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ON ALMOST C(a)-MANIFOLD SATISFYING SOME
CONDITIONS ON THE WEYL PROJECTIVE CURVATURE
TENSOR

UMIT YILDIRIM

ABSTRACT. In the present paper, we have studied the curvature ten-
sors of almost C'(a)-manifolds satisfying the conditions P(§, X)R = 0,
P(£,X)Z =0, P(&§,X)P = 0, P(&,X)S =0 and P(¢,X)C = 0. Ac-
cording these cases, we classified almost C(«)-manifolds.

1. INTRODUCTION

In [10], authors studied the Weyl projective curvature tensor in an N (k)-
contact metric manifold and classified N (k)-contact metric manifolds.

In [3] and [9], we searched the properties of curvature tensors of an al-
most C(a)-manifold satisfying Z(¢, X)R=Z (¢, X)Z=2(¢,X)S=Z(¢, X)P=0
and Ricci semi-symmetric, projective semi-symmetric, quasi-conformal semi-
symmetric.

De U. C. and Sarkar A. [4] studied properties of projective curvature ten-
sor to generalized Sasakian space form. Atceken M. [2] studied generalized
Sasakian space form satisfying certain conditions on the concircular curvature
tensor. Ozgiir M. and De U. C. [6] researched some certain curvature con-
ditions satisfied by quasi-conformal curvature tensor in Kenmotsu manifolds.
Arslan K., Murathan C. and Ozgiir C. produced the works on contact mani-
fold curvature tensor[1].

Motivated by the studies of the above authors, in this paper we classify
almost C(«)-manifolds, which satisfy the curvature conditions P(£, X)R = 0,
P(¢,X)Z =0, P(¢,X)P =0, P(¢,X)S=0and P(¢,X)C =0, where P is

the Weyl projective curvature tensor, Z is the concircular curvature tensor,
S is the Ricci tensor and C' is quasi-conformal curvature tensor.
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2. PRELIMINARIES

An odd-dimensional Riemannian manifold (M, g) is said to be an almost
co-Hermitian or almost contact metric manifold if there exist on M a (1,1)-
tensor field ¢, a vector field £ (called the structure vector field) and a 1-form
1 such that

(2.1) n(€) =1, P°X = —X +n(X)g,
(2.2) 9(¢X,9Y) = g(X,Y) —n(X)n(Y),
(2.3) »€ =0, no¢ =0,

for any vector field X,Y on M.

The Sasaki form (or fundamental 2-form) ® of an almost co-Hermitian
manifold (M, g, ¢,&,n) is defined by

O(X,Y) = g(X,¢Y)

for all X,Y on € x(M) and this form satisfies n A ®™ # 0. This means that
every almost co-Hermitian manifold is orientable and (7, ®) defines an almost
cosymplectic structure on M. If this associated structure is cosymplectic
(d® = dn = 0), M is called an almost co-Kdhler manifold. The associated
almost cosymplectic structure is a contact structure and is an almost Sasakian
manifold when ® = dn. It is well known that every contact manifold has an
almost Sasakian structure.

The Nijenhuis tensor of the (1,1)-tensor field ¢ is the (1,2)-tensor field [¢, ¢]
defined by

(24) [6,0](X,Y) = ¢*[X, Y] + [6X,6Y] - 6[¢X,Y] - ¢X, ¢Y],
where [X,Y] is the Lie bracket of X,Y € x(M).

On the other hand, an almost co-complex structure is called integrable if
[¢, #] = 0 and normal if [¢, ¢] +2dn R & = 0. A co-Kdahler manifold (or normal
cosymplectic manifold) is an integrable (or equivalently, a normal) almost con-
tact Kahler manifold, while a Sasakian manifold is a normal almost Sasakian
manifold[5].

The Riemannian connections V of Sasakian, co-Kdhler and Kenmotsu man-

ifolds have some well known properties which allow us to characterize these
manifolds.
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Theorem 2.1. Let (M, g,$,£,1) be an almost co-Hermitian manifold with
Riemannian connection V. Then

(i) M is co-Kahlerian if and only if Vo = 0,
(i) M is Sasakian if and only if
(Vx¢)Y =g(X,Y)§ —n(Y)X,
(isi) M is Kenmotsu manifold if and only if
(Vx9)Y = g(¢X,Y){ —n(Y)pX.
for all XY € x(M)I[5].

Theorem 2.2. £ is Killing vector field for co-Kahler and Sasaki manifolds,
i.e.

9(Vx&,Y) +g(X,VyE) =0,
while for Kenmotsu manifolds we have
9(Vx&Y) — g(X,Vy{) =0.
for all X, Y € x(M)[5].
Theorem 2.3. Let R be the Riemann curvature tensor on M. For all
X, Y, Z,We x(M), we have
(i)  for M co-Kahlerian:
R(X,Y,Z,W)=R(X,Y,0Z, ¢W);
(i)  for M Sasakian:
R(X,Y,Z,W) = R(X,Y,6Z,¢W) —g(X, Z)g(Y, W) + g(X, W)g(Y, Z)
+ 9(X,02)9(Y,0W) — g(X, oW)g(Y, $Z);
(ii)  for a Kenmotsu manifold M :
R(X,Y,Z,W) = R(X,Y,0Z,¢W)+g(X,Z)g(Y, W) — g(X,W)g(Y, Z)
— 9(X,902)g(Y, W) + g(X, oW )g(Y, ¢Z),

Definition 2.4. An almost C'(«)-manifold M is an almost co-Hermitian man-
ifold such that the Riemann curvature tensor satisfies the following property:
Ja € R such that

R(X7Ya va) = R(XaK(bZad)W) +a{_g(sz)g(Yv W) +g(Xa W)Q(KZ)
(2.5) + 9(X,02)g9(Y,oW) — g(X,oW)g(Y, 92)}.
for all XY, Z, W € x(M).
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Moreover, if such a manifold has constant ¢-sectional curvature equal to c,
then its curvature tensor is given by

REXVZ = (200 2)X — g(X, 2)Y)
+ (F7NIX62)8Y - g(Y,62)9X +29(X, 6Y )92}
+ (O WEN@)Y =0V (Z)X + g(X. Zn(Y)

(2.6) - 9, Z)n(X)¢}-
A normal almost C'(«)-manifold is called C'(«)-manifold[5].

Co-Kdahlerian, Sasakian and Kenmotsu manifolds are, respectively, C(0),
C(1) and C(—1)-manifolds.

Theorem 2.5. An almost co-Hermitian manifold M is «-Sasakian if and
only if for all X, Y € x(M)

(2.7) (Vx9)Y = a{g(X,Y){ —n(X)Y}.
(i)  If M is a-Sasakian, then £ is a Killing vector field and

(2.8) Vxé = —apX

for all X € x(M).
(iii)  An a-Sasakian manifold is a C(a?)-manifold[5).

Theorem 2.6. An almost co-Hermitian manifold is an a-Kenmotsu manifold
if and only if
(2.9) (Vxo)Y = a{g(¢X,Y)§ —n(Y)pX},

(2.10) Vx&=o{-X +n(X)E},

for all X, Y € x(M).

(ii)  An a-Kenmotsu manifold is a C(—a?)-manifold5].

The concept of quasi-conformal curvature tensor was defined by K. Yano
and S. Sawaki [8]. Quasi-conformal curvature tensor of a (2n+1)—dimensional
Riemannian manifold is defined as

C(X,Y)Z = aR(X,Y)Z+b[S(Y,2)X —S(X,2)Y +g(Y,Z)QX
(2.11) — 9, 2)QY] — g5+ (Y. 2)X — g(X. 2)Y],
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where, a and b are arbitrary constants, @, S and r denote the Ricci operator,
Ricci tensor and scalar curvature of manifold, respectively. If C' = 0, then
manifold is said to be quasi-conformal flat.

Let M be (2n+1)—dimensional Riemannian manifold. The Weyl projective
curvature tensor field is defined by [7]

(2.12)  P(X,Y)Z =R(X,Y)Z — %[S(K 7)X — S(X, Z)Y),

for any XY, Z € x(M).

Let (M,g) be an (2n + 1)-dimensional Riemannian manifold. Then the

concircular curvature tensor Z is defined by

= r

(2.13) Z(X,Y)Z=R(X,Y)Z - m(g(y, 2)X — (X, Z)Y),

for all X,Y,Z € x(M), where r is the scalar curvature of M[7].

3. AN ALMOST C'(a)-MANIFOLD SATISFYING CERTAIN CONDITIONS ON
THE WEYL PROJECTIVE CURVATURE TENSOR

In this section, we will give the main results for this paper.

Let M be (2n + 1)-dimensional almost C(«)-manifold and we denote the
Riemannian curvature tensor of R, then we have from (2.6), for X = ¢,

(3.1) R(E,Y)Z = afg(¥, 2) — n(Z)Y }.
In the same way, choosing Z = £ in (2.6), we have
(3.2) R(X, V)¢ = a{n(Y)X — n(X)Y}.
In (3.2), choosing Y = £, we obtain
(3.3) R(X,£)§ = a{X —n(X)E}.
Also, from (2.6), we obtain
(3.4) n(R(X,Y)Z) = a{g(Y, Z)n(X) — g(X, Z)n(Y)}.
In the same way choosing X = £ in (2.11), we have
C(e.Y)Z = {aa+2mab— ot [on 4 2W]H{a(Y. 2)§ ~n(2)Y}
(3.5) + b{S(Y,2) —n(Y)QY'}.
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In (3.5), choosing Z = £, we obtain

Ce,Y)e = {aa+2nab— T [% + o Hn(Y)E - Y}
(3.6) + b{2nan(Y)¢ — QY}.

Also, from (2.13) we have

B XY ={a- 5o HoX Ve = ()X}
and

(3.8) 206 X)€ = {o = 3o s HX0g = X
Also, from (2.12), we have

(39) P& Y)Z = ag(¥, 2)& — 5-S(Y, Z)E.

From (2.6), we can state

R(X.ees + R(X.geoes + BX.O6 = S {20
=1

— 90X, gei)dei + X — g(X, )¢}
() Be(X, en)oes — 2mn(X)E

HnX — g(X,e;)e; +nX

for {e1, e, ..., en, €1, ..., pen, £} orthonormal basis of M. From (3.10), for
Y € x(M), we obtain

S(X.Y) = (a(Sn — 1);— c(n + 1)) (X, Y)
(3.11) + <W> n(X)n(Y),

which is equivalent to

512 QX = (a(Sn—1)+c(n+l))X+ ((a—c)2(n+1)>n(X>€.

2

From (3.11), we can give the following corollary.

Also, from (3.11), we can easily see

(3.13) r=nla(3n+ 1)+ c(n + 1)],

(3.14) S(X,¢) = 2nan(X),
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and
(3.15) Q& = 2nak.

Theorem 3.1. Let M be (2n+1)-dimensional an almost C(a)-manifold. Then,
P&, X)R =0 if and only if M reduce real space form with constant sectional
curvature c.

Proof. Suppose that P(¢, X)R = 0. Then, we have
(P, X)R)(UW)Z P& X)R(U,W)Z — R(P(&X)UW)Z
— RWU,P&X)W)Z—-RUW)P(E X)Z
(3.16) = 0.
Using (3.9) in (3.16), we obtain
= aofg(X,R(U,W)Z)§ - g(X,U)R(, W) Z
— 9(X,W)R(U,§)Z — g(X, Z)R(U, W)E}
~ 5 (S(XRWU,W)Z)6 — S(X, U)R(E, W) 2
S(X,W)R(U,&)Z - S(X,Z)R(U,W)¢}
(3.17) = 0.
Putting U = £ in (3.17) and using the equations (3.1) and (3.2), we have

%S(X, Win(z) = o{g(X,W)n(Z) +n(Z)n(X)n(W)

(3.18) - g(W, Z)n(X)},
which implies that
S(X, W) = 2nag(X,W).
So, the almost C(«)-manifold is an Einstein manifold. In this case r =

2na(2n + 1). Taking into account of (3.13), we obtain « = ¢, which implies
that

R(X,Y)Z =c{g(Y,Z)X — g(X, Z)Y'}.
The converse is obvious. O

Theorem 3.2. Let M be (2n+1)-dimensional an almost C(a)-manifold. Then,
P(&,X)Z =0 if and only if M is a real space form with sectional curvature
c.

Proof. Suppose that P(&, X )Z = 0, we have

(P&, X)Z)(UW)Z = P(&X)Z(UW)Z— Z(P(&,X)U,W)Z
— Z(U,P(&,X)W)Z — Z(U,W)P(¢,X)Z
(3.19) = 0.
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Using (2.13) and (3.9) in (3.19), we obtain
0 = ofg(X,Z(U,W)2)¢ - g(X,U)Z(¢,W)Z — g(X, W) Z(U,£)Z
9, 2)EUWIE) — 5 {S(XZ(U, W) 2) - S(X,0)Z(E, W)Z
(3.20)— S(X,W)Z(U,&)Z — S(X,Z)Z(U,W)¢E}.
In (3.20), choosing U = ¢ and using (2.13), (3.7), (3.8) and (3.14), we have

0 = lo— gy HastX 2)W = ag(X, 2)n(W)e

~ ag(XWIn(Z)6 + 5 SO WIN(Z)E + 5o 5(X, Zn(W)g

1
21 - —S5X,7 .
(321) - 5 S(X,2)W)
Inner product both sides of the equation by &, we have O
T 1
[Oé ]{7S(X,W)—Oég(X,W)}:O

C2n(2n+1)" 20

If r = 2na(2n+1), from (3.13), we obtain o = ¢. This implies that M is a real
space form. Otherwise S(X,Y) = 2nag(X,Y). This tells us r = 2na(2n+1).

Theorem 3.3. Let M be (2n+1)-dimensional an almost C(a)-manifold. Then,
P&, Y)P =0 if and only if M reduce real space form with constant sectional
curvature ¢ = o.

Proof. Suppose that P(£,Y)P=0, we have
(P, Y)P)(Z, U)W P, Y)P(Z, U)W = P(P(E,Y), U)W
— P(Z,PE,YYU)W —P(Z,U)PE Y)W
(3.22) = 0.
Using (3.9) in (3.22), we have

0 = afg(Y, PZ U)W)E - agl¥, Z)g(U, W)E + 5-g(¥, Z2)S(U,W)e

. %g(y’ U)S(Z,W)E+ ag(Y,U)g(W, Z)&}

b =S, P UWIE+agU W)S(Y, 2)6 — 5-S(Y, Z)S(U, We

(323 - S(V,U)S(Z,W)E ~ aS(Y,U)g(W, Z)e}.
Using the equations (2.12) and (3.11) in (3.23), we obtain
[(a —c)(n+1)

4an
which proves our assertion. O

J[R(Z, )W — o{g(U,W)Z — g(W,Z)U}] =0,
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Theorem 3.4. Let M be (2n+1)-dimensional an almost C(a)-manifold. Then,
P, Y)C = 0 if and only if M has either a-sectional curvature or it is an
Finstein manifold.

Proof. Suppose that P(¢, Y)C~' = 0, we have
(P(E,Y)C)(Z, U)W = P(Y)C(Z,UW —C(P(,Y)Z,U)W
— C(Z,P(E,Y)U)W - C(Z,U)P(E,Y)W
(3.24) = 0.
Using (3.9) in (3.24), we obtain
0 = afg(V,C(ZUW) —g(¥, Z)C(6, )W
— 9. U)C(Z.OW — g(Y.W)C(Z,U)E}
S ASLEZ W - (v, )3 (6 U)W
S(Y.U)C(Z.EW — S(Y,W)C(Z,U)¢}
(3.25) = 0.
In (3.25), choosing Z = ¢ and using (3.5) and (3.6), we obtain

Qnrﬁ[% + 20 Hg(Y, QU) — 2nag(Y,U)}

(326) + b{S(Y.QU)— S(U.Y)}
Using (3.12) in (3.26) and choosing U = ¢U, we have

0 = oafaa+2nab-—

(n+1)(c—a) r a B
[—2 H{bS(oU,Y) + [acx + 2nad 1 [271 +2b)]g(eU,Y)} = 0.
The proof is completed. 0

Theorem 3.5. Let M be (2n+1)-dimensional an almost C(a))-manifold. Then,
P(&,X)S =0 if and only if M is an Einstein manifold.

Proof. Suppose that P(£, X)S = 0, we have

(3.27) S(P(&, X)U, W) + S(U, P(€, X), W) = 0.

In (3.27), using (3.9), we have

(328)  afo(X, W)+ g(X, U)E} — o (SCX, W)E + S(X, U)e} = 0

Inner product both sides of (3.28) by £ € x(M), and choosing U = &, we have
S(X, W) = 2nag(X,W).

So, M is an Einstein manifold. O
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