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Abstract

Using the notions of local uniform and strong local uniform con-
vergence for the sequence of real valued functions or with value in
metric space, the class of locally equally and strong locally equally
convergences are studied. We are concern to dependence of type of
some convergences from the neighborhood of the limit point. The
known locally uniformly convergence is a key of some applications
of this idea. We can reformulate one type of Arzelà Theorem and
find relations of this convergence with quasi-uniformly by segments of
Alexandroff convergence. Beside this type of convergence, we focus to
another convergence which is nearer the well known α-convergence.

1 Introduction

There are many authors that try to solve some rebuses of relations of point-
wise convergence and other convergences. One of this problems is: what
conditions we must be added to point-wise convergence of continuous func-
tions to preserve continuity? This problem is resolve for the first time from
Arzelà [1] in 1883. There are more than hundred years that this issue has
intrigued many authors. Along the way to finding some convergences in
order to relativize recent convergences of Papanastassiou [10] just like Das
and Papanastssiou [3], we come up with notions of locally uniformly con-
vergence which is weaker as uniformly equally and extend the most of the
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their properties. The same situation is between the strong uniformly locally
equally convergence with α-uniformly equally convergence. Using the notion
of the exhaustive family given from Gregoriades and Papanastassiou [2] and
the notion of α-convergence (otherwise continuous convergence or “stetige
Konvergenz”) has been known by the beginning of the 20th century from
work of Stoilov [12] and Arens [6] in 1950s, in the third section, we have
present the notion of strong uniformly locally convergence which is stronger
then α-convergence but weaker then uniform convergence. One special case
of strong uniformly locally convergence, denote α∗-convergence is discussed.
By means of uniformly local convergence in real valued functions, in the
section fourth, we give any variant of the type of Arzelà Theorem and one
equivalent claim in the Alexandroff Theorem. In the fifth section, Das and
Papanesstassiu [3] give some very interesting convergences as equally and α-
equally convergences, follow them we focus in some similar propositions for
the uniform locally equally an strong uniformly locally equally sequences.

2 Notation and terminology

Let us begin with some comments and notations. With X and Y we mean
metric spaces, unless stated otherwise. If it is not mentioned explicitly the
symbol d stands for the metric on X and the symbol p for the metric on Y .

If x is a member of X and δ is a positive number, with S(x, δ) we mean
the (open) ball of radius δ, i.e. S(x, δ) = {y ∈ X/d(x, y) < δ}. Also, if X
and Y are metric spaces, as usual, we denote with C(X, Y ) the set of all
continuous functions from X to Y .

We now recall the notion of exhaustiveness [3] which is close to the notion
of equi-continuity.

Definition 2.1. Let (X, d), (Y, p) be metric spaces, x ∈ X,F be a family of
functions from X to Y and fn : X → Y , n ∈ N.

(1) If F is infinite, we call the family F exhaustive at x if for each ε > 0
there exists δ > 0 and A finite subset of F such that: for each y ∈ S(x, δ)
and for each f ∈ F \ A we have that p(f(x), f(y)) < ε.

(2) In case where F is finite we define F to be exhaustive at x if each
member of F is continuous function at X.

(3) F is called exhaustive if F is exhaustive at every x ∈ X.
(4) The sequence (fn)n∈N is called exhaustive at x if for all ε > 0 there

exist δ > 0 and n0 ∈ N such that for all y ∈ S(x, δ) and all n ≥ n0 we have
that p(fn(y), fn(x)) < ε.

(5) The sequence (fn)n∈N is called exhaustive if it is exhaustive at every
x ∈ X.
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Notice that in the most interesting cases where (fn)n∈N is a sequence of
functions for which fn 6= fm for n 6= m,then the family F = {fn/n ∈ N} is
exhaustive at some x0 ∈ X if and only if the sequence (fn)n∈N is exhaustive
at x0.

Proposition 2.2. [2] Let (X, d), (Y, p) be metric spaces, x ∈ X, F a family
of functions from X to Y and fn : X → Y , n ∈ N.

(1) F is equi-continuous at x if and only if F is exhaustive at x and for
each f ∈ F , f is continuous at x.

(2) The family {fn/n ∈ N} is equi-continuous at x if and only if the
sequence (fn)n∈N is exhaustive at x and each fn is continuous at x.

In [2] is given an example that suggests that there exists an exhaustive
sequence (similarly family) which contains non continuous functions.

Let we recall the definition of α-converges. Let f, fn, n ∈ N be functions
from X to Y . The sequence (fn)n∈N is α-convergent to f if for each x ∈ X
and for each sequence (xn)n∈N of points of X converging to x, the sequence
(fn(xn))n∈N converges to f(x).

We shall write fn
α−→ f to denote that (fn)n∈N is α-convergent to f . Also

we will keep the analogous notation about point-wise and uniform conver-
gence, i.e., we will denote them with fn

pw−→ f and fn
u−→ f , respectively.

It is obvious that α-convergence is stronger than point-wise convergence.
The usual convergences such as point-wise and uniform do not require

a topology for the domain space. However a topology is needed for α-
convergence.

Let X be a non-empty set. By function on X, we mean a real valued
function on X. Let Φ be an arbitrary class of functions defined on X. Then
we have the following definitions.

Definition 2.3. [10] A sequence of functions (fn) in Φ is said to converge
uniformly equally to a function f in Φ (written as fn

u.e.−→ f) if there
exists a sequence (εn)n∈N of positive reals converging to zero and a natural
number n0 such that the cardinality of the set

{n ∈ N : |fn(x)− f(x)| ≥ εn}

is at most n0, for each x ∈ X.

Definition 2.4. [11] A sequence of functions (fn) in Φ is said to converge
equally to a function f in Φ (written as fn

e.→f ) if there exists a se-
quence (εn)n∈N of positive reals converging to zero and a natural number
n(x) satisfying |fn(x)− f(x)| < εn for all n > n(x).
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Definition 2.5. Let (X, d) be a metric space and f, fn : X → R, n ∈ N.

Then (fn)converges α-uniformly equally to f (written fn
α−u.e→ f) if there exists

a sequence (εn)n∈N of positive reals converging to zero and an n0 ∈ N such
that |{n ∈ N : |fn(xn)− f(x)| ≥ εn}| ≤ n0 for each x ∈ X and xn → x.

3 δa, δ, α
∗-convergences

Definition 3.1. [13] Let (X, d), (Y, p) be metric spaces, x ∈ X and fn, f :
X → Y . Function f(x) is a locally uniformly limit or δ-limit of the sequence
(fn)n∈N if for each ε > 0, there exist n0(ε, x) ∈ N and δ > 0 such that for
each n ≥ n0, and y ∈ S(x, δ) we have p(fn(y), f(y)) < ε.

So we can say that (fn)n∈N converges locally uniformly to f(x) or short
is δ-convergent to f(x).

This convergence in uniformly on one open neighborhood of a point. So
the function f(x) = xn if we see only [0, 1[ is δ-convergent in this interval.

Proposition 3.2. Let fn : X → Y be a sequence that is δ-convergent to
a function f : X → Y for each x ∈ X. Then the sequence fn converges
point-wise to f for each x ∈ X.

Proof. The proof is clear by the Definition (3.1).
The following statements represent some the main feature of local uniform

convergence which define its position in respect with point-wise and uniform
convergence.

Proposition 3.3. [13] Let (X, d), (Y, p) be metric spaces, x ∈ X and fn, f :
X → Y .

If the sequence fn(x) is exhaustive and δ-converges to the function f(x).
Then the function f(x) is continuous in this point.

If the member of the sequence fn(x) are continuous functions, of course,
the limit function is continuous and in the case when the sequence fn(x) is
not exhaustive.

Proposition 3.4. Let (X, d), (Y, p) be metric spaces, x ∈ X and fn, f : X →
Y . The space X is compact and the sequence fn, δ -converges to the function
f . Then the sequence fn converges uniformly to this function.

Among others, we have also found a definition “of the type ε , δ” for α-
convergence with little restrictions and we name it strong locally uniformly
convergent.
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Definition 3.5. Let (X, d), (Y, p) be metric spaces, x ∈ X and fn, f : X →
Y . We say that sequence (fn(x))n∈N is strong locally uniformly convergent
(or short δa-convergent) to f(x) if for every ε > 0 and x ∈ X, there exist
n0(ε, x) ∈ N and δ > 0 such that for n ≥ n0(ε, x) and y ∈ S(x, δ) we have
p(fn(y), f(x)) < ε.

We can profit some properties of α-convergence for δa-convergence with
other proofs.

Proposition 3.6. In the conditions of the above preposition the sequence
fn : X → Y is δa-convergent to the function f(x). Then

a) Sequence (fn(x))n∈N is exhaustive,
b) f(x) is continuous at x ∈ X.

It looks like the two concepts α-convergence and δa-convergence are equiv-
alent, but it is not. If we fix the metric in Y for the both convergences, then
δa-convergence is stronger that α-convergence. In reality, the concept of α-
convergence used by Kelley ([7] p. 241, M) about nets on topology and
two convergence xn

σ1→x and fm(xn)
σ2→f(x) are considered quite different. If

we limit ourselves only to the case when two indexes n and m of the first
and the second convergence are comparable on N then we have a strong α∗-
convergence, that is: we say that the sequence (fn) is α∗-convergent on X if
for every ε > 0 and x ∈ X there exists a number n1 ∈ N such that for n > n1

the sequence xn → x and there exists a number n2 ∈ N such that for n > n2

fn(xn)→ f(x).

Proposition 3.7. Let (X, d), (Y, p) be metric spaces, x ∈ X and fn, f : X →
Y . The following are equivalent:

1. Let be ε > 0 and x ∈ X, there exist n0(ε, x) ∈ N and δ > 0 such that
for n ≥ n0(ε, x) and y ∈ S(x, δ) we have p(fn(y), f(x)) < ε,

2. The sequence (fn(x))n∈N α
∗-converges to f(x).

Proof. (1) ⇒ (2). Let us consider the convergence xn → x ,that is, for
every δ1 > 0, there exists n1(δ1) ∈ N such that for n > n1(δ)⇒ d(xn, x) < δ1

or xn ∈ S(x, δ1). It follows that for every ε > 0 there exists δ < δ1 and
n2 ≥ max(n0, n1) such that when xn ∈ S(x, δ) ⇒ d(fn(xn), f(x)) < ε. It is
proved that fn is α-convergent to f(x).

(2) ⇒ (1). Let us assume that fn(x) is not convergent according first
statement. Hence there exists one ε0 > 0 such that for x ∈ X and n(ε0, x) ∈
N, δ > 0 such that for n ≥ n(ε0, x) and y ∈ S(x, δ) ⇒ p(fn(y), f(x)) ≥ ε0.
By the second statement when xn → x there exists one δ > 0 such that
n > n1(δ) ⇒ d(xn, x) < δ but fn(x) don’t converges to f(x) according
Definition 3.1. That contradicts (2).
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4 On Arzelà and Alexandroff Theorems

The proof of first theorem is based by Arzelà on the concept of quasi-uniform
convergence to a compact interval of R. Let we compare the locally uniformly
convergence with quasi-uniform convergence.

Definition 4.1. [1] Let (fn)n∈ω be a sequence of real-valued continuous func-
tion defined on a compact interval [a, b] and f be a real-valued function de-
fined on [a, b]. The sequence (fn)n∈ω is said to converge to f quasi-uniformly
by segments(a tratti) on [a, b] if

(i) (fn)n∈ω converges point-wise to f ,
(ii) for every ε > 0 and every n0 there exist a finite number of naturals

n1, . . . , nt ≥ n0 and closed intervals Sn1 , . . . , Snt such that the union of their
interiors cover [a, b], and

∀x ∈ Sni
, |fni

(x)− f(x)| < ε, i = 1, . . . , t.

Theorem 4.2. [1] (Arzelà Theorem) Let (fn)n∈ω be a sequence of real-valued
continuous function defined on a compact interval [a, b] and f be a real-valued
function defined on [a, b]. Let (fn)n∈ω be point-wise convergent to f . Then f
is continuous if and only if (fn)n∈ω is said to converge to f quasi-uniformly
by segments.

Proposition 4.3. Definitions 3.1 and 4.1 in the case of the continuous and
real-valued functions are equivalent.

Proof. (3.1) ⇒ (4.1) By the Proposition 3.2 we proved the condition (1) of
(4.1). Now, since interval [a, b] is the compact set there exists the cover {S0

m}
of it and from this a finite subcover S0

n1
, . . . , S0

nk
such that [a, b] ⊂

⋃k
i=1 S

0
ni

and Sni
= S0

ni
∩ [a, b]. By the Definition 2.1, for the every ε > 0 and

x ∈ Sni
there exist δ > 0, ni(ε, δi) ∈ N and n > ni(ε, δi) such that for every

y ∈ S(x, δi) we have |fni
(y) − f(y)| < ε. In the case of ball Sni

we are
in condition of the interval [a, b], so if {S(x, δx)} is a cover of Sni

for every
x ∈ Sni

, we can find a finite subcover Sni
⊂
⋃m
j=1 S(xi, δxi). For every xi we

find a number ni(ε, δxi). Let n0i be max{ni(ε, δxi)}. If we take i = 1, . . . , k
than there exist the sequence n01, . . . , n0k > n0 such that for every y ∈ Sni

we have |fni
(y)− f(y)| < ε. This prove the condition (4.1).

(4.1)⇒ (3.1) By the Definition 4.1, there exist a finite number of naturals
n1, . . . , nt ≥ n0 and sequence of closed sets Sn1 , . . . , Snt such that [a, b] ⊂⋃k
i=1 S

0
ni

and for every y ∈ Sni
we have |fni

(y)−f(y)| < ε. Let ε be a positive
number and every x such that x ∈ [a, b] than there exists S0

nj
such that

x ∈ S0
nj

and |fni
(x)− f(x)| < ε, for every x ∈ S0

nj
and nj > n0. If we take a

6



δ > 0 such that x ∈ S(x, δ) ∈ S0
nj

for every y ∈ S(x, δ) there exists nj > n0

such that |fn(y)− f(y)| < ε.
We can give another form of Arzelà Theorem.

Theorem 4.4. Let (fn)n∈ω be a sequence of real-valued continuous functions
defined on a compact interval [a, b] and f be a real-valued function defined
on [a, b]. Then f is continuous if and only if (fn)n∈ωis locally uniformly
convergent (short δ-convergent) to f .

In 1948 Alexandroff [4] made the following definition:

Definition 4.5. Let (fn)n∈ω be a sequence of functions from a topology
space X to the metric space (Y, ρ) and let f : X → Y . Then (fn)n∈ω is called
Alexandroff convergent to f on X, provided it point-wise convergent to f ,
and for every ε > 0 and integer n0 there exists a countable open covering
{Γ1,Γ2, . . .} of X and sequence {nk} of positive integers greater than n0 such
that for each xk we have ρ(fnk

, f) < ε.

We can added the famous Alexandroff Theorem another third equivalent
claim and take the proposition.

Definition 4.6. Let X be a topological space and (Y, ρ) metric space. Let
{fn}n∈ω be sequence of continuous functions from X to Y point-wise conver-
gent to a function f from X to Y . The following conditions are equivalent:

(i) f is continuous;
(ii) (fn)n∈ω Alexandroff convergent to f ;
(iii) (fn)n∈ωis locally uniformly convergent to f .

Proof. For the implications (i) ⇒ (ii) and (ii) ⇒ (i) one can see [4].
(ii)⇒ (iii). Let ε > 0 and x ∈ X. From (ii) for this ε > 0 and integer n0,

there exists a countable open covering {Γ1,Γ2, . . .} of X, that is X ⊆
⋃∞
k=1 Γk

and sequence {nk} of positive integers greater than n0 such that for each
nk ≥ n0 we have ρ(fnk

, f) < ε. From the fact that x ∈ X follows that there
exist a δ > 0 such that S(x, δ) ⊂ Γkj . On the other side, for every y ∈ S(x, δ)
and nkj ≥ n0 ⇒ ρ(fnkj

(y), f(y)) < ε. This prove (iii).

(iii) ⇒ (i). Assume that (fn)n∈ω is locally uniformly convergent to f .
Then for every ε > 0 and x ∈ X there exist a n(ε) ∈ N and neighborhood Vx
such that for every n > n(ε) and y ∈ Vx we have that ρ(fn(y), f(y)) < ε

3
and

also ρ(fn(x), f(x)) < ε
3

. Since the functions (fn)n∈ω are continuous for this
ε there exists a neighborhood Ux of the point x such that for every y ∈ Ux
and every n ∈ N we obtain ρ(fn(y), fn(y)) < ε

3
. It is easy to see that for

every y ∈ Vx ∩ Ux we have

ρ(f(y), f(x)) ≤ ρ(f(y), fn(y)) + ρ(fn(y), fn(x)) + ρ(fn(x), f(x)) < ε
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Bartle [5] in 1955 investigate the continuity of limits of nets of real-valued
continuous functions and reformulated the above definitions of Arzelà and
Alexandroff.

We can extended these definition in case of net of real-valued function on
one set X.

Definition 4.7. (i) Let (fα)α∈Λ be a net of real-valued functions on an
arbitrary set X and f : X → Y . Then (fα)α∈Λ is said to converge to f
quasi-uniformly on X, provided it point-wise converges to f , and for every
ε > 0 and α0 there exists a finite number of indices α1, . . . , αn ≥ α0 such
that for each x ∈ X at least one of the following inequalities holds:

|fαi
(x)− f(x)| < ε, i = 1, . . . , n

(ii) in these condition (fα)α∈Λ is said to converge to f locally uniformly
to x ∈ X if for every ε > 0 there exist a α0 ∈ Λ and a neighborhood Vx such
that for αi ≥ α0 and y ∈ Vx we have ρ(fαi

(y), f(y)) < ε

Following [9], [8], in which paper of them, they extended the Arzelà The-
orem for nets of functions with domain is k-space and with values into a
metric space. We can reformulate the proposition:

Theorem 4.8. Let X be a k-space and (Y, ρ) be a metric space. Let (fα)α∈Λ

be a net of continuous functions from X to Y which point-wise converges to
a function f from X to Y . The following condition are equivalent:

(i) f is continuous;
(ii) (fα)α∈Λ converges to f quasy-uniformly on compacta (i.e. in on com-

pact sets)
(iii) (fα)α∈Λ converges to f locally uniformly on locally compact space.

Proof. (i) ⇒ (ii). See Theorem 3.4. in [5] and (ii) ⇒ (i) see [9].
(i) ⇒ (iii). Let f be a continuous limit of point-wise convergence of

(fα)α∈Λ. That is for every ε > 0 there exists the α0 such that for every
α(x) ≥ α0 we have ρ(fα(x)(x), f(x)) < ε

3
. Since the function f and fα(y) are

continuous for every ε > 0 there exists a neighborhood S(x, δ1) of the point x
such that for y ∈ S(x, δ1) follows that ρ(f(x), f(y)) < ε

3
and ρ(fα(y), fβ(y)) <

ε
3

for every α and β.
Let Nx = {y : ρ(fα(x)(y), f(y)) < ε

3
} . From the continuity of f and fα

comes that Nx is an open set which contains x. Let S(x, δ2) be a ball that
S(x, δ2) ⊂ Nx. As the spaceX is locally compact then point-wise convergence
of (fα)α∈Λ is uniform and we can choose an α∗ such that for α, β ≥ α∗ and
y ∈ S(x, δ), where δ = min(δ1, δ2) it holds

ρ(fα(y), f(y)) ≤ ρ(fα(y), fβ(x)) + ρ(fβ(x), f(x)) + ρ(f(x), f(y)) < ε.

The implication (iii) ⇒ (i) repeated the Theorem 4.4.
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5 Some new forms of the equally convergences

We can continue the work [3] of the authors R. Das, N. Papanastassiou. They
develop the concept of uniformly equally convergence as well as discrete con-
vergence α-uniformly equally convergence, in order to profit same important
characterization of compactness in metric space. In the following we can do
the same think with other tools.

Definition 5.1. A sequence of functions (fn) in Φ is said to converge uni-

formly locally equally to a function f in Φ (written as fn
u.l.e.−→ f) for every

x ∈ X if there exists a sequence (εn)n∈N of positive real numbers converging
to zero, a neighborhood Vx and a natural number n0(x, V ) such that the
cardinality of the set {n ∈ N : |fn(y) − f(y)| ≥ εn} is at most n0(x, V ), for
each y ∈ Vx.

It is clear that if the sequence is uniformly equally then it is uniformly
locally equally. The following example show that conversely there don’t
holds.

Example 5.2. Let fn = xn be a sequence of functions determine on the in-
terval [0, 1[ and to testify that from the uniformly locally equally convergence
don’t derive the uniformly equally convergence. Let ( 1

n
) be a sequence con-

verging to zero and 0 ≤ x < 1. Put δ = min{|x|, |1−x|} and y ∈]x−δ, x+δ[.
Let we prove that the cardinal of the set {n ∈ N : yn ≥ 1

n
} is finite number.

We know that nyn → 0 if |y| < 1 and n → ∞. Then for every ε > 0 and
for ε = 1, there exists a natural number n0 such that for n > n0 we have
nyn ≤ 1 . Since yn ≥ 1

n
holds for at most n ≤ n0. In paper [3] (Example

4.9.) is proved that this sequence is not uniformly equally to this interval.

Proposition 5.3. On the compact metric space the convergences of uni-
formly equally and uniformly locally equally coincide.

Proof. (2.3) ⇒ (5.1) By the definitions.
(5.1)⇒ (2.3). By the Definition 2.3, there exists the sequence of positive

real numbers converging to zero and fn
u.l.−→ f , that is, for every x ∈ X there

exist a δx > 0 and n(x, δx) ∈ N such that for every y ∈ B(x, δx) we have

|{n ∈ N : |fn(y)− f(y)| ≥ εn}| < n(x, δx). (5.1)

Let the set of {B(x, δx)} an open cover of X and there exists a subcover of
it such that X ⊂

⋃m
k=1 B(xk, δxk). Now, if x ∈ X, there exists a ball B(x, δ)

such that x ∈ B(x, δ) ⊂ B(xk, δxk). By the inequality (5.1) we obtain

|{n ∈ N : |fn(y)− f(y)| ≥ εn}| < n(xk, δxk).

9



We put n0 = max{n(x1, δx1), . . . , n(xm, δxm) and for every y ∈ X the cardinal
of the set |{n ∈ N : |fn(y)− f(y)| ≥ εn}| is at most n0.

We can modify the Theorem 4.12 in [3] and profit another important
characterization of compact space through convergent sequences. First, we
give the definition of the lattice. Let we recall that the function class Φ on X
is called lattice if Φ contains all constants and f, g ∈ Φ implies max(f, g) ∈ Φ
and min(f, g) ∈ Φ.

Theorem 5.4. A metric space (X, d) is compact if and only if the uniformly
locally equally convergence of the sequence (fn) of real functions from a lattice
Φ on X convergent to zero implies that uniformly equally convergence of the
sequence (fn) to zero function.

Proof. The case when X is compact space it is seen in the above preposition.
For the prove of inverse, suppose that (X, d) is not a compact metric space.
Being that X is not compact, there exists a sequence {xk} of distinct points
of x such that, there exists one no convergent subsequence of {xk}. Since
every point of the set {x1, . . . , xk, . . .} in an isolated point of this set, there
exists δk > 0 and δk → 0, k = 1, 2, . . . such that constructed open balls

B(xk, δk) = {x ∈ X : d(x, xk) ≤ δk} k = 1, 2, . . .

are pair-wise disjoint. Then the set H =
∞⋃
k=1

B(xk, δk) is a open. Define a

sequence (fp)p∈N of real valued functions on X.

fp(x) =

{
0, if x ∈ X \H
np

p!
if x ∈ H

If x ∈ H then there exists B(xk, δk) such x ∈ B(x, δ) ⊂ B(xk, δk) and for
every y ∈ B(x, δ) there exists a sequence of real positive numbers εp = 1

p
→ 0

as p → ∞ such that |{n ∈ N : |fp(x)| ≥ εn}| ≤ p for every p and x ∈ X.
The sequence (fp)p∈N converges uniformly locally equally but not uniformly
equally because p is not bounded.

It is evident that point-wise convergence is equally convergence. Let we
relativize this definition to profit the definition of locally equally.

Definition 5.5. A sequence of functions (fn) in Φ′ is said to converge locally

equally to a function in Φ′ (written as fn
l.e.→ f) for every x ∈ X if there exists a

sequence (εn)n∈N of positive reals converging to zero, a neighborhood Vx and
a natural number n(x, Vx) such that for every y ∈ Vx we have |fn(x)−f(x)| <
εn for all n > n(x, Vx).
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Note. By the definitions we see that equally convergence is locally equally
convergence.

Example 5.6. In the Example 4.4. of the reference [3] is given the idea
to prove that. There is a sequence (fn) equally convergent but no locally
equally convergent. Define as the characteristic function of the intervals
[n, n + 1

n
], n ∈ N and zero at all other points of set [1,∞[. It is easy to

see that if (εn)n∈N is a sequence of positive reals converging to zero then
|{n ∈ N : |fn(x)| ≥ εn}| ≤ 1. It turns out that for n > 2 comes that
|fn(x)| < εn for every x ∈ [1,∞[. The sequence (fn)is equally convergent.
On the other side, for every x ∈ [n, n+ 1

n
], there exists one n0 that for n > n0

fn(x) = 1 > εn. The sequence (fn) is not locally equally convergent.

It easy to prove the following proposition.

Proposition 5.7. The equally convergence coincide with the uniform con-
vergence in a case when the space X is a compact.

Proof. It is evident the fact that uniform convergence implies equally con-
vergence. For the inverse direction, it is enough to prove that from equally
convergence derives the point-wise convergence on X. By the Definition 2.4
there exists a sequence (εn)n∈N of positive reals converging to zero and a nat-
ural number n(x) satisfying |fn(x)− f(x)| < εn for all n > n(x). Let ε be a
whatever positive number. There exists a natural number n1 such that for ev-
ery n ∈ N and n > n1 we have that εn < ε. If we put n2(x) = max{n(x), n1}
then for n > n2(x) we obtain |fn(x)− f(x)| < εn for every ε > 0 and x ∈ X.
This prove the proposition.

Proposition 5.8. Let X be a locally compact space and the sequence (fn)is
equally convergent. Then the sequence (fn) is also locally equally convergent.

Proof. By the Definition 5.5, for every x ∈ X, there exists a sequence (εn)n∈N
of positive reals converging to zero and a natural number n(x) satisfying
|fn(x)− f(x)| < εn for all n > n(x). Let S(x, δ) be a neighborhood of point
x onX. SinceX is locally compact, the set S(x, δ) is a compact neighborhood
of the point x. By the above Proposition (5.7), equally convergence on the set
X ∩ S(x, δ) implies the uniform convergence in this set. Therefore, for every
ε > 0 and for every (εn)n∈N of positive reals converging to zero there exists
n0(δ) such that for every n ∈ N and n > n0(δ) we have |fn(y) − f(y)| < εn
for every y ∈ S(x, δ). By the fact that x and δ are arbitrary the sequence
converges locally equally.

By following definition we can prove almost all properties and result of
α-uniformly equally convergence. If we take in account the that all of this
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has the same idea with above propositions then we will be limited only with
two of them.

Definition 5.9. Let (X, d) be a metric space and f, fn : X → R, n ∈ N.

Then (fn) converges α∗-uniformly locally equally to f (written fn
α∗−u.l.e−→

f) or strong uniformly locally equally if there exists a sequence (εn)n∈N of
positive reals converging to zero and δ > 0 as well as an n0(x, δ) ∈ N such
that |{n ∈ N : |fn(y)− f(x)| ≥ εn}| ≤ n0(x, δ) for each y ∈ S(x, δ).

It is easy to see that from definition of α∗-u.l.e. convergence implies both
α∗-convergence and l.e. convergence.

Theorem 5.10. Let (X, d) be a metric space and f, fn : X → R, n ∈ N.
If the sequence (fn) converges uniformly to zero function, then the sequence
(fn) converges α∗-u.l.e. to the zero function.

Proof. Since fn
u→ f(x) = 0, there exists a sequence (εn)n∈N of positive reals

converging to zero and n0 ∈ N such that for all n ≥ n0 and for y ∈ X. From
the fact that the sequence α∗-u.l.e. converges if and only if that for every
y ∈ S(x, δ) and n0 ∈ N, we have

|{n ∈ N : |fn(y)− (f(x) = 0)| ≥ εn}| ≤ n0.

Hence fn
α∗−u.l.e−→ 0.

Theorem 5.11. Let (X, d) be a compact space and f, fn : X → R, n ∈ N.

Then fn
α∗−u.l.e−→ f ⇒ fn

u→f .

Proof. It follows from the fact that fn
α∗−u.l.e−→ f ⇒ fn

u.l.e.−→ f but in this

compact space fn
u.l.e.−→ f ⇒ fn

u→f .
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