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Abstract

In this paper, we shall discuss the uniqueness ”pathwise uniqueness”
of the solutions of stochastic partial differential equations (SPDEs) with
non-local initial condition,

du(x, t) =
∑
|q|≤2m

aq(x, t)Dqu(x, t)dt+ b(u(x, t))dt+ σ(u(x, t))dB(t)

u(x, 0) = φ(x) +

p∑
i=1

ciu(x, ti) (1)

We shall use the Yamada-Watanabe condition for ”pathwise uniqueness”
of the solutions of the stochastic differential equation; this condition is
weaker than the usual Lipschitz condition. The proof is based on Bihari’s
inequality.

Keywords: Stochastic partial differential equation, Pathwise uniqueness,
Bihari’s inequality.

1 Introduction

Our main result is using the Yamada-Watanabe condition, which relaxes the
Lipschitz condition for the pathwise uniqueness of the solutions of stochastic
differential equation in [3],[4] in the proof the pathwise uniqueness of (1). Be-
fore starting the main theorem, we start with some definitions and theorems
necessary for the sequel.

2 Materials and Methods

Definition 1. The triple (Ω,=,P) consisting of a sample space Ω, the σ-algebra
= of subsets of Ω and a probability measure P defined on = is known as
a probability space.

Definition 2. A filtration is a family {=t}(t>0) of increasing sub-σ-algebra of
= (i.e.,=t ⊂ =s ⊂ =, ∀ 0 ≤ t < s <∞).
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Remark 1. The probability space together with its family of increasing sub-σ-
algebra denoted by (Ω,=,=t,P) is called a standard filtration space.

Definition 3. Let (Ω,=,P) be a probability space. A real-valued function X :
Ω → R is called =-measurable or random variable, if for all a ∈ R, {ω ∈ Ω :
X(ω) ≤ a} ∈ =.

Definition 4. A family of random variables Xt, t ∈ I , where I ⊂ R is an
interval defined on a probability space (Ω,=,P) and indexed by a parameter t
takes all possible values of I is called a stochastic process.

Definition 5. Let (Ω,=,=t,P) be a standard filtration space and I ⊂ R be an
interval. The stochastic process Xt is said to be =t-adapted if for all t ∈ I, the
random variable Xt is =t-measurable.

We further define the expectation E[X] =
∫

Ω
XdP, for any random variable

X.

Theorem 1 (Bihari’s inequality). Let I denote an interval of the real line of
the form [a,∞),[a, b] or [a, b) with a < b. Let β, υ : I → [0,∞) and γ : [0,∞)→
[0,∞) be three functions, where υ and γ are continuous on I, β is continuous

on the interior of I with
∫ t
a
β(s)ds < ∞ for all t ∈ I and γ is non-decreasing

and strictly positive on (0,∞),

a. If, for some α > 0, the function υ satisfies the inequality

υ(t) ≤ α+

∫ t

a

β(s)γ(υ(s))ds, t ∈ I (2)

then

υ(t) ≤ F−1

(∫ t

a

β(s)ds

)
, t ∈ [a, T ]

where F−1 is the inverse function of

F (x) =

∫ x

a

dy

γ(y)
, x > 0.

and T = sup{t ∈ I|
∫ t
a
β(s)ds <

∫∞
α

dy
γ(y)}

b. If the function υ satisfies (2) with α = 0 and
∫ x

0
dy
γ(y) = +∞ ∀x > 0

then υ(t) = 0 t ∈ I.

Proof. for proof see [5].

Definition 6. L2(Ω,H); collection of all strongly measurable H-valued random

variables is a banach space equipped with the norm ‖ • ‖L2 :=
[
E ‖ • ‖2H

]1/2
Theorem 2. Consider the SPDE’s

du(x, t) =
∑
|q|≤2m

aq(x, t)D
qu(x, t)dt+ b(u(x, t))dt+ σ(u(x, t))dB(t)

with non-local initial condition

u(x, 0) = φ(x) +

p∑
i=1

ciu(x, ti)
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where x ∈ Rn, B(t) is a standard Brownian motion defined over the standard
filtration space (Ω,=,=t,P), D = (D1, · · · , Dn), q = (q1, · · · , qn), Di := ∂

∂xi
,

Dq = Dq1
1 , · · · , Dqn

n and q is a multi-index, |q| = q1 + · · ·+qn, 0 ≤ t1 < · · · < tp.

Equation (1) is called parabolic in the region Γ = {(x, t) : x ∈ Rn, t ≥ 0}, if for
any point (x, t) ∈ Γ the real part of the λ-roots of the characteristic equation

Det

(−1)m
∑
|q|=2m

aq(x, t)ξ
q − λI

 = 0,

satisfy the inequality Re[λ(x, t, ξ)] ≤ −δ|ξ|m where δ is a positive constant,
ξ ∈ Rn, ξq = ξq11 · · · ξqnn , I is the unit matrix. We suppose that the coefficients
aq, |q| ≤ 2m are continuous and bounded on Rn+1 and satisfy the HÖlder
condition with respect to x. Under these conditions, there exists a fundamental
solution Θ(x, t, y, θ) which satisfies

1. dΘ
dt =

∑
|q|≤2m aq(x, t)D

qΘ(x, t, y, θ), t > 0, x, y ∈ Rn.

2. ∂Θ
∂t and DqΘ ∈ C(Γ1) such that Γ1 = {(x, t, y, θ) ∈ R2n × (0,∞) ×
(0,∞)}, |q| ≤ 2m.

3. ‖ Dq(x, t, y, θ) ‖≤ [A1

tζ
]e−A2ζ1 , ζ1 =

∑n
i=1 |xi − yi|

2m
2m−1 t

−1
2m−1 , ζ = −n+|q|

2m
and A1, A2 are positive constants.

Definition 7. By a solution of the equation (1), we mean a family of stochastic
processes Υ = {u,B(t)} defined on a standard filtration space (Ω,=,=t,P) such
that

1. With probability one, u and B(t) are continuous in t and B(0) = 0.

2. They are adapted to =t , i.e., for each t, u and B(t) are =t-measurable.

3. B(t) is a system of =t-martingale such that 〈Bi, Bj〉 = δij · t,
i, j = 1, 2, · · · , n.

4. Theorem (2) holds.

5. Υ = {u,B(t)} satisfies

u(x, t) =

∫
Rn

Θ(x, t, y, 0)u(y, 0)dy

+

∫ t

0

∫
Rn

Θ(x, t, y, s)b(u(y, s))dyds

+

∫ t

0

∫
Rn

Θ(x, t, y, s)b(u(y, s))dydB(s). (3)

where the integral by dB(s) is understood in the sense of the stochastic
integral.

Definition 8 (Pathwise Uniqueness). We shall say that the pathwise (strong)
uniqueness holds for (1) if, for any two solutions Υ = {u,B(t)} and Ῡ =
{ū, ¯B(t)}, defined on a same filtration space (Ω,=,=t,P), u(x, 0) = û(x, 0) and
B(t) ≡ B̂(t) imply u ≡ ū.
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It supposed that cM∗ < 1 where c =
∑p
i=1 |ci|.

Theorem 3. If u ∈ C([0, T ];H) is an =t-adapted stochastic process and satisfies
equation (3), then u(x, t) satisfies the following equation

u(x, t) = Z(t)Λ−1φ(x) + Z(t)Λ−1

p∑
i=1

ci

∫ ti

0

Z(ti)b(u(x, s))ds

+ Z(t)Λ−1

p∑
i=1

ci

∫ ti

0

Z(ti)σ(u(x, s))dB(s)

+

∫ t

0

Z(t)b(u(x, t))ds+

∫ t

0

Z(t)σ(u(x, t))dB(s). (4)

where Λ = I −
∑p
i=1 ciZ(ti) and Z(t) is an operator defined as

Z(t)f =

∫
Rn

Θ(x, t, y, 0)fdy

Proof.

p∑
i=1

ciu(x, ti) =

p∑
i=1

ci

∫
Rn

Θ(x, ti, y, 0)[φ(y) +

p∑
j=1

cju(y, ti)]

+

p∑
i=1

ci

∫ ti

0

∫
Rn

Θ(x, ti, y, s)b(u(y, s))dyds

+

p∑
i=1

ci

∫ ti

0

∫
Rn

Θ(x, ti, y, s)σ(u(y, s))dydB(s)

p∑
i=1

ciu(x, ti) −
p∑
i=1

ci

p∑
j=1

cj

∫
Rn

Θ(x, ti, y, 0)u(y, ti)

=

p∑
i=1

ci

∫
Rn

Θ(x, ti, y, 0)φ(y)

+

p∑
i=1

ci

∫ ti

0

∫
Rn

Θ(x, ti, y, s)b(u(y, s))dyds

+

p∑
i=1

ci

∫ ti

0

∫
Rn

Θ(x, ti, y, s)?(u(y, s))dydB(s)

Λ

p∑
i=1

ciu(y, ti) =

p∑
i=1

ciZ(ti)φ(y) +

p∑
i=1

ci

∫ ti

0

Z(ti)b(u(x, s))ds

+

p∑
i=1

ci

∫ ti

0

Z(ti)σ(u(x, s))dB(s)
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using u(x, 0) = φ(x) +
∑p
i=1 ciu(x, ti) and multiply with Z(t),

Z(t)φ(x) + Z(t)

p∑
i=1

ciu(x, ti) = Z(t)φ(x) + Z(t)Λ−1

p∑
i=1

ciZ(ti)φ(x)

+ Z(t)Λ−1

p∑
i=1

ci

∫ ti

0

Z(ti)b(u(x, s))ds

+ Z(t)Λ−1

p∑
i=1

ci

∫ ti

0

Z(ti)σ(u(x, s))dB(s),

It is easy to see that Λ−1 = I + Λ−1
∑p
i=1 ciZ(ti) , then we get the result.

3 Main Result

In this section, we state and discuss the main theorem for this paper.

Theorem 4. Let σ(x) =

 σ1(x1) · · · 0
...

. . .
...

0 · · · σn(xn)

, b(x) = (b1(x), · · · , bn(x))

such that:

1. There exists a positive increasing function ρ(%), % ∈ (0,∞) such that

|σi(τ)− σi(η)| ≤ ρ(|τ − η|), τ, η ∈ R, i = 1, 2, · · · , n.

and ∫
0+

ρ−2(%)d% = +∞

2. There exists a positive increasing concave function κ(%), % ∈ (0,∞) such
that

|bi(x)− bi(y)| ≤ κ(‖ x− y ‖), x, y ∈ Rn, i = 1, 2, · · · , n.

and ∫
0+

κ−1(%)d% = +∞

3. Theorem (2) holds.

then the pathwise uniqueness of the solutions holds for (1).

Proof. Let a0 = 1 > a1 > a2 > · · · > ak → 0 be defined by∫ a0

a1

ρ−2(%)d% = 1,

∫ a1

a2

ρ−2(%)d% = 2, · · · ,
∫ ak−1

ak

ρ−2(%)d% = k, · · · .

then there exists a twice continuity differentiable function ψk(%) on [0,∞) such
that ψk(0) = 0 ,

ψ′k(%) =

 0 , 0 ≤ % ≤ ak
between 0 and 1 , ak ≤ % ≤ ak−1

1 , % ≥ ak−1
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and

ψ′′k (%) =

 0 , 0 ≤ % ≤ ak
between 0 and 2

k ·ρ
−2(%) , ak ≤ % ≤ ak−1

0 , % ≥ ak−1

we extend ψk(%) on (−∞,∞) symmetrically, i.e., ψk(%) = ψk(|%|) clearly ψk(%)
is a twice continuously differentiable function on (−∞,∞) such that ψk(%) ↑ |%|
as k →∞.

Now let {u,B(t)} and {ū, ¯B(t)} be two solutions of (1) on the same proba-
bility space such that u(x, 0) = ū(x, 0) and B(t) ≡ ¯B(t) then,

uj(x, t)− ūj(x, t) =

∫ t

0

Z(t)
[
σj(u

j(y, s))− σj(ūj(y, s))
]
dBj(s)

+Z(t)Λ−1

p∑
i=1

ci

∫ ti

0

Z(ti)
[
σj(u

j(y, s))− σj(ūj(y, s))
]
dBj(s)

+Z(t)Λ−1

p∑
i=1

ci

∫ ti

0

Z(ti) [bj(u(y, s))− bj(ū(y, s))] ds

+

∫ t

0

Z(t) [bj(u(y, s))− bj(ū(y, s))] ds

According to theorem (3), there is a positive constantM such that ‖ Z(t) ‖H≤
M , and by Ito’s formula,

ψk(u(x, t)− ū(x, t)) =

∫ t

0
ψ′k(uj − ūj)Z(t)

[
σj(uj(y, s))− σj(ūj(y, s))

]
dBj(s)

+

∫ t

0
ψ′k(uj − ūj)

[
Z(t)Λ−1

p∑
i=1

ci

∫ ti

0
Z(ti){σj(uj(y, s))− σj(ūj(y, s))}

]
dBj(s)

+

∫ t

0
ψ′k(uj − ūj)

[
Z(t)Λ−1

p∑
i=1

ci

∫ ti

0
Z(ti){bj(u(y, s))− bj(ū(y, s))}

]
ds

+1/2

∫ t

0
ψ′′k (uj − ūj)

[
Z(t)Λ−1

p∑
i=1

ci

∫ ti

0
Z(ti){σj(uj(y, s))− σj(ūj(y, s))}

]2
ds

+

∫ t

0
ψ′k(uj − ūj) [Z(t){bj(u(y, s))− bj(ū(y, s))}] ds

+1/2

∫ t

0
ψ′′k (uj − ūj)

[
Z(t){σj(uj(y, s))− σj(ūj(y, s))}

]2
ds

= I1 + I2 + I3 + I4 + I5 + I6

It is clear that E[I1] = E[I2] = 0 and since ψ′k is uniformly bounded, κ is
concave

‖ E[I5] ‖ ≤ k1

∫ t

0

E [κ(‖ u− ū ‖)] ds

≤ k1

∫ t

0

κ(E ‖ u− ū ‖)ds
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by Jensen’s inequality. Similarly for I3.
We have, for I6

‖ I6 ‖ ≤ 1/2

∫ t

0

ψ′′k (uj − ūj) ‖ Z(t) ‖2 ρ2(| ui − ūi |)ds

≤ k2 · t max
ak≤|%|≤ak−1

[
ψ′′k (%)ρ2(%)

]
≤ k2 · t ·

2

k
→ 0 as k →∞

Similarly for I4.
Where k1 and k2 are positive constants. Also, ψk(ui − ūi) ↑| ui − ūi | as

k →∞,

E(| ui − ūi |) ≤ k1

∫ t

0

κ(E ‖ u− ū ‖)ds, i = 1, 2, · · · , n

and hence, we have

E(‖ u− ū ‖) ≤ k3

∫ t

0

κ(E ‖ u− ū ‖)ds,

where k3 is positive constant.

By using theorem (2), this implies E(‖ u− ū ‖) = 0 and therefore u ≡ ū
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