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Abstract

Let G be a permutation group on a set {2 with no fixed points
in  and let m be a positive integer. If no element of G moves any
subset of 2 by more than m points (that is, if [T \ T'| < m for every
I' C Qand g € G), and the lengths two of orbits is p, and the rest
of orbits have lengths equal to 3. Then the number ¢ of G-orbits in
Q is at most |1(3m —2) + %J Moreover, we classifiy all groups for
t=[3(3m—2)+ %J is hold.(For x € R, |z] denotes the greatest
integer less than or equal to x.)
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1 Introduction

Let G be a permutation group on a set {2 with no fixed points in 2 and let m
be a positive integer. If for a subset I" of Q the size [['Y\ T'| is bounded, for g € G ,
we define the movement of I' as move(I') = max eq|I' \T'|. If move(I') < m for all
I' C Q,then G is said to have bounded movement and the movement of G is define
as the maximum of move(T") over all subsets I, that is,

m := move(G) := sup{|TY\T|IT' C 2,9 € G}.
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This notion was introduced in [3]. By [3,Theorem 1],if G has bounded movement
m,then 2 is finite. Moreover both the number of G-orbits in 2 and the length
of each G-orbit are bounded above by linear functions of m.In particular it was
shown that the number of G-orbits is at most 2m-1.In this paper we will improve
this to 2(3m —2) + %, if the lengths two of orbits is p, and the rest of orbits have

lengths equal to 3. If m=1, then t = %, |2] = 2 and G is Z3 or S2. So in this
paper we suppose that m greater than 1. We present here a classification of all
groups for which the bound %(3m -2)+ % is attained. We shall say that an orbit
of permutation group is nontrivial if its length is greater than 1.The main result
is the following theorem.
Theorem 1.1. Let m be a positive integer and suppose that G is a permutation
group on a set €2 such that G has no fixed points in €2, and G has bounded move-
ment equal to m . If the lengths two of orbits is p, and the rest of orbits have
lengths equal to 3. Then the number ¢ of G-orbits in € is at most (3m —2) + %.
And also if t = %(3m —-1)+ %, then m is product of p in power of 3, and G is
order pm, all G-orbits have length 3, and the pointwise stabilizers of the G-orbits
are precisely the %(3171 —-2)+ % distinct subgroups of G of index 3 .

Note that an orbit of a permutation group is non trivial if its length is greater
than 1. The groups described below are examples of permutation groups with
bounded movement equal to m which have exactly 3(3m—2)+ % nontrivial orbits.

2 Examples and Preliminaries

Let 1 # g € G and suppose that g in its disjoint cycle

representations has ¢ nontrivial cycles of lengths [y, ..., l;, say. We might represent
g as

g = (a1az...a;,)(b1ba...by, )...(2122...21,). Let I'(g) denote a subset of {2 consisting
|l;/2] points from the ith cycle , for each i, chosen in such a way that I'(g)? N I'(g)
= (). For example ,we could choose

I'(g) = {a2,a4,...,a%,,b2,b4, ..., by, ..., 22, 24, ..., 2k, }, Where k; = [; — 1 if [; is odd
and k; = [; if ; is even . Note that I'(g)is not uniquency determined as it depends
on the way each cycle is written . For any set I'(g) consists of every point of very
cycle of g. From the definition of I'(g) we see that

t

(g} \T(g)l = T(9) = D _lli/2].

i=1

The next lemma shows that this quantity is an upper bound for |T'9 \ T'| for an



arbitrary subset I' of .

Lemma 2.1. [5, Lemma 2.1]. Let G be a permutation group on a set 2 and
suppose that I' € Q . Then for each g € G, [T9\T| < Y, [l:/2], where [; is
the length of the ith cycle of g and ¢ is the number of nontrivial cycles of ¢ in its
disjoint cycle representation . This upper bound is attained for I' = I'(g) defined
above .

Now we will show that there certainly is an infinite family of 3-groups for which
the maximum bound obtained in Theorem 1.1 holds .

Example 2.2 . Let r be a positive integer , let (}::Z?:,ng2 et t = %(3771—2) +
% , and let the lengths two of orbits is p, and the rest of orbits have lengths
equal to 3, and Hy, ..., H; be an enumeration of the subgroups of index 3 in
G. Define €); to be the coset space of H; in G and Q = Q1 U...UQ;. If
g € G\ 1 then g lies in $(p*.3"' — 1) + % of the groups H; and therefore
acts on €) as a permutation with %(]92.3’”_1 -2)+ % = m — 1 fixed points
and 373 disjoint 3-cycles . Taking one point from each of these 3-cycles to
form a set T' we see that m(G) > 3773 and it is not hard to prove that in fact
m(G) = 3% . Thus n = 2t = (p*.3""' —2) + 2 =. This proves bound of
G — orbits of Theorem 1.1 . It follows that G has bounded movement equal
to m, and G has (3m — 2) + % nontrivial orbits in 2 .

When m > 1 the classification in Theorem 1.1 follows immediately from the
following theorem about subsets with movement m.

Definition Let G be a permutation group on a set €2 with orbits €;, for
1 € I. We shall say that a subset I' C ) cuts across each G-orbit if I'; :=
'nQ; ¢ {®,Q}, for every i € I.

Theorem 2.3. Let G < Sym(Q2) be a permutation group with ¢ orbits for
positive integer ¢, such that the lengths two of orbits is p, and the rest of
orbits have lengths equal to 3. Moreover suppose that I' C € such that move
(T) =m > 1, and T cuts across each G-orbit. Then ¢ < (3m — 2) + % and
moreover, if t = 1(3m — 2) + % , then:

(1) G is an 3-group and all G-orbits of G has size 3 ;

(2) If the rank of the group G is r then r > 2,¢t = (3(p*.3"' — 2) + %) and
m = p(3");

(3)If one of the G-orbits is 3, then The ¢ different G-orbits are (isomorphic
to) the coset spaces of the (1(p?.37! —2) + %) different subgroups of index
3in G.



3 Proof of Theorem 2.3.

Proof: Let €4,...,€; be t orbits of G of lengths ny,...,n;. Choose a; € €2
and let H; := G,,, so that |G : H;| = n;. For g € G, let T'(9) = {ay|af # «;}
be every second point of every cycle of g and let v(g) := |I'(g)| . Since
['(g)NT(g)? = 0 it follows that v(g) < mforall g € G. Let Q := Q;U...UQ,,
and let G and Hy, ..., H; denote the finite permutation groups on €2 induced
by G and Hy, ..., H, respectively. Then n; = |G : H;|.

For g € G, let § € G denote the permutation of Q induced by g. Then as

7(1g) = 0, we have Y5eqv(g) < m|G|. i
Now, Counting the pairs (g,¢) such that g € G and o # «; gives

L L o _ 1

> 9) =2 g€ Clal # ai}l = 3 _{g € Glg ¢ Hi}| = X_(IG|=|Hi) = |G| >_(1-—).

geqG i i i i i
It follows that > ;(1 — n%) < m. Since n; > 3,p* for each i, it follows

thatlzi(l - ni) 252(’;_1) + 2(t — 2) and hence @ + 2(t —2) < m, that is,
Consequently G has at most 3(3m — 2) + % orbits in Q. Now Let

m be a positive integer greater than 1. Suppose that G < Sym(2) with

orbitsQ, s, ..., Q, where t:%(3m —1)+ %. Suppose further that I' C € has

move (I') = m and that cuts across each of the G-orbits ;. For each i set

n; = || and T'; = T'N ;. Note that 0 < [I';| < n;.

Claim 3.1 If Theorem 2.3 holds for the special case in which |I';| = 1 for
i=1,..,(30Bm—-2)+ 2%), then it holds in general .

Proof :Suppose that Theorem 2.3 holds for the case where each |I';| = 1.
Fori=1,...,t, define }°, := {I'Y|g € G}, and note that | }°; | > 3 since I cuts
across €2;. Set X = U;>1 ;. Then G induces a natural action on X for which
the G-orbits are i,...,%; . Let G* denote the permutation group induced
by G on ¥ ;| and let K denote the kernel of this action.

We claim that the t-element subset I's, = {I'y,...,I;} C X has movement
equal to m relative to G*, and that I's; cuts across each I'*-orbit ;. For
each g € G, [I'Y —T'| <m and hence |T'}, — I's| < m. Thus move (I's) < m.
Also, Since |¥;| > 3 and 'y N'Y; Consists of the single element I'; of ¥; | the
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set T's; cuts across each of the $(3m — 2) + % orbits ¥;. However, it follows
that the number of G*- orbits is at most 3(3.move(I's) — 2) + %, and hence
move (I's) = m.

Thus the hypotheses of theorem 2.3 hold for the subset 'y, C X relative
to G, and 'y, meets each G*-orbit in exactly one point. By our assumption
it follows that ¢ = 1 (p?3" ' — 2)% =13Bm-2)+ % for some r > 1, and that
G* = Z5 and each |3;| = 3. Further, the subgroups H; of G fixing I'; setwise
range over the 3(p?3"~! —2) + 2 distinct subgroups which have index 3 in G
and which contain K. In particular, for each i, H; is normal in G and hence
the H;-orbits in €2; are blocks of imprimitivity for G, and their number is at
most |G : H| = 3. Since H; fixes I'; setwise it follows that I'; is an H; -orbit
and n; = 3|[|.

Let ¢ € G\ K. Then in its action on ¥ | g moves exactly m of the T';.
Since the T'; are blocks of imprimitivity for G, each TY is equal to either T
or Q; — I';. It follows that |I'Y \ G| is equal to the sum of the sizes of the
m subsets I'; moved by g. However, since move (I') = m, each of these m
subsets I'; must have size 1. Since for each i we may choose an element g
which moves I'; , we deduce that each of the I'; has size 1, and that K is the
identify subgroup. It follows that theorem 2.3 hold for G . Thus the claim
is proved .

From now on we may and shall assume that each |I';| = 1. Let I'; = {€;}.
Further we may assume that ny < ny < ... < n;. For g € G let ¢(g) de-
note the number of integers I such that w! = w;. Note that since move
(I') = m, we have ¢(g) >t —m = %(3m—2)+%—m: mT_Q"‘z% and also
C(lg>:t>mT_2+%.

Lemma 3.2. If two of the orbits of G has length equal to p, then the rest
orbits of G has size 3.

Proof : Let X denote the number of pairs (g,i) such that g € G,
1 <i<t,and w) =w;. Then X = Y sc(g), and by our observations,

X >|Gl.(22 + %) On the other hand, for each 7, the number of elements

of G which fix w; is |G.,| = 9, and hence X = |G| Xt_, n; ! If all the n; > 3,

TLZ"

and one of n; is equal to p, then X < ]G|(%+%) = |G’(%+37%72+%+%) <

IGl.(252 + é—;) (since m > 3 ) which is a contradiction. Hence n=3.




A similar argument to this enables us to show that except one of n; the
rest of n; is n; = 3, and hence that G is an 3 — group.
Lemma 3.3. The group G = Zz.Zg for some r > 2. Moreover for each
n; = 3, except one , the stabilizers G, (2 < i < t) are pair wise distinct
subgroups of index 3 in G, and for each g # 1, ¢(g) = (m—2 + é;)
Proof: By Lemma 3.2, except one of n; the rest of n; is n; = 3. Thus
H = @, is a subgroup of index 3. This time we compute the number Y
of pairs (g,4) such that g € G\ H,2 <1i <t , and w] = w;. For each such
g, w{ # w; and hence there are ¢(g) of these pairs with first entry ¢g. Thus
Y =Speamclg) 2 [G\H|("F + 3) = [GI("F + &)

On the other hand, for each ¢ > 2, the number of elements of GG, which
fix w; is |Gy, \H] If H = G, then \G A\H| = 0, while if G, # H, then

|G, \H| = |G°’l 1G] < |G| Hence

 3n; —

Tl S < 9

It follows that equality holds in both of the displayed approximations for
Y. This means in particular that each n; = 2, Whence G = Z,.Z5 for some
r. Further, for each i > 3,G,,, # H and so r > 2. Arguing in the same way
with H replaced by G,,, for some i > 2, we see that G, # G, if j # i, and
also if g € Gy, then ¢(g) = (%’“—é—;). Thus the stabilizers G, (1 < i < t) are
pairwise distinct , and if g < 1 then ¢(g) = (%52 + é—;). Finally we determine
m.
Lemma 3.4.. m = p(3"7?)
Proof: We use the information in lemmag.3 to determine precise the quantity
X =Y eqelg) : X =t+(G|=1).(3(m=2)+5;) = 5(3m—2)+ 5+ (p*3" 2~
D(3(m—2) + %). On the other hand, from the proof of lemma 2.1,

! 2 t-2) 2 3m-2 5 2

X = -1 — |G| = p23 2 (= = 2
CI>n7 =1GLC+ =57 =p 30+ ——+ o= 3)

Thus implies that m = p(3"7?).
The proof of theorem 2.3 now follows from lemmas 3.2-3.4.



References

1]

2]

L.Brailovsky, Structure of quasi-invariant sets, Arch.Math.,59 (1992),322-
326.

L.Brailovsky, D.Pasechnix , C.E.Praeger, Subsets close to invarianr sub-

set of quasi-invariant subsets for group actions ,,Proc. Amer. Math.Soc.
,123(1995),2283-2295.

C.E.Praeger,On permutation groups with bounded movement,J. Algebra
,144(1991),436-442.

C.E.Praeger, The separation theorem for group actions, in ”ordered
Groups and Infinite Groups” (W.charles Holland, Ed.), Kluwer Academic,
Dordrecht/ Boston/ Lond, 1995.

A Hassani,M.Khayaty,E.I.LKhukhro and C.E.Praeger, Transitive permu-
tation groups with bounded movement having maximum degree./J.
Algebra,214(1999),317-337.

J.R.Cho, P.S.Kim, and C.E.Praeger, The maximal number of orbits of a
permutation Group with Bounded Movement, J. Algebra,214 (1999),625-
630.

P.M.Neumann, The structure of finitary Permutation groups, Arch. Math.
(Basel) 27(1976),3-17.

B.H.Neumann, Groups covered by permutable subsets, J. London Math
soc., 29(1954), 236-248.

P.M.Neumann, C.E.Praeger, On the Movement of permutation Group,
J.Algebra, 214, (1999)631-635.





