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Abstract

A symmetry problem is solved. A new method is used. The idea of this method
is to reduce to a contradiction the PDE and the over-determined boundary data
on the boundary.

The new method allows one to solve other symmetry problems.

1 Introduction

Symmetry problems for PDE were studied in many publications by many authors, see,
for example, [1]. In this paper a new method is given for a study of symmetry problems
for PDE. Throughout we assume that D is a bounded connected C2−smooth domain in
R3, S is the boundary of D, N is the unit normal to S, pointing out of D, uN is the
normal derivative of u on S, D′ = R3 \D, S2 is the unit sphere in R3, Jn(r) is the Bessel

function regular at r = 0, j`(r) is the spherical Bessel function, j′`(kr) = dj`(kr)
dr

, k > 0 is
a constant, β · y = (β, y) is the dot product.

In [2]–[10] the author studied various symmetry problems.
Let us formulate the symmetry problem studied in this paper. Our main result is

formulated in Theorem 1.
Theorem 1. Assume that

∆u+ k2u = 0 in D, u|S = 1, uN = 0. (1)

Then S is a sphere of radius a where a solves the equation j′0(ka) = 0.
In [5], [7] it was shown that the Pompeiu problem is equivalent to the problem (1).
In Section 2 proofs are given.
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2 Proofs

Proof of Theorem 1. Let g(x, y, k) := eik|x−y|

4π|x−y| . If problem (1) has a solution then this
solution is unique by the uniqueness of the solution to the Cauchy problem for elliptic
equation (1). The solution to equation (1) by Green’s formula is:

u(x) = −
∫
S

gN(x, t)dt, x ∈ D; u(x) = −
∫
S

gN(x, t)dt = 0, x ∈ D′. (2)

Let BR = {x : |x| ≤ R}, D ⊂ BR. If D is a ball Ba of radius a and j′0(ka) = 0, then
problem (1) in Ba has a solution:

u =
j0(kr)

j0(ka)
, r = |x|. (3)

In what follows we assume that D ⊂ R2 and S is a closed smooth curve. Let r(s) =
x(s)e1 + y(s)e2 be a parametric representation of S, s be the arc length along S and also
the corresponding to the arc length s point on S, {e1, e2} is a Cartesian basis in R2. The
first boundary condition in (1) is u(x(s), y(s)) = 1. Differentiating with respect to s one
gets uxẋ+ uyẏ = 0 and another differentiation yields

uxxẋ
2 + 2uxyẋẏ + uyyẏ

2 = 0, ẋ =
dx

ds
. (4)

Here we used the formula uxẍ + uyÿ = 0. This formula can be derived as follows:
∇u · r̈ = ∇u · κν, where κ = κ(s) > 0 is the curvature of S, ν = −N is the unit normal
pointing into D, ∇u · ν = −uN = 0 on S. From (1) it follows that

uxx + uyy = −k2 on S. (5)

Let us prove that (4) and (5) are not compatible at some points, except when S is a
circle of radius a, where a solves the equation j′0(ka) = 0.

Denote uxx = p = p(s), uxy = q = q(s). Then (5) implies uyy = −k2 − p on S. Let A
be a 2× 2 matrix with elements A11 = p, A12 = A21 = q, A22 = −k2 − p. The equation
for finding the eigenvalues λ1,2 of A is:

λ2 + k2λ− p2 − q2 − k2p = 0. (6)

The eigenvalues λ1 and λ2 are:

λ1,2 = −k
2

2
± (k4/4 + p2 + q2 + k2p)1/2. (7)

Clearly, λ1 +λ2 = −k2, λ1λ2 = −p2− q2− k2p, k4/4 + p2 + q2 + k2p = (k
2

2
+ p)2 + q2 ≥ 0.

Thus, λ2 < 0.
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The corresponding eigenvectors (non-normalized but orthogonal) can be calculated
explicitly. One has

e1 = {1, γ}, γ :=
q

k2 + p+ λ1

=
λ1 − p
q

. (8)

If q 6= 0, then

e2 = {k
2 + p+ λ2

q
, 1} = {−γ, 1}. (9)

If q 6= 0 then one checks that k2+p+λ2
q

= q
λ2−p and q

λ2−p + q
k2+p+λ1

= 0, so γ = −k2+p+λ2
q

.

If q = 0 then λ1 = p, λ2 = −p − k2, e1 = {1, 0}, e2 = {0, 1}, and equation (13) (see
below) leads also to a contradiction as in the case q 6= 0.

Clearly, e1 · e2 = 0, ‖e1‖2 = ‖e2‖2 = 1 + γ2, so γ2 is invariant under rotations of the
Cartesian coordinate system.

Denote {ẋ, ẏ} := w. Note that ẋ2 + ẏ2 = 1. Let c1, c2 be scalar coefficients. Then

c1e1 + c2e2 = w, w := {ẋ, ẏ}. (10)

Solving explicitly this algebraic system for c1 and c2 one gets:

c1 = (ẋ+ γẏ) ∆−1, ∆ = 1 + γ2, (11)

and
c2 = (ẏ − γẋ) ∆−1. (12)

Equation (4) can be written as (Aw,w) = 0. Substitute w from (10) into the equation
(Aw,w) = 0 and use the orthogonality of e1 and e2 to get

(ẏ − γẋ)2 λ2 + (ẋ+ γẏ)2 λ1 = 0. (13)

We now prove that (13) leads to a contradiction unless S is a circle of radius a where a
solves the equation J ′0(ka) = 0 if D ⊂ R2 and a solves the equation j′0(ka) = 0 if D ⊂ R3.

Choose Cartesian coordinates in which ẋ(s) = −γẏ. Such coordinate system does
exist because the only restriction on ẋ and ẏ is ẋ2 + ẏ2 = 1 at all s ∈ S. Then, since
λ2 < 0 equation (13) with ẋ(s) = −γẏ implies ẏ(1 + γ2) = 0. Thus, ẏ = 0. Therefore,
ẋ = ẏ = 0. This contradicts the relation ẋ2 + ẏ2 = 1. This contradiction holds for any
smooth S except for a circle of a special radius, see (3).

Theorem 1 is proved. 2
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