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Abstract

A symmetry problem is solved. A new method is used. The idea of this method
is to reduce to a contradiction the PDE and the over-determined boundary data

on the boundary.
The new method allows one to solve other symmetry problems.

1 Introduction

Symmetry problems for PDE were studied in many publications by many authors, see,
for example, [1]. In this paper a new method is given for a study of symmetry problems
for PDE. Throughout we assume that D is a bounded connected C?—smooth domain in
R3, S is the boundary of D, N is the unit normal to S, pointing out of D, uy is the
normal derivative of u on S, D' = R3\ D, S? is the unit sphere in R3, J,(r) is the Bessel
function regular at r = 0, j,(r) is the spherical Bessel function, jj(kr) = %, kE>0is
a constant, -y = (f,y) is the dot product.

In [2]-[10] the author studied various symmetry problems.

Let us formulate the symmetry problem studied in this paper. Our main result is
formulated in Theorem 1.

Theorem 1. Assume that

Au+Kku=0 in D, uls=1 uy=0. (1)

Then S is a sphere of radius a where a solves the equation j,(ka) = 0.
In [5], [7] it was shown that the Pompeiu problem is equivalent to the problem (1).
In Section 2 proofs are given.

MSC: 35J05, 35R30
Key words: symmetry problems for PDE



2 Proofs

Proof of Theorem 1. Let g(z,y,k) = “——2_ If problem (1) has a solution then this

dmlz—y|’
solution is unique by the uniqueness of the solution to the Cauchy problem for elliptic

equation (1). The solution to equation (1) by Green’s formula is:

u(z) = — /SgN(:v,t)dt, r€D; wu(x)=-— /SgN(x,t)dt =0, zeD". (2)

Let B = {z : |z| < R}, D C Bg. If D is a ball B, of radius a and j}(ka) = 0, then
problem (1) in B, has a solution:

_ jo(k?")
jo(k&) ’

r=lz|. (3)

In what follows we assume that D C R? and S is a closed smooth curve. Let r(s) =
x(s)e; +y(s)es be a parametric representation of S, s be the arc length along S and also
the corresponding to the arc length s point on S, {e1, es} is a Cartesian basis in R?. The
first boundary condition in (1) is u(z(s),y(s)) = 1. Differentiating with respect to s one
gets uy@ + u,y = 0 and another differentiation yields

d
Upa? + Qi+ = 0, &= . (4)
s
Here we used the formula w,Z + u,y = 0. This formula can be derived as follows:
Vu -t = Vu- kv, where K = k(s) > 0 is the curvature of S, v = —N is the unit normal

pointing into D, Vu-v = —uy =0 on S. From (1) it follows that
Upy + Uy = —k* on S, (5)

Let us prove that (4) and (5) are not compatible at some points, except when S is a
circle of radius a, where a solves the equation j,(ka) = 0.

Denote uz; = p = p(s), uzy = q¢ = q(s). Then (5) implies u,, = —k* —p on S. Let A
be a 2 x 2 matrix with elements Ay, = p, Aja = Ag = q, Ass = —k? — p. The equation
for finding the eigenvalues \; 5 of A is:

NAEN=p"—¢ —kp=0. (6)
The eigenvalues A\; and \, are:

k’2
)\172 - 4 (k4/4+p2 +q2 + k2p)1/2

- 7)

Clearly, \; + Xy = —k*, Mo = —p* — ¢ = k°p, k* /4 +p* + ¢+ k*p = (%2 +p)?+¢* > 0.
Thus, Ay < 0.



The corresponding eigenvectors (non-normalized but orthogonal) can be calculated
explicitly. One has

q )\1
=1 —

(8)

If ¢ # 0, then

k2 +p+ X
ey = {———=

If ¢ # 0 then one checks that L +§+’\2 = /\Qq_p and - =+ k2+p+/\1 =0,s07=
If g =0 then \; = p, Ay = —p — k?, e; = {1,0}, ea = {0, 1}, and equation (13) (see
below) leads also to a contradiction as in the case ¢ # 0.
Clearly, €1 - e3 = 0, |le1]|* = ||e2||* = 1 + 72, so 4* is invariant under rotations of the
Cartesian coordinate system.

Denote {&,y} := w. Note that #* + g? = 1. Let ¢1, ca be scalar coefficients. Then

Ay ={=—1}. (9)

_k? +p+>\2

crer + cees = w, w:={i,y}. (10)
Solving explicitly this algebraic system for ¢; and ¢y one gets:
= (i) AT A=T47 (1)

and

— (§— i) A (12)
Equation (4) can be written as (Aw,w) = 0. Substitute w from (10) into the equation
(Aw,w) = 0 and use the orthogonality of e; and e; to get

(1 — 7@)2 Xa + (& + )2 M = 0. (13)

We now prove that (13) leads to a contradiction unless S is a circle of radius a where a
solves the equation Jj(ka) = 0 if D C R? and a solves the equation jj(ka) = 0 if D C R3.

Choose Cartesian coordinates in which #(s) = —vy. Such coordinate system does
exist because the only restriction on @ and 7 is %> + 9> = 1 at all s € S. Then, since
A2 < 0 equation (13) with #(s) = —vy implies y(1 + +*) = 0. Thus, y = 0. Therefore,
# = ¢ = 0. This contradicts the relation 2 + ¢* = 1. This contradiction holds for any
smooth S except for a circle of a special radius, see (3).

Theorem 1 is proved. a
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