ARE THETA FUNCTIONS THE FOUNDATIONS OF PHYSICS?

J.A.de Wet

Box 514,Plettenberg Bay,6600,South Africa jadew@global.co.za

Abstract

The Jacobi theta functions are essentially rotations in a complex space and as such provide a basis for the lattices of the exceptional Lie algebras E_{6}, E_{8} in complex 3 -space and complex 4 -space. In this note we will show that a choice of the nome q of the theta functions $\theta_{E_{6}}, \theta_{E_{8}}$ leads to the equilateral tritangents of these lattices. Specifically we will find quarter period ratios of the real and complex axes.

In particular E_{8} is isomorphic to the binary icosahedral group shown recently to describe Elementary Particle theory and Quantum Gravity so q is fundamental to the structure of space itself.

AMS Classification; 11F50,14K25,52B10.
Keywords: Theta Functions;Lattices;Entanglement.

Council for InnovativResearch

Vol. 11, No. 10
www.cirworld.com, editor@cirworld.com

1 INTRODUCTION
This note should be read as a supplement to a recent publication[3] where it was shown how quantum gravity and Icosahedral symmetry both employ the same Jacobi Theta function

$$
\begin{equation*}
\theta_{E_{8}}=1+240 q^{2}+2160 q^{4}+6720 q^{6}+\ldots \tag{1}
\end{equation*}
$$

Here $N_{m}=240$ is the number of vertices in the 8 sucessive shells of the toric lattice shown in Fig. 2 and $q=\exp (i \pi \tau)$ is the elliptic nome $\exp (-\pi i K / K)$ with a maximum value of 0.06586 [5], where K and $\mathrm{i}=$ =K'are quarter periods. 240 is also the kissing number for a sphere packing of the E_{8} lattice in Fig. 2 , where the binary icosahedral group is isomorphic to the exceptional Lie algebra E_{8} by the MacKay correspondence[7]. Here there are 8 sets of 30 vertices on 4 dual Riemann surfaces but the third coefficient $N_{m}=2160$ is no longer a kissing number between spheres because it belongs to another set of vectors given in ([1],Table 4.10). But N_{m} remains the number of vectors in sucessive shells of the toric lattice.

In this contribution we will find that the ratio iK / K in the elliptic nome is $\sqrt{(} 3) / 2=\sin 120$ and is the same for the theta functions of the exceptional Lie algebras $E_{6} \subset E_{8}$ and therefore determines the geometry of the equilateral tritangents appearing in Figs.1,2.In this way theta functions determine icosahedral symmetry and the structure of space underlining particle physics and quantum gravity [3].
2 Jacobi Theta Functions
We will employ the Jacobi theta Function

$$
\begin{equation*}
\theta=\sum_{n=-\infty}^{\infty} \exp \left(i \pi t n^{2}+2 i \pi n z\right) \tag{2}
\end{equation*}
$$

for the $\theta_{E_{8}}, \theta_{E_{7}}, \theta_{E_{6}}$ lattices([1],[4])where $\exp (i \pi \tau)=\mathrm{q}$ and the dependence on z is carrried by the lattice Γ so (2) reduces to

$$
\begin{equation*}
\theta=\sum_{m=1}^{\infty} r_{\Gamma}(2 m) q^{2 m} \tag{3}
\end{equation*}
$$

where r_{γ} is the kissing number $N_{m}=240$ in equation(1)according to Lucas Lewark[6].Then the theta series for E_{6} is[1]Ch. 4

$$
\begin{equation*}
\theta_{E_{6}}=1+72 q^{2}+270 q^{4}+720 q^{4}+\ldots \tag{4}
\end{equation*}
$$

Fig. 1 shows 12 vertices on 2 Riemann surfaces plus 3 at the origin thus acounting for 27 elementary particles of the Standard Model.Only 27 of 72 vertices rotate into themselves by $\omega=120$ degrees and $\operatorname{Coxeter}([2] \mathrm{p} .119)$ labels these by $\left(0, \omega^{2},-\omega\right),(-\omega, 0,1)$ in the equilateral tritangents Fig.12.3A which should be replaced by the torus of Fig. 1 according to [3].

However if $\mathrm{q}=\exp (i \pi K / K)=0.0658$ then it folows that $\mathrm{i} \mathrm{K} / \mathrm{K}=\sqrt{3} / 2=\sin \omega$ and it may easily be shown that this value of q remains the same for the powers in equations (1),(4)
The remaining terms of the tori(1),(4) are multiples of the kissing number possibly implying quantum entanglement.
3 Conclusion
We have seen how $\sin \omega=\sin 120$ specifies the tritangents in the lattices of E_{6}, E_{8}. Specifically in Section 12.5 of[2] Coxeter associates E_{8} with the Witting Polytope shown in the frontispiece and Fig.2.Here there are 27 edges, labeled by ω,at each vertex which implies quantum entanglement and illustrates how theta functions underlie the elementary particles and nucleons. There are only 3 complex axes $\mathrm{i}, \mathrm{j}, \mathrm{k}$ which are a basis for the quaternion algebra and E_{8} is isomorphic to the binary octahedral group by the Mackay correspondence [7] and is the largest of the Exceptional Lie algebras, There are no more.

Fig. 1 Graph ot E_{6}
Fig. 2 Graph of E_{8}

References

[1] J.H.Conway and N.J.A Sloane, Sphere Packings,Lattices and Groups,Springer Verlag,New York(1993)
[2] H.S.M.Coxeter,Regular Complex Polytopes,Camb.Univ.Press(1991)
[3] J.A.de Wet,Icosahedral Symmetry:A Review, International Frontier Science Letters Vol.5, SciPress Ltd.(2015)1-8,online.
[4] Terry Gannon and C.S.Lam, Lattices and Theta Function Identities.II,J.Math.Phys.33,March(1992).
[5] Michael Hardy et.al.,Jacobi elliptic functions,online.
[6] Lucas Lewark, Theta Functions,Seminar on Modular Forms,Jan(2007)online.
[7] John MacKay, Cartan Matrices,Finite Groups of Quaternions and Kleinian Singularities,Proc.AMS(1981)153-154.

