoming immigrants. A 

population of size  at time t is partition into three classes of individuals; susceptible, infections and vaccinated, with 

sizes denoted by and , respectively which represented in the block diagram given by Fig. (1) can be 
represented by the following system of non-linear ordinary differential equations. 
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Fig 1. Model 

 

 

 

 

The assumption we have in this model is as follows:  is the constant natural birth rate, with all newborns coming into the 

susceptible class. There is a constant flow of  new members in to the population per unite of time, where fraction of  

with immigrants is infective . The rate at which the vaccine wears off is ,  is infection constant rate 

coefficient for susceptible individual and the rate at which the susceptible population is vaccinated is . There is a 

Susceptible Infection Vaccination 
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constant per capita natural death rate  in each class, and fraction  of infectives recovers in unit time. The 

vaccine has the effect of reducing by a factor of , where  and  means that the vaccine is completely 

effective, while  means that the vaccine is totally infective. The disease can be fatal to some infectives and we 

define  to be the rate of disease related death. The parameters  are fiting parameters of the response function, 

where and .Obviously, due to the biological meaning of the variables  system (1) has 

the domain  0I0,V0,S, I)V,{(S, 33 R which is positively invariant for system(1) and all the solutions 

of system(1) with non-negative initial conditions are uniformly bounded as it is proved in the following theorem. 

Theorem (2.1): All solution of system (1) with non-negative initial condition are uniformly bounded. 

Proof: Let  be any solution of the system (1) with non- negative initial condition  

Since  then  so      

Which has an integrating factor  and hence a solution is where  

that means . Therefore, as , 

hence all solutions of system (1) that initiate in the region  are eventually confined in the region: 

 

Thus these solution are uniformly bounded and then the proof is complete. 

3 Existence of Equilibrium point of system (1) 

     In this section, we find all possible equilibrium points of system (1) shows that there are at most two non- negative 
equilibrium points, the existence conditions for each of these equilibrium points are discussed in the following: 

1) If , then the system (1) has an equilibrium point called a disease free equilibrium point and denoted by 

, where: 

 , and  

2) If , then the system (1) has an equilibrium point called endemic equilibrium point denoted by , 

where and  represented the positive solution of the following set of equations: 

 

 

 

 

By adding Eq. (2.a), Eq. (2.b) and Eq. (2.c) we get  that is 

                                         (3)                                                                                

Clearly if  , from Eq.(2) we get: 
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Substituting the value of Eq. (3) in Eq. (4) we get: 

 

Where ,  and  . Clearly from 

equation (3) we get that  . 

Now by substitution Eq. (3) and Eq. (5) in Eq. (2.c) and then simplifying the resulting term gives the following polynomial 
equation: 

                                (6)                                                                

Where 

  

                  

  

                                                      

   

                      

                                                      

 Straightforward computation shows that Eq. (6) has a positive root namely  provided that one set of the following sets of 
conditions holds  

with         (7.a)    

with                          (7.b)                                                           

with                           (7.c)                    

Substitution the value of  in Eq. (5) gives the value of and then substituting the value of and in Eq. (3) gives the 

value of . 

4 Local Stability of system (1) 

   In the following section the local stability analysis for the above equilibrium points is studied as shown in the following 
theorems. 

Theorem (4.1): The disease free equilibrium point  of system (1) is locally asymptotically stable in the 

if  

Proof:  Therefore, the variational matrix about the equilibrium point  given below: 

 

Clearly the eigenvalue of are ,  and  

 

Since  so  if . 
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Theorem (4.2):  Assume that the positive equilibrium point of the system (1) exist and let the following 
inequalities hold: 

                                                            (8)                                                                                                                                

                                                    (9.a)                                                                                                                         

                                                             (9.b)                                                    

                                                             (9.c) 

Here we have: 

 

 

 

 

Then it is locally asymptotically stable in the . 

Proof: The linearized system of the system (1) can be written as  

 

Here,  and  with , , 

. Moreover,  ;  is the variational matrix of system (1) at  in which 

 

 

  

Now, consider the following function 

 

It is clear that  is a continuously differentiable function that satisfies that  and 

 for all . 

Hence  is a positive definite function. Now, by differentiating  with respect to time t, gives: 
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Substituting the value of   in the above equation, and after doing some algebraic manipulation, it gives 
that: 

 

 

Obviously, due to condition (9.a)-(9.d), it is obtained that , therefore the origin and then  is locally asymptotically 

stable point in the . 

5 Globally stability of all equilibrium point  

In this section, the global dynamics of system (1) is studied with the help of Lyapunov function as shown in thefollowing 
theorems. 

Theorem (5.1):  The disease free equilibrium point  of system (1) is globally asymptotically stable in the sub region: 

 

Where 

and  

Proof: Consider the function  

By differentiating  with respect to t along the solution of system (1), we get: 

 

 

 

Now for any  in  and by Eq. (11) we get 
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is negative definite and hence  is a Lyapunov function with respect to  hence,  is globally asymptotically 

stable in the sub region . 

Theorem (5.2):Assume that the endemic equilibrium point of system (1) is locally asymptotically stable then 

it is globally asymptotically stable in the sub region  that satisfies the following conditions: 

 

 

 

Where  and  

Proof:  Consider the function  

 

By differentiating  with respect to t along the solution of system (1), we get: 

 

 

Now from Eq. (14) and Eq. (12.a)-(12.c) we have: 
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So  is negative definite and   is a Lyapunov function with respect to  hence, is globally asymptotically stable in 

the sub region . 

6 Numerical analysis 

      In this section the global dynamics of system (1) is studied. System (1) is solved numerically for different sets of initial 
conditions and different sets of parameters we choose the following set of parameter values  

 

For this parameter values, it is observed that the condition of theorem (4.1), theorem (5.1) is satisfied and trajectories with  

initial conditions  , ,   converge to the disease free 

equilibrium point  where all three populations coexist in the form of a stable 

equilibrium point. This indicates that the free equilibrium point  is globally asymptotically stable. See Figure 2. 

0
500

1000
1500

2000
2500

3000

0

1000

2000

3000

0

200

400

600

800

 

SV

 

I

 Initial point

(300,400,200)

Globally stable point

    (2727.27,2227.73,0)

 Initial point

(150,200,800)

 Initial point

(2000,700,800)

 

Fig 2. This figure depicts the trajectories of the model equation (15) with the initial conditions and . In this 
case, all solutions converges to the disease free equilibrium point. 

 

Note: In the following figures, we will use the following representations: solid line for S; dashed line for V and dotted line 
for I. 
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Fig 3a. Time series of trajectories of system (1) for data given in equation (15) starting at  
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Fig 3b. Time series of trajectories of system (1) for data given in equation (15) starting at . 

However, for the set of parameters values given equation (15) with  system (1) approaches to endemic 

equilibrium point  in the  starting from different sets of initial conditions  

 and  .Thus, our simulation results show that the 

equilibrium  is globally asymptotically stable. See Figure 4. 
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Fig 4. This figure depicts the trajectories of the model equation (15) with initial conditions  and . In this 

case, all solutions converges to the endemic equilibrium point . 
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Fig 5. Time series of trajectories of system for data given in equation (15) with   . [a] trajectories starting 

at ,  [b] trajectories starting at . 

 

Now the effect of varying the fraction of immigrant individuals, which arrive infected on the dynamics of system (1) is 

studied system (1) is solved for parameters values  and  respectively keeping other 

parameters fixed as given in equation (15) with  and then the trajectories of system (1) are drawn in Figure 6. 
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Fig 6. Time series of the solution of system (1) 

a. For  the system approaches asymptotically to  

b. For  the system approaches asymptotically to  

c. For  the system approaches asymptotically to  

According to Fig.(6) the disease free equilibrium point  of system (1) becomes unstable point and the solution the system 

(1) approaches asymptotically to the endemic equilibrium point  (where  increases). 

Now, in order to discuss the effect of varying the infection rate on the dynamical behavior of system (1), the system is 

solved for different values of infection rate  and  respectively, keeping other 

parameters fixed as given in equation (15) with  and then the solution of system (1) is drawn in Figure 7.a-c. 
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Fig 7. Time series of the solution of system (1) 

a. For  the system approaches asymptotically to  

b. For  the system approaches asymptotically to  

c. For  the system approaches asymptotically to  

From Figure 7.a-c we see that, if the infection rate increases the endemic equilibrium point of system (1) still coexists and 
stable but number of susceptible and vaccinated individuals decrease while the number of the infected individuals 
increases. 

Also, in order to discuss the effect of varying the vaccination converge rate on the dynamical behavior of system (1) is 

studied too. The system is solved numerically for different value of  and  keeping the rest of 

parameters fixed as given in equation (15) with  and time series of the solution of system (1) are drawn in Figure 
8.a-c.   

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

2000

4000

Time

P
op

ul
at

io
n

a

 



ISSN 2347-1921                                                           

5763 | P a g e                                                     F a b r u a r y  0 2 ,  2 0 1 6  

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

2000

4000

Time

P
op

ul
at

io
n

b

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

2000

4000

Time

P
op

ul
at

io
n

c

 

Fig 8. Time series of the solution of system (1) 

a. For  the system approaches asymptotically to  

b. For  the system approaches asymptotically to  

c. For  the system approaches asymptotically to  

From Figure 8.a-c. we note that the system (1) still approaches to endemic equilibrium point. 

Similarly, the effect of varying the number of individuals who lose vaccine immunity and return to susceptible on the 

dynamical behavior of system (1) is studied the system is solved for the value  and  

keeping other parameters as given in equation (15) with  and then the solution of system (1) are drawn in Figure 
9.a-c. respectively. 
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Fig 9. Time series of trajectories for system (1) 

a. For  the system approaches asymptotically to  

b. For  the system approaches asymptotically to  

c. For  the system approaches asymptotically to  
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From Figure 9.a-c it is observed that as  increases the system (1) still approaches to endemic equilibrium point and 

increasing  causes increasing in the susceptible and infected but the number of vaccinated decreases. 

Finally, the effect of vaccine efficiency against the disease on the dynamical behavior of system (1) is investigated. The 

system is solved for different values of  and  keeping other parameters as given in equation 

(15) with  and then the solution of system (1) are drawn in Figure 10.a-c. respectively. 
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Fig 10. Time series of the solution of system (1) 

a. For  the system approaches asymptotically to  

b. For  the system approaches asymptotically to  

c. For  the system approaches asymptotically to  

 

From Figure 10.a-c. we conclude that as the vaccine efficiency increases the endemic equilibrium point of system (1) still 
coexists and stable. 

7 Discussion and conclusions 

     In this section, we have analyzed a SIS epidemic model with the effect of vaccine and immigrants on the dynamical 
behavior on it. The local as well as global stability analysis of each possible equilibrium point are studied analytically as 
well as numerically. From numerically simulation (section 6) the following results are obtained the SVIS system (1) is 
approaches either to the disease free equilibrium point or to endemic equilibrium point. 

As the fraction of infected immigrant individuals  increases then the number of susceptible and vaccinated individuals 
increase but the number of infected individual’s increases. 

If the infection rate  increases then the number of susceptible and vaccinated individuals decrease but the number of 

infected individual’s increases increasing of  causes increasing in the vaccinated but the number of susceptible infected 
decrease (very slowly). 
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As  increases then the number of susceptible and infected individuals increase, however the number of vaccinated 
individuals decreases. 

Finally as the vaccine efficiency increases then the number of susceptible and vaccinated individuals decrease but the 
number of infected individuals increases.  
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