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Abstract

This paper gives some techniques to compute the set of multiplicative inverses, which uses in the Advanced
Encryption Standard (AES).
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1 Introduction
Sometimes, we want to create another form to a specific mapping seeking for simplicity. In AES, the substitution
table is made for substituting a byte by another for all byte values from 0 to 255. The first operation in
constructing this table is computing !"! the multiplicative inverse of an input byte in Galois field (GF (28)), based
on the irreducible polynomial P(x) = x® + x* + x3 4+ x + 1. To do this, we can use the extended Euclidean
algorithm 21,
Although it is straightforward, some people think it is a complicated way.
Here, are some techniques to compute these multiplicative inverses.
2 The methodology
The multiplicative inverse of M(x) modulo P(x) is M~1(x) such that
M@)M™1(x) =1 (mod P(x)) - (1)
and this implies
PC) MM () —1] - (2)
we can take
P(x)=M@Mt(x)—-1 -3
Let T[M(x)] represents the multiplicative inverse of M(x) modulo P(x), and Q(x) = P(x) + 1, then
MQOOTIM()] =Q(x) - (4)
There is one of two possible equations:
M@AX) =Q(x) - (5)
or
M)A + B(x)] =Q(x) — (6)

In case 1,
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TM)] =Ax) - (7)

Q(x)
M(x) "’

The multiplicative inverse is
In case 2,
TIM(x)] = A(x) +B(x) - (8)

Write Eq (6) as

M@)AM) + Mx)B(x) =Q(x) - (9)
let

M@)A(x) = Q(x) —r(x) - (10)
where
r(x) = M(x)B(x) - (11)

rewrite Eq (11) as

r(x)C(x) =M(x) - (12)

then
1
B(x) = m - (13)
and since
1=Q(x) (mod P(x)) - (14)
we get
B(x) = % =T[C(x)] - (15)

and Eq (8) becomes

TM@)] =A() +T[C(x)] - (16)

To compute T[M(x)], we need to compute T[C(x)] =T [M(x)] _

r(x)

So, the multiplicative inverse of M(x) modulo P(x) equals q(x) = %, if there is no a remiander r(x) , and

equals q(x) plus the multiplicative inverse of % if there is a remainder r(x) .

3 Results and Discussion
Let us take some examples:

Example (1): Computing T(x)
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\ i \ M(x) \ q(x) \ r(x)

\ Q) |

‘ 1 ’ x x7+x3+x2+1‘ 0

so,
Tx)=x"+x3+x?+1

Example (2): Computing T (x?)

‘ x84+ xt+x3+x ‘

\ i \ M(x) \ q(x) \ r(x) \ Q) |
‘ 1 ’ x? ‘ x® +x% +x ‘ x ‘ B+ xt+x3+x ‘
then
T(x?) =x%+x%+x+T(x)
=x"+x+x3+x+1
Example (3): Computing T(x*)
i M(x) q(x) 7(x) Q)
1 x* x*+1 x3 4+ x x84+ xt+x3+x
2 x3+x x x? x*
3 x? x x x3 +x
4 x x 0 x3 +x

then
T(x*) = g1+ T{q, + Tlqs + T(qu)]}

=x*+14+T{x+Tx+ T}

We note that this technique iterates computing multiplicative inverse when r;(x) # 0, and we maybe face
computing a multiplicative inverse many times, in the example (3), we need to compute T(x) , T[x + T(x)],

and T{x + T[x + T(x)]}.
Instead of doing this, we put
M,(x) =r(x)+1 - (17)

and starting from the step (i = 2), we repeat the solution til r;(x) = 1.

fr,(x) =1, i =2, then

T[M()] = Ti[M(x)] = q;()T;—1 [M()]+T;—[M (x)]

where

T,IMX)] =1 - (19)

and
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T [M)] = q: ()T [M(X)] = q:(x) = (20)

M, (x) becomes r;(x) + 1 so, Q(x) must be Q(x) + 1, we prove the Eq (18) by the mathematical induction, (let
us just take the first step).

Wheni =2

T2 [M(x)] = q2 () Ty [M(x)]+To [M (x)]

M(x) [Q(x) — 1 (x)
zrl(x)+1[ M (x) ]+1

Q) +1
() +1

_ QM)
M, (x)

Example (4): Repeating compute T(x*) using this second technique.

i M(x) q(x) r(x) Q(x)

1 x* x*+1 x3+x xB+xt+x3+x
2 x3+x x x? x*

2! +x+1 x x2+x x*

3 x?+x x+1 1 x+x+1

r;3(x) =1, so, from Eq (18)
T[M(x)] = q3(x)T2[M (x)]+ T, [M (x)]
= q3(0)[q2 (), () + 1]+, (x)
=(@x+Dx*+D)+1]+x*+1
=x%+x° +x* + x?
To avoid repeating step (i = 2) , we use this technique when r; (x) # 0 immediately.
Example (5): Computing T(x® + x5 + x* + x?)

We found T(x*) = x® + x5 + x* + x?, let us compute T(x® + x> + x* + x2)

i M(x) q(x) r(x) Q(x)

1 | x%+x°+x*+x2 x?+x x® +x x8+xt+x3+x
2 x> +x+1 x+1 x*+1 x® + x5 + x* + x?
3 x*t+1 x 1 x>+x+1

rz3(x) =1, so, from Eq (18)
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TIM()] = qz () T2 [M()]+T, [M (x)]
= q3(0)[q2(x)q: (x) + 1]+, (x)
=x[(x+ D2 +x)+ 1] +x*+x

Conclusions

These techniques compute a multiplicative inverse of M(x) modulo P(x) by easy and clear steps, and when
r;(x) # 0, we can use the formula Eq (18), after using Eq (17).
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