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Abstract: 

In our normal life we can see that the most realistic systems possess useful time governed by hazard rate 

of bathtub shaped. The hazard rate function, however, plays a vital role in the computation of the 

availability function. The repair time, however, could be modeled as any statistical distribution. In this 

paper I will investigate the nature of availability function and points of availability of systems with bathtub 

hazard function and exponential distribution repair time using Markovian method. 

 1 Introduction 

When a system of multi-units or a single unit is put into service, the availability or point-availability of a 

system or item is very important for its useful life time. And before it breaks down and is sent to be 

repaired. However, it is important to know about how many times the device (system) has been replaced 

or is repaired after failure before reaching the asymptotic state. The device may be replaced many times 

or it could have never been replaced at all. The device's reliability measurement is still important and 

needed. So, the relation between reliability, maintainability and/or availability is vital and momentous, 

Kapur [13] and Leemis [21]. 

The life-time cycle of a repairable system, can be described by a sequence of up and down states, i.e. 

working and under repair. So, the system operates until it fails, then it is repaired (or replaced) and is 

returned to its original operating state. It may fail again after some random span time of operation. If so, 

get it repaired again. This process of failure and repair will be repeated for a sufficient enough amount 

of time and is called a renewal process.  The renewal process is a sequence of independent random 

variables, Cox [7]. In this case, the random variables are the times to failure and the times to repair. At 

each time when a device fails and is repaired, a renewal is said to have occurred. This type of renewal 

process is known as an Alternating Renewal Process because the state of the device alternates between 

a functioning (up-time) and under repair (down-time), Cox [7].  

One of the main assumptions in the renewal theory is that the failure items are replaced or repaired with 

new ones so they are "as good as new" hence the name 'renewal' is obtained, Kijima [16], [17], Elsayed 

[11] and Leemis [21]. 

The definition of availability is rather flexible and is widely based on the types of down-times, or under 

repair, one chooses to consider in the analysis. There are different number of classifications of availability, 

such as, Instantaneous availability, average up-time availability and steady state (Asymptotic) Availability, 

Kececioglu [14], [15]. 

The immediate availability, or point availability is defined as the probability that a system will be in 

operation at any random time, t. Unlike reliability, the instantaneous availability measure incorporates 

maintainability information. At any given time, t, the system will be operational if the following conditions 

are met, Elsayed [11], Kececioglu [15].  

The item functioned properly from 0 to t with probability R(t)=1-F(t) or it functioned properly since the 

last repair at time u, 0 < u < t, with probability  
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where m(u) is the renewal density function of the system. Hence, then the point availability is given by 
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, Cox [7]. The latest PA(t) is a Volterra's integral equation of the 

second kind, Fox [12]. It can be solved numerically and it can be applied for systems without singularities. 

So, we have to find out a method to cope with a very wide class of distributions regardless their scale 

and position parameters. The method could be applied to Gamma, Weibull, Lognormal and most of two 

parameters distributions. Also, it can be used to find the point availability of systems of Bathtub shaped 

hazard rate. But here, the method will be applied strictly to systems of Bathtub shaped hazard rate. 

 2 The Bathtub Hazard Rate Function: 

The bathtub curve that describes a particular form of the hazard rate function is widely used in reliability. 

This curve comprises three major parts, decreasing failure rate, constant failure rate and finally an 

increasing failure rate. The name is derived from the cross-sectional shape of a bathtub. This curve is 

represented in figure 1. 

In detail, the bathtub curve is generated by mapping the rate of early "infant mortality" failures when 

first introduced and put into service, the rate of random failures with constant failure rate during its 

"useful life" under warranty period, and finally the rate of "wear out" failures as the product exceeds its 

design lifetime. 

The hazard rate function of probabilistic failure can be found directly from the reliability function, which 

is obtained from the probability density function of the up-time.  

 

Figure1 The General Bathtub Curve. 

(en.wikipedia.org /Bathtub curve) 

We can, in reverse, use the hazard rate as the starting point. In this case we have to consider the hazard 

rate h(t) of a type similar to that shown in figure 1. This is known as "A Bathtub curve". During the "Burn-

in" period the hazard rate h(t) decreases, since a proportion of manufactured components contain 

weaknesses which cause early failure. After a while, the early failures are weeded out and h(t) commences 

a nearly constant failure rate period. 

This constant failure period is known as the "useful life". It allows a chance of failure by sudden stress, 

perhaps caused by unusually severe and unpredictable operating conditions. To eliminate these 
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unpleasant circumstances, it would require a device that is overdesigned for the vast majority of 

situations. Eventually, the item starts its third period and the hazard rate h(t) increases as the item "wears 

out", resulting from equipment deterioration of cumulated shocks, fatigue, and alike. By assuming that 

in these three regions the failure rate is linearly modeled, we can specify the hazard rate for each region. 

Having in mind that the three regions are respectively,
,,0 2211  ttandttttt
 see 

Shooman [24]. 

In the first region the hazard rate is given as  

                             (1) 

In the second and third regions the hazard rate is given respectively as  
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Note that if 32 aa 
 then b2=0. 

3 Reliability function: 

We define the reliability functioning as 

                                                                       (5) 

So, the reliability function related to Bathtub hazard rate will be given as 
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Now we investigate the behavior of some systems with a Bathtub failure model, with an exponentially 

distributed repair time. For the aim of the study, the hazard rate function in term of probability terms can 

be given as 
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where the continuous distribution can be treated as a discrete distribution. The reliability function 

involved in (7) is given in (6). We assume that the hazard rate is such that some components survive into 

the third phase. Otherwise the third phase is irrelevant.  

4 The mean time to failure  

The mean time to failure (MTTF) is an important factor in our study. It is used in 

evaluating the                                       asymptotic value, i. e. what is called the steady 

state. This measure, in fact, scales our numerical results. As we have mentioned 

previously, the mean time to failure of a system, in general, is given by the formula 




=
0

dt. R(t)MTTF

                                                                   (8) 

The reliability function R(t) of the Bathtub failure model is given in (6). From (6) and (7), 

the mean time to failure MTTF of the system will be given by  
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In (9), in the last integrations, the first two factors are constant. The third factor, however, 

can be written in a simple way by using a proper transformation. To show this, let us 

rewrite this factor as 
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Then by putting t-t2. = u in the integration (9) and rewriting it in a different order, one 

gets  
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The last expression related to normal distribution. If we put (12) into (9), then the MTTF 

becomes of the form: 
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As a way of example, let calculate the MTTF of the following system 

Example 1: 

Suppose we have a system with hazard rate function of a Bathtub type represented in 

figure2. In this hazard rate we have t1=1.0, t2=5.0 and t3 =10. Also, we have a1=0.005 

a2 = 0.001 a2 = a3 and a4= 0.3. 

                                               

  

Figure 2 hazard rate function of Example 1 

The slopes are computed from (4). The MTTF of the above system, calculated from the 

expression (13) and the computer is used to carry out this calculation. It is found that 

the   MTTF of the above system is 10.0510898.  

5 Markovian approach to calculate the system availability:  

This method, in principle, is used to find out the point availability of the system directly 

from the hazard rate function. It is found that the hazard function  
),( xxxh +

 can be 

expressed with reference to the definition of the conditional probability as given in (7). 

If the limit of (7) exists, then we can write    

 

0.005 

0.001 

1=1t 3=10t 2=5t 

h(t) 
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                                 (14)

The above function Z(x) is called the hazard rate function. If Z(x) exists then (7) rewritten as 

                                     (15) 

The term  
xxZ )(

 is approximately the failure probability in the interval 
),( xxx +

.The quantity 
xxZ )(

 

is used to approximate, where it is appropriate, the failure as well as the repair time distributions. When 

there are singularities, the original formula (7) is used; otherwise (14) will be used.  

The hazard function depends, where it is an up time, on the current age of the component (the item) and 

on how long it has been down, if it is a down time. So, we only need to take in our consideration the age 

to see what will happen next. Thus, if we use the current age as a state, the system is Markovian and, 

therefore, we can describe it by an initial vector and a transition matrix. 

It is clear that the hazard function  
),( xxxh +

 can be calculated from R(x). The term   
),( xxxh +

measures the mortality near the point x. Meanwhile, the term 
),(1 xxxh +−

is the probability of survival 

from x to
)( xx +

. The method is applicable to discrete distributions. But it is also applicable to continuous 

distributions if they are approximated by discrete ones.  

In the continuous case the subdivision between consecutive steps is made very small and is 0.01 in our 

calculations. So, the continuous distribution can be approximated by a discrete one.  

For more details see Ashkar M.Y. [2] pp., 244-245. 

6 The transition matrix: 

 To find the availability, a state transition matrix of size 
1)](n21)[2(n ++

 is needed and it is shown in 

figure 3. This transition matrix has a special structure. It is distributed into 4 regions to allow transitions 

among the cases.   

The transition matrix is made finite by truncating the life time and the repair time distributions suitably at 

a very large n to make it easy to deal with. This can be done by making the hazard rate at the state n equal 

to unity. The same thing is true for the corresponding functions for the down time. For the up time, the 

hazard function 
),( xxxh +

 will be represented by p(x). The survival rate will be represented by l-p(x). 

The same is for the down time but with q(x) and 
)(1 xq−

 instead. For more details see Ashkar M.Y. [2] 

pp, 244-245. 

7 Initial availability and availability row vector: 

When a new item is put into service at the origin, we start at t=0. The availability at this point state is one 

i.e. P (0) =1 And non-availability is zero. Thus, the initial vector is the first essential in calculating the 

availability at any state time. Given the probability of being up or under repair as illustrated in the transition 

matrix, we can deduce the point availability, or the vector's availability for the next point. This row vector 

will replace the initial one for the next step. This can be done by multiplying the vector by the transition 

matrix. The resultant row vector will show the probability that the system is up or down. Also, it will be 

used again as the initial availability row vector for the next step.  And we repeat the pervious process to 

get the next point availability and so on. For more details see Ashkar M.Y. [2] pp, 244-245. 
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 A set of ns+1 element of these refer to up state, denote it by (Ui), The other n+1 refer to down state, 

denote it by (Di). The point availability, simply is 

=

n

i

iU
2

1  and the point of non-availability is 

+

n

n

Di
2

2  where

1
2

2

2

1

=+
+=

n

n

n

i

i DiU

, for more details see Ashkar, M. Y. [2] 
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Figure3 illustrates the nature of the Transition Matrix of size 2(n+1) x2(n+1) Among states                  
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Figure 4 illustrates the 2(n+1) initial availability row vector 

8 The Bathtub failure and exponential distribution repair 

System I: 

In this section the point availability of a system with a Bathtub hazard rate failure, where the repair 

time is exponentially distributed, which is a special case of Weibull and or Gamma distributions. 

More specifically, let us suppose that the system operates with the Bath-Tub hazard rate failure as 

shown in figure 5. This hazard rate is specified by the following terms:  
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                                               (16) 

The slopes in this model are calculated from (4). The reliability function of the system is computed 

directly from (6). The curve of this reliability function is shown in figure 6 From the reliability 

function, the hazard function can be obtained. Note that the continuous function is approximated 

by a discrete one, where the subdivision between the consecutive steps is 0.01 This, however, does 

not rule out the possibility of using the continuous formula of the hazard rate function i.e. the LHS 

of the expression (7) for the discrete case and the RHS of the (7) for the continuous case. The mean 

of the repair time is assumed to be 0.25; i.e. an exponential with λ =4. The above Markovian 

method is applied to obtain the point availability. The result converted to curve and it is shown in 

figure7. The mean time to failure of this system is computed in a similar way to example.1. The 

mean time to failure in this case is 5.0489912. The asymptotic result gives 

9528212.0
25.00489912.5

0489912.5
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tPALim
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This Asymptotic result is 0489912.5  and the point availability of the system computed by 

Markoian method is PA (30) =0.9520808. This has absolute error between the two results of 

0.0006212, which is 0.06212% 

System II: 

By following the same steps achieved in system I, system II will be considered. The bathtub hazard 

rate function, which is illustrated in figure 8, is specified as follows:   
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                    (18) 

The repair time is exponentially distributed with mean 0.25. The curve of reliability function is 

shown in figure 9. 

The above Markovian method is applied to obtain the point availability. The result converted to 

curve and it is shown in figure10. The mean time to failure of this system is computed in a similar 

way to example.1. The mean in this case is 7.1013871. The asymptotic result gives 

9659928.0
25.07.1013871

7.1013871
)( =

+
=

→t

tPALim
   (19) 

This Asymptotic result is 0.9659928 and the point availability of the system computed by Markoian 

method is PA (30) =0.9595632. This has absolute error between the two results of 0.0064296, which 

is 0.643% 

 
 

 

Figure 5: Hazard Rate Function of 

System I 

Figure 6: Reliability Function of 

System I 

Figure 7: Availability Function 

of System I 

0.9520808 
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System III: 

As third and final system, system III with hazard rate function is specified below is considered. The 

same above steps of system I and system II are achieved. The bathtub hazard rate function, which 

is illustrated in figure 11, is given as follows:   

0.10300.0
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34
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ta

                               (20) 

The repair time is exponentially distributed with mean 0.25. The curve of reliability function is 

shown in figure 12. 

The above Markovian method is applied to obtain the point availability. The result converted to 

curve and it is shown in figure13. The mean time to failure of this system is computed in a similar 

way to example.1. The mean in this case is 10.0510898. The asymptotic result gives 

9757307.0
25.00510898.01

10.0510898
)( =

+
=

→t

tPALim
   (21) 

This Asymptotic result is 0.9757307 and the point availability of the system computed by Markoian 

method is PA (25) =0.9765889. This has absolute error between the two results of 0.0008582, which 

is 0.0858% 

  
 

Figure 11: Hazard rate 

Function of System III 

     Figure12: Reliability 

     Function of System III 

Figure 13: Availability 

Function of System III 

 

 
  

Figure 8: Hazard rate 

Function of System II 

     Figure9: Reliability 

Function of System II 

Figure 10: Availability 

Function of System II 

0.9595632 

0.9765889 
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A comparison between the above systems, give the following contrast 

Specification of Bathtub 

Hazard rate failure 

Mean 

Time to 

failure 

Asymptotic results 
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9 To sum up: 

It is clear that the last system, system III is the best since it reaches the asymptotic state faster than 

the other two and has bigger mean time to failure which means it takes longer time to fail. This 

mean its reliability is better than other two. From the above study of systems with different 

bathtub, it can be concluded that the point availability of the system depends on the nature of its 

Bathtub hazard rate function. It settles down to the steady-state within a short time. The repair 

time distribution which is an exponential, speed up the process to equilibrium, but the nature of 

the "Bathtub" curve can give practically no oscillation, or a short large one 
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