An Introduction to Fuzzy Edge Coloring

${ }^{1}$ Jahir Hussain R and ${ }^{2}$ Kanzul Fathima K S
1,2 PG and Research Department of Mathematics, Jamal Mohamed College, Trichy-620020, Tamil Nadu, India, Cell No.: ${ }^{2}+919150198781$, hssn_jhr@yahoo.com and ${ }^{2}$ kanzulfathima@gmail.com.

Abstract

In this paper, a new concept of fuzzy edge coloring is introduced. The fuzzy edge coloring is an assignment of colors to edges of a fuzzy graph G. It is proper if no two strong adjacent edges of G will receive the same color. Fuzzy edge chromatic number of G is a least positive integer for which G has a proper fuzzy edge coloring. In this paper, the fuzzy edge chromatic number of different classes of fuzzy graphs and the fuzzy edge chromatic number of fuzzy line graphs are found. Isochromatic fuzzy graph is also defined.

Keywords

Fuzzy edge coloring; fuzzy edge chromatic number; fuzzy bipartite graph; fuzzy cycle; complete fuzzy graph; fuzzy line graph.

Council for Innovative Research

Peer Review Research Publishing System

Journal: JOURNAL OF ADVANCES IN MATHEMATICS
Vol. 11, N o. 10
www.cirworld.com, editor@cirworld.com

INTRODUCTION

Fuzzy graph theory was introduced by Azriel Rosenfeld in 1975. Though it is very young, it has numerous applications in almost all fields. Fuzzy graph coloring is one of the most important concepts in fuzzy graph theory. In particular, fuzzy edge coloring concept can be applied to the problems like job scheduling, register allocation, exam scheduling, time tabling problem, assignment problem etc. In this paper, the fuzzy edge chromatic number of different classes of fuzzy graphs and fuzzy line graphs are discussed. In addition, the isochromatic fuzzy graph is defined and some of the isochromatic fuzzy graphs are presented.

1. PRELIMINARIES

A fuzzy graph G is a pair of functions $\mathrm{G}=(\sigma, \mu)$ where $\sigma: \mathrm{V} \rightarrow[0,1]$, where V is a vertex (node) set and $\mu: \mathrm{V} \times \mathrm{V} \rightarrow[0,1]$, a symmetric fuzzy relation on σ. The underlying crisp graph of $\mathrm{G}=(\sigma, \mu)$ is $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, where $\mathrm{E} \subseteq \mathrm{V} \times \mathrm{V}$. Strength of a path in a fuzzy graph G is the weight of the weakest arc (edge) in that path. A weakest arc is an arc of minimum weight. A strongest path between two nodes u, v is a path corresponding to maximum strength between u and v. The strength of the strongest path is denoted by $\mu^{\infty}(u, v)$. An edge (x, y) is said to be a strong if $\mu^{\infty}(x, y)=\mu(x, y)$. A cycle in a fuzzy graph is said to be fuzzy cycle if it contains more than one weakest arc. A fuzzy graph G is said to be strong if $\mu(x, y)=\sigma(x) \wedge \sigma(y), \forall$ $(\mathrm{x}, \mathrm{y}) \in \mathrm{E}$. A fuzzy graph G is said to be complete if $\mu(\mathrm{x}, \mathrm{y})=\sigma(\mathrm{x}) \wedge \sigma(\mathrm{y}), \forall \mathrm{x}, \mathrm{y} \in \mathrm{V}$.
Two nodes of a fuzzy graph are said to be fuzzy independent if there is no strong edge between them. A subset S of V is said to be fuzzy independent of G if any two nodes of S are fuzzy independent. A fuzzy graph G is said to be fuzzy bipartite if V can be partitioned into two fuzzy independent sets V_{1} and V_{2}. A fuzzy bipartite graph G is said to be fuzzy complete bipartite if there exist a strong edge between every pair of vertices of V_{1} and V_{2}. If (x, y) is strong arc then x and y are strong adjacent.

Fuzzy coloring is an assignment of colors to vertices of a fuzzy graph G. It is said to be proper if every strong adjacent vertices have different colors. Fuzzy chromatic number of a fuzzy graph G is a minimum number of colors needed for proper fuzzy coloring of G . It is denoted by $\chi_{\mathrm{f}}(\mathrm{G})$. The strong degree of a vertex v is the number of vertices that are strong adjacent to v. It is denoted by $d^{s}(v)$. The minimum strong degree of G is $\delta^{s}(G)=\min \left\{d^{s}(v) / v \in V\right\}$. The maximum strong degree of G is $\Delta^{s}(G)=\max \left\{d^{s}(v) / v \in V\right\}$. A fuzzy graph G is said to be strong regular fuzzy graph if $\delta^{s}(G)=\Delta^{s}(G)=k$, for some constant k.

2. FUZZY EDGE COLORING

Definition 2.1: Two edges of a fuzzy graph G are strong adjacent if they are strong and have a common vertex.
Definition 2.2: Two edges of G are fuzzy edge independent if they are not strong adjacent. The fuzzy edge independence number $\beta^{1}(\mathrm{G})$ is the number of elements in the maximum fuzzy edge independent set of G.

Definition 2.3: A subset S of E is said to be fuzzy edge independent (fuzzy matching) if any two edges of S are fuzzy edge independent.

Definition 2.4: A fuzzy k-edge coloring of a fuzzy graph G is an assignment of k colors to edges of G.
Definition 2.5: A fuzzy k-edge coloring is said to proper if no two strong adjacent edges have the same color.
Definition 2.6: A fuzzy edge chromatic number of a fuzzy graph G is the minimum number of colors needed for proper fuzzy edge coloring. It is denoted by $\chi_{\mathrm{f}}{ }^{1}(\mathrm{G})$.

Note 2.7: i. Clearly every fuzzy graph G has a proper fuzzy s - edge coloring, where s is the number of strong arcs in G.
ii. If G has proper fuzzy k-edge coloring then G has also proper fuzzy k^{1}-edge coloring, for every $k^{1}>k$.

Theorem 2.8: If G is a fuzzy graph such that its underlying crisp graph is a path P_{n} of length n then $\chi_{f}^{1}(G)=2$.

Proof

Let G be a fuzzy graph such that G^{*} is a path of length n. Clearly every edge of G is strong. So we can give color 1 and 2 alternatively to edges of G. This is a proper fuzzy edge coloring. Hence $\chi_{f}{ }^{1}(G)=2$.

Theorem 2.9: The fuzzy edge chromatic number of complement of a complete fuzzy graph is 0 .
Proof
Let G be a complete fuzzy graph.
Since G is complete, $\mu(x, y)=\sigma(x) \wedge \sigma(y), \forall x, y \in V$.
By the definition of complement of a fuzzy graph,

$$
\begin{aligned}
& \bar{\mu}(\mathrm{x}, \mathrm{y})=\sigma(\mathrm{x}) \wedge \sigma(\mathrm{y})-\mu(\mathrm{x}, \mathrm{y}) \\
& \therefore \bar{\mu}(\mathrm{x}, \mathrm{y})=\sigma(\mathrm{x}) \wedge \sigma(\mathrm{y})-\sigma(\mathrm{x}) \wedge \sigma(\mathrm{y})
\end{aligned}
$$

$$
=0 .
$$

Thus \bar{G} does not have any edge. Hence $\chi_{\mathrm{f}}{ }^{1}(\mathrm{G})=0$.
Theorem 2.10: If G is a null fuzzy graph then $\chi_{f}^{1}(G)=0$.

Proof

Since G does not have any edge, $\chi_{\mathrm{f}}{ }^{1}(\mathrm{G})=0$.
Theorem 2.11: Let G be a fuzzy graph such that G^{*} is a cycle. If G contains only one weakest arc then $\chi_{f}^{1}(G)=2$.
Proof
Let G be a fuzzy graph on a cycle of length n. Then we have two cases.
Case 1: let $n \equiv 1(\bmod 2)$. Then $n=2 m+1, m \geq 1$.
Let $e_{1}, e_{2} \ldots e_{n}$ be n edges of G. Now assume that G contains only one weakest arc, say e_{1}. Assign color 1 to e_{1}, e_{2}, e_{4}, $e_{6} \ldots e_{2 m}$, since e_{1} is weakest arc and color 2 to $e_{3}, e_{5}, e_{7} \ldots e_{2 m+1}$. This is a proper fuzzy edge coloring. Hence $\chi_{f}{ }^{1}(G)=2$.
Case 2: let $n \equiv 0(\bmod 2)$. Then $n=2 m, m \geq 1$.
Let $e_{1}, e_{2} \ldots e_{n}$ be edges of G. Now color the edges $e_{1}, e_{3} \ldots e_{2 m-1}$ as 1 and $e_{2}, e_{4} \ldots e_{2 m}$ as 2 . Clearly this coloring is proper. Hence $\chi_{\mathrm{f}}{ }^{1}(\mathrm{G})=2$.
Theorem 2.12: Let G be a fuzzy cycle of length n. Then $X_{f}{ }^{1}(G)=\left\{\begin{array}{l}2, \text { if } n \text { is even } \\ 3, \text { if } n \text { is odd }\end{array}\right.$

Proof

Case i. Let G be a fuzzy cycle of even length and $e_{1}, e_{2} \ldots e_{2 m}$ be edges of G. In G every edge is strong. Now assign color 1 to $e_{1}, e_{2} \ldots e_{2 m-1}$ and color 2 to $e_{2}, e_{4} \ldots e_{2 m}$. This assignment will give a proper fuzzy edge coloring. Hence $\chi{ }_{f}^{1}(G)=2$.

Case ii. Let G be a fuzzy cycle of odd length and $e_{1}, e_{2} \ldots e_{2 m+1}$ are edges of G. Now give color 1 to $e_{1}, e_{3} \ldots e_{2 m-1}$ and 2 to $e_{2}, e_{4} \ldots e_{2 m}$. All edges of G are colored except $e_{2 m+1}$. This coloring is proper fuzzy edge coloring. Since $e_{2 m+1}$ is strong adjacent to e_{1} which is colored as 1 and $e_{2 m}$ which is colored as 2 , we cannot give color 1 or 2 to $e_{2 m+1}$. So assign another color 3 to $\mathrm{e}_{2 \mathrm{~m}+1}$. Thus $\chi_{\mathrm{f}}^{1}(\mathrm{G})=3$.
Note 2.13: Since there is at least $\Delta^{S}(\mathrm{G})$ strong edges must have different color for every proper fuzzy edge coloring, $\chi_{\mathrm{f}}{ }^{1}(\mathrm{G}) \geq \Delta^{\mathrm{s}}(\mathrm{G})$.
Theorem 2.14: Let G be a fuzzy graph. Then the maximum number of strong edges in a fuzzy edge independent set of G is $\left\lceil\frac{n-1}{z}\right\rceil$.

Proof
We prove this theorem in two cases.
Case 1. Let G be a fuzzy graph containing only strong edges. Choose any one edge e_{1} from G and remove the edges which are strong adjacent to e_{1}. If the resulting graph will contain at least one edge other than e_{1}, then go to the next step, otherwise stop. Choose another edge e_{2} and remove all edges which are strong adjacent to e_{2}. If the resulting graph will contain at least one edge other than e_{1} and e_{2}, then continue the process otherwise stop the process. Continuing in this way, the process is terminated when there is no edge in the resulting fuzzy graph or the resulting fuzzy graph will contain K_{2}. If n is even, the resulting fuzzy graph in the last step will contain K_{2} and include this K_{2} in the set $\left\{\mathrm{e}_{1}, \mathrm{e}_{2} \ldots\right\}$.
Claim: The number of edges in the set $\left\{e_{1}, e_{2} \ldots\right\}$ is at most $\frac{n-1}{2}$.
The number of edges we remove in the first step is at most $2(n-2)$, in second step is at most $2(n-4) \ldots$ and in last step is at most $2(\mathrm{n}-(\mathrm{n}-1))=2$.
Thus the number of edges in the set $\left\{\mathrm{e}_{1}, \mathrm{e}_{2} \ldots\right\}$

$$
\begin{aligned}
& \leq \frac{n(n-1)}{2}-2(n-2)-2(n-4)-2(n-6) \ldots-(2(n-(n-1)) \\
& \quad=\frac{n(n-1)}{2}-2[(n-2)+(n-4)+(n-6) \ldots+(1)] \\
& \quad=\frac{n(n-1)}{2}-2[1+3+\cdots+(n-2)]=\frac{n(n-1)}{2}-2\left[\left(\frac{n-1}{2}\right)\left(\frac{n-1}{2}\right)\right]=\frac{n-1}{2}, \text { if } n \text { is odd. }
\end{aligned}
$$

If n is even, the number of edges in the set $\left\{e_{1}, e_{2} \ldots\right\}$ is $\left\lceil\frac{n-1}{2}\right\rceil$.

Case 2: Consider a fuzzy graph with not every edge is strong. Let S be a fuzzy edge independent set of G. Put all edges which are not strong adjacent in S. Then the resulting fuzzy graph G^{1} is a fuzzy graph containing only strong edges. Applying case 1 to G^{1} we have at most $\left[\frac{n-1}{z}\right\rceil$ strong edges.
Theorem 2.15: If $G=K_{n}$ is a complete fuzzy graph on n vertices, then $\beta^{1}(G)=\left\lceil\frac{n-1}{2}\right\rceil$.

Proof

Let S be a maximum fuzzy edge independent set of G. Since G is complete, it have $\frac{n(n-1)}{z}$ strong edges and each edge is strong adjacent to $(n-2)+(n-2)=2(n-2)$ edges. Choose any one edge in G, say e_{1}. Put e_{1} in S. We know that e_{1} is strong adjacent to $2(n-2)$ edges. To find another edge e_{2} which is independent to e_{1}, remove $2(n-2)$ strong edges which are strong adjacent to e_{1}. The resulting fuzzy graph will contain two components, namely K_{2} \& K_{n-2}. Clearly this K_{2} is e_{1}. Choose any one edge in K_{n-2}, say e_{2} and put it in S. Since e_{2} is strong adjacent to $2(n-4)$ edges, remove these edges to find another edge e_{3} which is independent to $e_{1} \& e_{2}$. Then the resulting fuzzy graph will contain three components, namely $K_{2}\left(=e_{1}\right), K_{2}\left(=e_{2}\right) \& K_{n-4}$. This process can be repeated until $K_{n-(n-1)}=K_{1}$ is obtained for n is odd and K_{2} is obtained for n is even.
Let n be odd. Then

$$
\begin{aligned}
& |S|=\frac{n(n-1)}{2}-2(n-2)-2(n-4)-2(n-6) \ldots-(2(n-(n-1)) \\
& \quad=\frac{n(n-1)}{2}-2[(n-2)+(n-4)+(n-6) \ldots+(1)] \\
& \quad=\frac{n(n-1)}{2}-2[1+3+\cdots+(n-2)]=\frac{n(n-1)}{2}-2\left[\left(\frac{n-1}{2}\right)\left(\frac{n-1}{2}\right)\right]=\frac{n-1}{2} .
\end{aligned}
$$

If n is even, then $|S|=\left[\frac{n-1}{2}\right]$.
Theorem 2.16: Let G be a fuzzy graph. Then $\chi_{f}^{1}(G) \leq n$.

Proof

For any fuzzy graph $\mathrm{G}, \Delta^{\mathrm{S}}(\mathrm{G}) \leq \mathrm{n}-1$. Suppose that $\chi_{\mathrm{f}}^{1}(\mathrm{G})>\mathrm{n}$. Without loss of generality, let $\chi_{f}^{1}(\mathrm{G})=\mathrm{n}+1$. Then there exist $n+1$ maximal fuzzy edge independent sets $E_{1}, E_{2} \ldots E_{n+1}$ in G whose union is E and intersection is empty. By theorem 2.14, the number of strong edges in each maximal fuzzy edge independent set is at most $\left[\frac{n-1}{2}\right\rceil$.
The sum of number of strong edges in each $E_{i}^{\prime} s(x) \leq\left[\frac{n-1}{2}\right]+\left\lceil\frac{n-1}{2}\right]+\cdots+\left\lceil\frac{n-1}{2}\right](n+1)$ times.

$$
=\left\lceil\frac{\mathrm{n}-1}{2}\right\rceil[n+1]
$$

If n is odd, then $x \leq \frac{(n-1)(n+1)}{z}$ and if n is even $x \leq \frac{n(n+1)}{z}$. In both cases, we have a contradiction to the number of strong edges in G is at $\operatorname{most} \frac{n(n-1)}{z}$. Hence $\chi_{f}{ }^{1}(G) \leq n$.

Theorem 2.17: For any fuzzy graph $G, \Delta^{s}(G) \leq \chi_{f}^{1}(G) \leq \Delta^{s}(G)+1$.

Proof

By note 2.13, $\Delta^{\mathrm{S}}(\mathrm{G}) \leq \chi_{\mathrm{f}}{ }^{1}(\mathrm{G})$. It is enough to prove that $\chi_{\mathrm{f}}{ }^{1}(\mathrm{G}) \leq \Delta^{\mathrm{S}}(\mathrm{G})+1$. Suppose that $\chi_{\mathrm{f}}{ }^{1}(\mathrm{G})>\Delta^{\mathrm{S}}(\mathrm{G})+1$. Then by theorem 2.16, $\mathrm{n} \geq \alpha_{\mathrm{f}}^{1}(\mathrm{G})>\Delta^{\mathrm{S}}(\mathrm{G})+1$. This implies that $\mathrm{n}>\Delta^{\mathrm{S}}(\mathrm{G})+1$. This is a contradiction to $\Delta^{\mathrm{S}}(\mathrm{G}) \leq \mathrm{n}-1$. Hence $\chi_{\mathrm{f}}{ }^{1}(\mathrm{G}) \leq \Delta^{\mathrm{s}}(\mathrm{G})+1$.
Theorem 2.18: The fuzzy edge chromatic number of a fuzzy complete graph on n vertices is n, if n is odd and $n-1$, if n is even.

Proof

Let n be odd. By theorem 2.17, $\chi_{\mathrm{f}}{ }^{1}(\mathrm{G}) \leq \Delta^{\mathrm{S}}(\mathrm{G})+1$. This implies that $\chi_{\mathrm{f}}{ }^{1}(\mathrm{G}) \leq \mathrm{n}-1+1=\mathrm{n}$.
Suppose that $\chi_{f}^{1}(G)<n$. Then G can have proper ($n-1$)-fuzzy edge coloring $c=\left(E_{1}, E_{2} \ldots E_{n-1}\right)$. By theorem $2.15,\left|E_{1}\right| \leq \frac{n-1}{2},\left|E_{2}\right| \leq \frac{n-1}{2} \ldots\left|E_{n-1}\right| \leq \frac{n-1}{2}$.
$\operatorname{Now}\left|E_{1}\right|+\left|E_{2}\right|+\cdots+\left|E_{n-1}\right| \leq \frac{n-1}{2}+\frac{n-1}{2}+\cdots+\frac{n-1}{2}(n-1)$ times.
$=\frac{n-1}{2}[1+1+\cdots+1(n-1)$ times $]=\frac{(n-1)(n-1)}{2}$ which is a contradiction to the number of strong edges in G is $\frac{n(n-1)}{z}$. Hence $\chi_{f}^{1}(G)=n$.
Let n be even. By theorem 2.17, $\chi_{f}^{1}(G) \geq n-1$. G has proper $(n-1)$ - fuzzy edge coloring $c=\left(E_{1}, E_{2} \ldots E_{n-1}\right)$, since $|E|=\left|E_{1}\right|+\left|E_{2}\right|+\cdots+\left|E_{n-1}\right| \leq\left\lceil\frac{n-1}{2}\right](n-1)=\frac{n(n-1)}{2}$ is true. Therefore $\chi_{f}^{1}(G) \leq n-1$. Hence $\chi_{f}^{1}(G)=n-1$.

Remark 2.19:

$>$ A fuzzy bipartite graph G with bipartition (X, Y) can have at most $m n$ strong edges, where m is the number of elements in X \& n is the number of elements in Y .
> Maximum strong degree of a fuzzy bipartite graph G is at most $\max \{\mathrm{m}, \mathrm{n}\}$
Proposition 2.20: The maximum number of strong edges in a fuzzy edge independent set of a fuzzy bipartite graph G is $\min \{m, n\}$.
Theorem 2.21: If G is a fuzzy bipartite graph then $\chi_{f}{ }^{1}(\mathrm{G})=\Delta^{s}(\mathrm{G})$.

Proof

Let G be a fuzzy bipartite graph. For any fuzzy graph $G, \chi_{f}{ }^{1}(\mathrm{G}) \geq \Delta^{\mathrm{S}}(\mathrm{G})$.
Suppose $\chi_{f}{ }^{1}(\mathrm{G})>\Delta^{\mathrm{S}}(\mathrm{G})$. Then G can have $\Delta^{\mathrm{S}}+1$ maximal fuzzy edge independent set $\mathrm{E}_{1}, \mathrm{E}_{2} \ldots \mathrm{E}_{\Delta}{ }^{\mathrm{S}}+1$ whose union is E \& intersection is empty. Without loss of generality, $m \leq n$.By proposition 2.20 , number of strong edges in each E_{i} is at most m.

Thus the sum of number of strong edges in all $E_{i} \leq m+m+\ldots+m\left(\Delta^{S}(G)+1\right)$ times.

$$
=m\left(\Delta^{S}(G)+1\right) \leq m(n+1)
$$

This is a contradiction to the number of strong edges in G is at most mn. Hence $\chi_{f}^{1}(G)=\Delta^{S}(G)$.
Corollary 2.22: If G is complete fuzzy bipartite graph $K_{m, n}$ then $\chi f^{1}(G)=\max \{m, n\}$.

Proof

Let G be a complete fuzzy bipartite graph with bipartition X and Y . Here $|X|=\mathrm{m}$ and $|Y|=\mathrm{n}$. Since G is fuzzy bipartite, $\chi_{f}{ }^{1}(G)=\Delta^{S}(G)$ and since G is complete, there exist a strong edge between every node of X \& Y. Thus maximum strong degree $\Delta^{\mathrm{S}}(\mathrm{G})=\max \{\mathrm{m}, \mathrm{n}\}$. Hence proved.
Corollary 2.23: Let G be a fuzzy graph such that G^{*} is a star. Then $\chi_{f}^{1}(G)=n$.

Proof

Let G be a fuzzy graph such that G^{*} is a star. Clearly G is $K_{1, n}$. Thus $\chi_{f}^{1}(G)=\max \{1, n\}=n$.

3. ISOCHROMATIC FUZZY GRAPH

Definition 3.1: A fuzzy graph G is said to be isochromatic if $\chi_{f}(G)=\chi_{f}^{1}(G)$.

Examples of isochromatic fuzzy graphs

1. A complete fuzzy graph on odd nodes is isochromatic.
2. Let G be a fuzzy bipartite graph. If $\Delta^{\mathrm{S}}(\mathrm{G})=2$, then G is isochromatic.
3. If G is a complete fuzzy bipartite graph such that $\Delta^{\mathrm{S}}(\mathrm{G})=2$, then G is isochromatic.
4. Every fuzzy cycle is isochromatic.
5. If G is a fuzzy graph on a cycle then G is isochromatic.
6. If G is a fuzzy graph such that G^{*} is a path of length n then G is isochromatic.

4. FUZZY EDGE CHROMATIC NUMBER OF FUZZY LINE GRAPHS.

Definition 4.1: Let $G=(\sigma, \mu)$ be a fuzzy graph. Then the fuzzy line graph of G is $L(G)=(\lambda, \omega)$ whose vertices are edges of G and two vertices in $L(G)$ are adjacent if the corresponding edges are adjacent in G. The membership values of vertices and edges are given below

$$
\begin{aligned}
& \lambda(\mathrm{x})=\mu(\mathrm{x}), \forall \text { vertices in } \mathrm{L}(\mathrm{G}) \text { and } \\
& \begin{aligned}
\omega(\mathrm{x}, \mathrm{y}) & =\lambda(\mathrm{x}) \wedge \lambda(\mathrm{y}) \\
& =\mu(\mathrm{x}) \wedge \mu(\mathrm{y}), \forall \text { edges in } \mathrm{L}(\mathrm{G}) .
\end{aligned}
\end{aligned}
$$

The underlying crisp graph of a fuzzy graph G is $G^{*}=(V, E)$ and of $L(G)$ is $L(G)^{*}=\left(V^{1}, E^{1}\right)$ (here $\left.V^{1}=E\right)$.
Theorem 4.2: If every edge of a fuzzy graph G is strong then $\chi_{f}^{1}(G)=\chi_{f}(L(G))$.
Proof
Let G be a fuzzy graph in which every edge of G is strong. By the definition of line graph, every edge in $L(G)$ is also strong.

Let $\chi_{\mathrm{f}}{ }^{1}(\mathrm{G})=\mathrm{k}$. Then G has proper fuzzy k-edge coloring $\pi=\left(\mathrm{E}_{1}, \mathrm{E}_{2} \ldots \mathrm{E}_{\mathrm{k}}\right)$. Assume that $1,2 \ldots \mathrm{k}$ be the colors of edges of G in which no two strong adjacent edges have same color.
Now color the vertices of $L(G)$ such that a vertex in $L(G)$ has color i if the corresponding edge has color i in G. Since two vertices in $L(G)$ are strong adjacent iff the corresponding edges are strong adjacent in G and proper fuzzy k-edge coloring of G gives the proper fuzzy k-vertex coloring of $L(G)$. Now we have to prove that k is minimum number.
Suppose that k is not minimum number. Without loss of generality, let $L(G)$ has fuzzy ($k-1$)-vertex coloring $\pi^{1}=\left(V_{1}{ }^{1}, V_{2}{ }_{1}^{1}\right.$ $\ldots V_{k-1}^{1}$). We know that " A set S is fuzzy edge independent in G iff S is fuzzy vertex independent in L (G)". Since $V_{1}{ }^{1}, V_{2}{ }^{1}$ $\ldots V_{k-1}$ are fuzzy vertex independent in $L(G)$ and $V_{i}^{1}=E_{i}$, where $E_{1}, E_{2} \ldots E_{k-1}$ are fuzzy edge independent set in G, G has fuzzy proper $(k-1)$-edge coloring, which is a contradiction to $\chi_{f}^{1}(G)=k$. Therefore $\chi_{f}(G)=k$. Hence $\chi_{f}^{1}(G)=\chi_{f}(\mathrm{~L}(\mathrm{G}))$.
Corollary 4.3: If G is a strong fuzzy graph then $\chi_{f}{ }^{1}(G)=\chi_{f}(L(G))$.

Proof

Since every arc of G is strong, by theorem 4.2, $\chi_{f}^{1}(G)=\chi_{f}(L(G))$.
Corollary 4.4: If G is a complete fuzzy graph then $\chi_{f}{ }^{1}(G)=\chi_{f}(L(G))$.
Corollary 4.5: If G is a fuzzy cycle then $\chi_{f}^{1}(G)=\chi_{f}(L(G))$.

Remark 4.6:

If we consider any fuzzy graph G, every edge needs not to be strong and there exist edge (edges) which is not strong.
Two edges that are not strong adjacent in G must be strong adjacent vertices in $L(G)$, i.e, if e_{i} and e_{j} are not strong adjacent in G for $i \neq j$ but the corresponding vertices $\left(v_{i}{ }^{1}=e_{i} \& v_{j}{ }^{1}=e_{j}, i \neq j\right)$ must be strong adjacent in L (G). Because of the membership values of edges in $L(G)$, every edge in $L(G)$ is strong. Every proper fuzzy vertex coloring of $L(G)$ gives a proper fuzzy edge coloring of G. But converse need not be true.
Let $\chi_{\mathrm{f}}(\mathrm{L}(\mathrm{G}))=\mathrm{k}$. Then $\mathrm{L}(\mathrm{G})$ has k -proper fuzzy coloring. This implies that G has proper fuzzy k - edge coloring. Thus $\chi_{f}^{1}(\mathrm{G}) \leq \mathrm{k}=\chi_{\mathrm{f}}(\mathrm{L}(\mathrm{G}))=\mathrm{k}$. Thus we have the following proposition.

Proposition 4.7:

For any fuzzy graph $G, \chi_{f}{ }^{1}(G) \leq \chi_{f}(L(G))$.
Note 4.8: If we redefine the fuzzy line graph of a fuzzy graph G in the following manner then $\chi_{f}{ }^{1}(G)=\chi_{f}(L(G))$.
The fuzzy line graph of a fuzzy graph G is $L(G)=(\lambda, \omega)$ whose vertices are edges of G and two edges of $L(G)$ are adjacent if the corresponding vertices are strong adjacent in G. the membership values of vertices and edges are given by

$$
\begin{aligned}
& \lambda(x)=\mu(x), \forall \text { vertices in } L(G) \text { and } \\
& \begin{aligned}
\omega(x, y) & =\lambda(x) \wedge \lambda(y) \\
& =\mu(x) \wedge \mu(y), \forall \text { edges in } L(G) .
\end{aligned}
\end{aligned}
$$

Note 4.9: In general for a fuzzy graph $\mathrm{G} \chi_{f}(G) \neq \chi_{f}{ }^{1}(L(G))$. But there are some fuzzy graphs satisfying this condition.
Theorem 4.10: If G is a fuzzy cycle then $\chi_{f}(G)=\chi_{f}^{1}(L(G))$.

Proof

Let G be a fuzzy cycle.
$\Rightarrow G$ has more than one weakest arc.
\Rightarrow Every edge of G is strong. To prove this, we have to prove the following lemma.
Lemma: The fuzzy line graph of a fuzzy cycle is again a fuzzy cycle.
Proof
Let $G=\left[v_{1}, v_{2} \ldots v_{n}\right]$ be the fuzzy cycle of length n and $v_{1}, v_{2} \ldots v_{n}$ be vertices of G and $e_{1}=\left(v_{1}, v_{2}\right), e_{2}=\left(v_{2}, v_{3}\right) \ldots$ $e_{n-1}=\left(v_{n-1}, v_{n}\right) \& e_{n}=\left(v_{n}, v_{1}\right)$ be edges of G. Since every edge of G is strong, $\mu\left(e_{i}\right)=\mu^{\infty}\left(e_{i}\right)$, $\forall i$. Since every edge is strong adjacent to exactly two edges in G, the corresponding vertex in $L(G)$ is strong adjacent to exactly two vertices. Thus the vertices of $L(G)$ are $e_{1}, e_{2} \ldots e_{n}$ and edges are $e_{1}{ }^{1}=\left(e_{1}, e_{2}\right), e_{2}{ }^{1}=\left(e_{2}, e_{23}\right) \ldots e_{n-1}{ }^{1}=\left(e_{n-1}, e_{n}\right) \& e_{n}{ }^{1}$ $=\left(\mathrm{e}_{\mathrm{n}}, \mathrm{e}_{1}\right)$ such that

$$
\begin{aligned}
\omega\left(\mathrm{e}_{\mathrm{i}}^{1}\right) & =\lambda\left(\mathrm{e}_{\mathrm{i}}\right) \wedge \lambda\left(\mathrm{e}_{\mathrm{i}+1}\right) \\
& =\mu\left(\mathrm{e}_{\mathrm{i}}\right) \wedge \mu\left(\mathrm{e}_{\mathrm{i}+1}\right), \forall \mathrm{i}=1,2 \ldots \mathrm{n} \&\left(\mathrm{e}_{\mathrm{n}+1}=\mathrm{e}_{1}\right) .
\end{aligned}
$$

Thus $L(G)$ contains more than one weakest arc and $L(G)=\left[e_{1}, e_{2} \ldots e_{n}\right]$. Hence $L(G)$ is fuzzy cycle of length n. Hence the lemma.
We know that $\chi_{f}(\mathrm{G})=\chi_{f}^{1}(\mathrm{G})=2$, if n is even \&

$$
\chi_{f}(\mathrm{G})=\chi_{\mathrm{f}}^{1}(\mathrm{G})=3 \text {, if } \mathrm{n} \text { is odd. }
$$

Hence $\chi_{f}(G)=\chi_{f}^{1}(\mathrm{~L}(\mathrm{G}))$.
Proposition 4.11: If G is a fuzzy path (fuzzy graph such that the underlying crisp graph of G is a path of length $n>2$) then $L(G)$ is also a fuzzy path of length $n-1$.

Proposition 4.12: If G is a fuzzy path of length $n>3$ then $\chi_{f}(G)=\chi_{f}{ }^{1}(L(G))$

REFERENCES

[1] A. Nagoor Gani and V.T. Chandrasekaran, First Look at Fuzzy Graph Theory, Allied Publishers, 2010.
[2] G. Suresh Singh, Graph Theory, PHI Learning Private Limited, 2010.
[3] J.N Moderson, Fuzzy line Graph, Pattern Recognition Letter 14, 1993, 381-384.
[4] K.R. Bhutani and A Rosenfeld, Strong arcs in fuzzy graphs, Information Sciences, 152(2003), 319-322.
[5] K.R.Bhutani and Abdullah Batton, On M-strong fuzzy graphs, Information Sciences, 15(59) (2003) 103-109.
[6] M. Murugan., Topics in Graph Theory and Algorithms, Muthali publishing House, Chennai, 2003.
[7] P. Bhanacharya, Somc remarks on fuzzy graphs, PatternRecognition Letter 6, 1987, 297-302.
[8] R Jahir Hussain and. K.S Kanzul Fathima, Fuzzy chromatic number of different types of fuzzy graphs, International Conference on Mathematical Science, July (2014), 439-442.

