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Abstract

In this paper, we shall discuss the uniqueness ”pathwise uniqueness”
of the solutions of stochastic partial differential equations (SPDEs) with
non-local initial condition,

du(z,t) = Z aq(z, t)Du(z, t)dt + b(u(z, t))dt + o(u(z, t))dB(t)

lg|<2m

u(z,0) = ¢(x) + Zciu(aﬁ,ti) (1)

‘We shall use the Yamada-Watanabe condition for ” pathwise uniqueness”
of the solutions of the stochastic differential equation; this condition is
weaker than the usual Lipschitz condition. The proof is based on Bihari’s
inequality.

Keywords: Stochastic partial differential equation, Pathwise uniqueness,
Bihari’s inequality.

1 Introduction

Our main result is using the Yamada-Watanabe condition, which relaxes the
Lipschitz condition for the pathwise uniqueness of the solutions of stochastic
differential equation in [3],[4] in the proof the pathwise uniqueness of (1). Be-
fore starting the main theorem, we start with some definitions and theorems
necessary for the sequel.

2 Materials and Methods

Definition 1. The triple (2,3, P) consisting of a sample space 2, the o-algebra
S of subsets of Q and a probability measure P defined on ¥ is known as
a probability space.

Definition 2. A filtration is a family {S:} >0y of increasing sub-c-algebra of
(1,8 CF, CY, V 0<t<s <o)
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Remark 1. The probability space together with its family of increasing sub-o-
algebra denoted by (2, S, 3¢, P) is called a standard filtration space.

Definition 3. Let (,3,P) be a probability space. A real-valued function X :

Q — R is called S-measurable or random variable, if for all a € R, {w € Q :
X(w)<a}eS

Definition 4. A family of random wvariables Xy,t € I , where I C R is an
interval defined on a probability space (2, 3,P) and indexed by a parameter t
takes all possible values of I is called a stochastic process.

Definition 5. Let (2,3, 3¢, P) be a standard filtration space and I C R be an
interval. The stochastic process X; is said to be Si-adapted if for all t € I, the
random variable X; is S¢-measurable.

We further define the expectation E[X] = [, XdP, for any random variable
X.

Theorem 1 (Bihari’s inequality). Let I denote an interval of the real line of
the form [a, 00),[a,b] or [a,b) with a < b. Let B,v: I — [0,00) and 7y : [0,00) —
[0,00) be three functions, where v and 7y are continuous on I, B is continuous

on the interior of I with f B(s)ds < oo for allt € I and ~y is non-decreasing
and strictly positive on (0, 00),

a. If, for some a > 0, the function v satisfies the inequality

v(t) <a +/ B(s)y(v(s))ds, tel (2)

¢
v(t) < F1 </ ﬁ(s)ds), tela,T]
where F~1 is the inverse function of
F(x / — x> 0.
) o 1Y)

andT:sup{teﬂf;ﬂ( ds <foo,yd‘z)

then

b. If the function v satisfies (2) with « =0 and fL Vdg =400 V>0
then v(t) =0t € I.

Proof. for proof see [5]. O
Definition 6. £2(2,H); collection of all strongly measurable H-valued random
variables is a banach space equipped with the norm || o ||g2:= [E || @ [|3/] 1/2

Theorem 2. Consider the SPDE’s

du(x,t) = Z aqg(z,t)Du(z, t)dt + b(u(z, t))dt + o(u(z,t))dB(t)

lg|<2m

with non-local initial condition

u(z,0) = ¢(v) + Z ciu(w,t;)



where x € R™, B(t) is a standard Brownian motion defined over the standard
ﬁltmtion space (97%7%157?))7 D = (Dlu"' 7Dn)7 q = (Q1>'" uq’n)7 Di = %7
D1 =D .- D% and q is a multi-indez, |q| = @+ +qn, 0 <t; < -+ < tp.
Equation (1) is called parabolic in the region T' = {(x,t) : @ € R",t > 0}, if for
any point (x,t) € T the real part of the A-roots of the characteristic equation

Det |(-1)™ Z aq(z,t)¢? — AI| =0,

lg|=2m

satisfy the inequality Re[A(x,t,&)] < —6|¢|™ where § is a positive constant,
e R g1 =¢] - &0 T s the unit matriz. We suppose that the coefficients
aq, gl < 2m are continuous and bounded on R™' and satisfy the HOlder
condition with respect to x. Under these conditions, there exists a fundamental
solution ©(x,t,y,0) which satisfies

1. % = Z‘Q|S2m aq(x’t)DqQ(xvta:%e)a t> 0, T,y € R™.
2. % and D?© € C(Ty) such that Ty = {(x,t,y,0) € R?" x (0,00) X
(0,00)}, lg| <2m.

2m =1 n+|q|
Zm—1 t2m—1’< = ——5"

3. ” Dq(l',t,%e) ”S [%]671%417(1 = Z?:l |:L'1 — Y
and A1, As are positive constants.

Definition 7. By a solution of the equation (1), we mean a family of stochastic
processes X = {u, B(t)} defined on a standard filtration space (Q,, 3¢, P) such
that

1. With probability one, u and B(t) are continuous in t and B(0) = 0.
2. They are adapted to Sy , i.e., for each t, u and B(t) are S¢-measurable.

3. B(t) is a system of S -martingale such that (B%, B7) = §;; - t,
Z.vj = ]-727"' y 1.

4. Theorem (2) holds.
5. T ={u,B(t)} satisfies

u(x,t) = . O(z,t,y,0)uly, 0)dy
i /0 /ne(x’t’y’s)b(u(y75))dyds

+ / O(z,t,y, s)b(u(y, s))dydB(s). (3)
0o JRn

where the integral by dB(s) is understood in the sense of the stochastic
integral.

Definition 8 (Pathwise Uniqueness). We shall say that the pathwise (strong)
uniqueness holds for (1) if, for any two solutions ¥ = {u,B(t)} and T =

{u, B(t)}, defined on a same filtration space (2,3, 3¢, P), u(x,0) = 4(x,0) and
B(t) = B(t) imply u = 4.



It supposed that cM* < 1 where ¢ = Y0 |¢;|.

Theorem 3. Ifu € C([0,T];H) is an S;-adapted stochastic process and satisfies
equation (3), then u(x,t) satisfies the following equation

u(e,t) = ZOAO@) + ZOAY e /0 " Z(t)b(u(w, 5))ds

p

b ZOATY /0 " Z(t)o(u(w, 5))dB(s)

+ /O Z(t)b(u(z, 1))ds + /0 Z()o(ulx, ))dB(s). (@)

where A =1— 5" ¢;Z(t;) and Z(t) is an operator defined as

Z)f= [ ©O(z,ty,0)fdy

Rﬂ,
Proof.

P
Zciu(x,ti) = O(z,ti,y,0) ZC] u(y, t;
i=1
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using u(z,0) = ¢(x) + >4, cju(w, t;) and multiply with Z(¢),

P

ZW)(x) + Z(t) Y cule ti) = Z(O)g(x) + ZW)A Y eiZ(ti)(x)

=1 =1

+20ATY /0 " Z(t)b(u(z, 5))ds

+ 20Ny /0 " Z(t)o(u(z, 5))dB(s),

It is easy to see that A= =T+ A=t Y"P_ ¢;Z(t;) , then we get the result. [

3 Main Result

In this section, we state and discuss the main theorem for this paper.

0’1(1’1) e 0
Theorem 4. Let o(z) = : : , b(w) = (bi(z), -+, bu(2))

O “ee a'n (xn)
such that:

1. There exists a positive increasing function p(o), o € (0,00) such that
|Ui(T)_0i(n)| Sp(lT_an TvneRv i=1,2--,n
and

/ p~*(0)do = +o0
0+

2. There exists a positive increasing concave function (), o € (0,00) such
that

bi(z) =bi(W)| < sz -y ), =yeR", i=12--,n
and
/ k1 (0)do = +oo
0+
3. Theorem (2) holds.

then the pathwise uniqueness of the solutions holds for (1).
Proof. Let ag=1>a; > as > --- > ap — 0 be defined by
ag ay AR —1
/ p~*(0)do = 1,/ p~2(e)do =2, / p2(e)do=k,---
al a2 ag

then there exists a twice continuity differentiable function t(g) on [0, 00) such
that v5(0) =0,

O ) 0 S 0 é ag
(o) = between 0 and 1 , ap<po<ag
1 ) 0 2 Af—1



and

0 v 0<eo<a
V(o) =1 between 0 and %-p2(0) , ar<o<ap
0 , 02 ag-1

we extend ¢ (0) on (—oo,00) symmetrically, i.e., ¥ (0) = ¥x(|o|) clearly 15 (o)
is a twice continuously differentiable function on (—oo, c0) such that (o) 1 |o|
as k — oo.

Now let {u, B(t)} and {u, B(t)} be two solutions of (1) on the same proba-
bility space such that u(z,0) = @(x,0) and B(t) = B(t) then,

Wz, t) — (2, 1) = / Z(t y.5)) — 03 (@ (y, 5))] dBI (s)

0

+Z(1)A /z (1) [0 (w? (4, 5)) — 03 (3, 5))] dB? (5)

+Z(t)A?

Mv EME

cz / 2(t y,5)) — b (i(y, 5))] ds

=1 0

+ / Z(t) [b; (u(y. ) — bs(a(y, 5))] ds
0

According to theorem (3), there is a positive constant M such that || Z(t) ||x <
M, and by Ito’s formula,

*

r(u(e, t) — a(, 1) = /0 V(! — @) 2(8) [0 (u (y, 9)) — 05 (@ (y, ))] dB (s)

+ [Nt -

t ) ) 1 L t;
+ /0 wuuﬂ—uﬂ)[Z(t)A gci /O Z(tn{bj(u(y,s))—b;-(u(y,s))}} ds

p ti ) ) )
ZOATTY e / Z(t){o; (W (y,8)) — o (@ (y, S))}} dB(s)
i=1 70

+1/2/ P (u? —al)

2
Z(t)A~ 1ch / t3) {0 (u (3, >)—aj(uﬂ'<y,s)>}} ds
+ / W (u? — @) [Z(){b; (uly, 5)) — b; (aly, s))}] ds

+1/2 /0 Wl — @) [Z2() {05 (3, 5)) — o5 (@ (3, 9))}] 2 ds
=h+Io+ 13+ 14+ 15+ Is

It is clear that E[I;] = E[I3] = 0 and since ¢, is uniformly bounded, « is
concave

I E[L5] ||

IN

k/ E[s(] u—a ) ds
k1/0 KE || u—a])ds

IN



by Jensen’s inequality. Similarly for I3.
We have, for Ig

t
e [l < 1/2/0 VR — @) || Z(t) || p*( w' — " [)ds

< ko -t max "(0)p?
2 ap<lo|<ak—1 [ k(g)p (Q)]

2
k2~t'E%O as k — oo

IN

Similarly for Iy.
Where k; and ko are positive constants. Also, 9 (u? — ') 1| u® — @' | as
k — oo,

t
E(\Uz—ﬂl |)§/€1/ KE|u—al])ds, i=1,2,---,n
0

and hence, we have

t
Blu-ul) <k [ o u-a s
0
where k3 is positive constant.

By using theorem (2), this implies E(|| v — @ ||) = 0 and therefore u =a O

References

[1] R.Durrett, Stochastic Calculus: A practical Introduction, (1996).

[2] Brent Oksendal, Stochastic Differential Equations, Fifth Edition, Springer-
Verlag.

[3] T. YAMADA and S. WATANABE, On the uniqueness of solutions of
stochastic differential equations, J. Math. Kyoto Univ, 155-167, (1971) .

[4] T. YAMADA and S. WATANABE, On the uniqueness of solutions of stochas-
tic differential equations II, J. Math. Kyoto Univ, 553-563, (1971) .

[5] S. ALTAY and UWE SCHMACK, Lecture notes on the Yamada- Watan-
abe Condition for the pathwise uniqueness of solutions of certain stochastic
Differential Equations, (2013).

[6] Mahmoud M. El-Borai and Farouk K. Assaad,On the asymptotic Behavior of
Some Nonlinear Parabolic Systems, KYUNGPOOK Math. J, 37-42, 37(1997).

[7] Mahmoud M. El-Borai, On some fractional evolution equations with non-
local conditions, International J. of pure and appl. Math. , vol 24, No. 3,
405-415, (2005).

[8] Mahmoud M. El-Borai, On some stochastic fractional integro-differential
equations, Advanced in dynamical system and application, vol.1, No.1, 49-57,

(2006).



[9] Mahmoud M.El-Borai, Khairia El-Said El-Nadi, Osama L. Mostafa and
hamdy M. Ahmed, Volterra Equations with fractional stochastic integrals,
Mathematical problems in Engineering, 453-468, 5 (2004).

[10] K. Balachandran, S. Kiruthika, FExistence results for fractional integro-
differential equations with nonlocal condition via resolvent operators, Comput.
Math. Appl, 1350-1358, 62 (2011).



