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Abstract 

We study 𝑛  independent stochastic processes  𝑋𝑖 𝑡 , 𝑡 ∈  0, 𝑇𝑖 , 𝑖 = 1,… , 𝑛  , defined by a stochastic differential equation 

with diffusion coefficients depending nonlinearly on a random variables ∅𝑖  and 𝜇𝑖  (the random effects).The distributions of 

the random effects ∅𝑖  and 𝜇𝑖  depends on unknown parameters which are to be estimated from the continuous 

observations of the processes 𝑋𝑖 𝑡 . When the distributions of the random effects ∅𝑖  ,𝜇𝑖  are Gaussian and exponential 

respectively, we obtained an explicit formula for the likelihood function and the asymptotic properties (consistency and 
asymptotic normality) of the maximum likelihood estimator (MLE) are derived when 𝑛 tend to infinity. 

Keywords: stochastic differential equations, Maximum likelihood estimator; nonlinear random effects; strong 

consistency; asymptotic normality.                         
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1 INTRODUCTION    

Stochastic differential equations play an important role in many areas of science fields as physics, engineering, chemistry, 
neuroscience, biology, finance (Gugushvili and P. Spreij (2012)[11]). Statistical estimation of parameters in the diffusion 
processes has been studied for a long time; Feigin [10] provided a useful historical overview of the early studies and 
introduced a general asymptotic theory of maximum likelihood estimation for continuous diffusion processes. In the recent 
years, the stochastic differential equations with random effects have been the subject of diverse applications such as 
pharmacokinetic/pharmacodynamics, neuronal modeling (Delattre and Lavelle, 2013[5], Donnet and Samson, 2013[9], 
Picchini et al. 2010[15]).Maximum likelihood estimator of the parameters of the random effect, is generally not possible, 
because of the likelihood function is not available in most cases, exceptin (Ditlevsen and De Gaetano (2005) [5]) and [8] 
which are found a special case of SDE and derived an explicit MLE. Many references proposed approximations for the 
unknown likelihood function, for general mixed SDEs an approximations of the likelihood have been proposed (Picchini 
and Ditlevsen, 2011[14]), linearization (Beal and Sheiner (1982)[4]),Laplace's approximation (Wolfinger, (1993)[17]) or 
approximating the conditional transition density of the diffusion process given the random effects by a Hermit expansion, 
(Aït-Sahalia (2002)[1]). 

Delattre et al. (2012) [7] and alkreemawi et al. (2015) [2] are studied the maximum likelihood estimator for random effects 
in more generally for fixed𝑇 and 𝑛 tending to infinity (for non i.i.d. sample paths, see Maitra et al. (2014) [13]) and they 
found an explicit expression for likelihood function and exact likelihood estimator by investigate the linear random effect in 
the drift (multiple and additive case respectively) together with a specific distribution for the random effect. Almost 
researcher studied the random effect in the drift not in diffusion except Delattre et al.(2014) [6] and alsukaini et al. (2015) 
[3]who used one random effect in the diffusion coefficient (linearly and nonlinearly respectively) with a specific distributions 
and focus on (discretely and continuously) observed SDEs respectively. 

         In the present work we focus on stochastic differential equation with two random effects in diffusion term and without 
random effect in drift term. We consider  𝑛  real valued stochastic processes 𝑋𝑖 𝑡 , 𝑡 ∈  0, 𝑇𝑖 , 𝑖 = 1,… , 𝑛  , with dynamics 

ruled by the following SDEs: 

 

 
 

where𝑊1 , … , 𝑊𝑛  are 𝑛 independent wiener processes, ∅1  , … , ∅𝑛  and 𝜇1  , … , 𝜇𝑛are 𝑛𝑖. 𝑖. 𝑑. random variables taking values in 

( ℝ and ℝ+) respectively, ∅1  , … , ∅𝑛  ,𝜇1  , … , 𝜇𝑛  and 𝑊1 , … , 𝑊𝑛  are independent and 𝑥𝑖 , 𝑖 = 1,… , 𝑛 are known real values. 

The functions 𝑏 𝑥 and 𝜍(𝑥)are known real valued. Each process𝑋𝑖 𝑡  represents an individual, the variables ∅𝑖  and 𝜇𝑖  

represents the random effects of individual 𝑖, the random variables∅1  , … , ∅𝑛  have a common distribution 𝑔 𝜑, 𝜃 𝑑𝜐(𝜑) 
on ℝ and the random variables 𝜇1  , … , 𝜇𝑛  have a common distribution 𝑕 𝜇, 𝛽 𝑑𝑢(𝜇) on ℝ+where 𝜃 and  𝛽 are an unknown 

parameters belonging to a set 𝚯 ⊂ ℝ𝑝  where 𝜐 and 𝑢 are a dominating measures.                                                                                                              

Our aim is to estimate 𝜓 = (𝜃, 𝛽) from the continuous observations  𝑋𝑖 𝑡 , 𝑡 ∈  0, 𝑇𝑖 , 𝑖 = 1, … , 𝑛   , we focus on a special 

case of nonlinear random effect in the diffusion coefficient in the model (1), i.e. σ 𝑥, ∅𝑖 , 𝜇𝑖 =
1

∅𝑖+𝜇 𝑖
 𝜍(𝑥) , where 𝜍 is a 

known real function and ∅𝑖  is a Gaussian and 𝜇𝑖  is an exponential, we find an explicit likelihood formula and the maximum 

likelihood estimator of  𝜓 .We use the following sufficient statistics 𝑈𝑖  and 𝑉𝑖  as in [7]:                                                                  

𝑈𝑖 =  
𝑏 𝑋𝑖 𝑠  

𝜍2(𝑋𝑖 𝑠 )

𝑇𝑖

0

 𝑑𝑋𝑖 𝑠          ,         𝑉𝑖 =  
𝑏2 𝑋𝑖 𝑠  

𝜍2(𝑋𝑖 𝑠 )

𝑇𝑖

0

 𝑑𝑠       ,   𝑖 = 1, … , 𝑛.            

 The consistency and asymptotic normality of the maximum likelihood estimator of  𝜓 are proved without invoking the 
result in the literature. 

The rest of this paper is organized as follows. Section 2 contains the notation and assumptions that we will need 
throughout the paper. The explicit likelihood function, specific distributions for the random effects and the maximum 
likelihood estimators of the parameters of random effects are introduced in section 3. In section 4 we study the asymptotic 
properties of the maximum likelihood estimator when the random effects are Gaussian and exponential distribution 
respectively. 

2 Notations and Assumptions 

Consider 𝑛 real valued stochasticprocesses (𝑋𝑖 𝑡 , 𝑡 ≥ 0), 𝑖 = 1,… , 𝑛with dynamics ruled by (1). The 

processes𝑊1 , … ,𝑊𝑛and the random variables ∅1  , … , ∅𝑛and 𝜇1  , … , 𝜇𝑛are defined on a common probability space 

(Ω, ℱ, ℙ).Consider the filtration(ℱ𝑡 , 𝑡 ≥ 0)defined byℱ
𝑡

=  𝜍(∅𝑖 , 𝜇𝑖 , 𝑊𝑖 𝑠 , 𝑠 ≤ 𝑡, 𝑖 = 1, … , 𝑛).As ℱ
𝑡

= 𝜍(∅𝑖 , 𝜇𝑖 , 𝑊𝑖 𝑠 , 𝑠 ≤ 𝑡)⋁ℱ𝑡
𝑖  

withℱ𝑡
𝑖 = 𝜍(∅𝑖 , ∅𝑗 , 𝜇𝑖 , 𝜇𝑗 , 𝑊𝑗  𝑠 , 𝑠 ≤ 𝑡 , 𝑗 ≠ 𝑖)  independent of   𝑊𝑖  , each process  𝑊𝑖  is a (ℱ𝑡 , 𝑡 ≥ 0)-Brownian motion. 

Moreover, the random variables ∅𝑖  , 𝜇𝑖  are ℱ
0
 – measurable. We used □  referring to the end of the proofs. 

 We assume that:                                                                                                     

H1the function 𝜍 belongs to 𝑐2(ℝ × ℝ × ℝ+) and for all 𝑥 ∈ ℝ , 0 < 𝜍0
2  ≤ 𝜍2(𝑥, 𝜑, 𝜇) ≤  𝜍1

2 

From  H1 , the process (𝑋𝑖 𝑡 ) is well define and (∅𝑖 , 𝜇𝑖 , 𝑋𝑖 𝑡 ) adapted to filtration (ℱ𝑡 , 𝑡 ≥ 0) .The 𝑛 processes 

(∅𝑖 , 𝜇𝑖 , 𝑋𝑖 𝑡 ) , 𝑖 = 1,… , 𝑛  are independent. For all 𝜑, 𝜇 and all 𝑥𝑖 ∈ ℝ , the stochastic differential equation:                                                                                                                                 
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𝑑𝑋𝑖
𝜑,𝜇  𝑡 = 𝑏 𝑋𝑖

𝜑,𝜇
 𝑑𝑡 + 𝜍 𝑋𝑖

𝜑,𝜇
, 𝜑, 𝜇 𝑑𝑊𝑖 𝑡   ,    𝑋𝑖

𝜑,𝜇  0 =  𝑥𝑖              (2). 

Admits a unique strong solution process  (𝑋𝑖
𝜑,𝜇  𝑡 , 𝑡 ≥ 0)   adapted to filtration  (ℱ𝑡 , 𝑡 ≥ 0) . We infer that the conditional 

distribution of  𝑋𝑖  given  ∅𝑖 = 𝜑 and 𝜇𝑖 = 𝜇 identical to the distribution of  𝑋𝑖
𝜑,𝜇 . 

3 Likelihood, A specific distributions for the random effects and Maximum likelihood 
estimators 

3.1 Likelihood 

    We introduce the distribution 𝑄𝜑,𝜇
𝑥 𝑖 ,𝑇𝑖of  (𝑋𝑖

𝜑,𝜇  𝑡 , 𝑡 ∈  0, 𝑇𝑖 ). 

Let𝑃𝜓
𝑖 = 𝑔 𝜑, 𝜃 𝑑𝑣(𝜑)⨂ 𝑕 𝜇, 𝛽 𝑑𝑢(𝜇)⨂𝑄𝜑

𝑥 𝑖 ,𝑇𝑖denote the joint distribution of (∅𝑖 , 𝜇𝑖 , 𝑋𝑖 𝑡 )  and let 𝑄𝜓
𝑖  denote the 

marginal distribution of (𝑋𝑖 𝑡 , 𝑡 ∈  0, 𝑇𝑖 ). Let us consider the following assumption: 

 H2For 𝑖 = 1,… , 𝑛 and for all 𝜑, 𝜇, 𝜑 ′, 𝜇′,  𝑄𝜑,𝜇
𝑥 𝑖 ,𝑇𝑖   

𝑏2 𝑋𝑖
𝜑 ,𝜇  𝑡  

𝜍2 𝑋𝑖
𝜑 ,𝜇

 𝑡 ,𝜑 ′,𝜇 ′ 

𝑇𝑖

0
 𝑑𝑡 < +∞ = 1. 

Proposition 3.1 under H1-H2 and let 𝜑 ∈ ℝ , 𝜇 ∈ ℝ+, we have, the distribution 𝑄𝜑,𝜇
𝑥 𝑖 ,𝑇𝑖are absolutely continuous 

w.r.t. 𝑄𝑖 = 𝑄𝜑0 ,𝜇0

𝑥 𝑖 ,𝑇𝑖 with density: 

𝑑𝑄𝜑,𝜇
𝑥 𝑖 ,𝑇𝑖

𝑑𝑄𝑖
 𝑋𝑖 = 𝐿𝑇𝑖

 𝑋𝑖 , 𝜑, 𝜇 = exp  
𝑏 𝑋𝑖 𝑠  

𝜍2 𝑋𝑖 𝑠 , 𝜑, 𝜇 

𝑇𝑖

0

 𝑑𝑋𝑖 𝑠  −
1

2
 

𝑏2 𝑋𝑖 𝑠  

𝜍2 𝑋𝑖 𝑠 , 𝜑, 𝜇 

𝑇𝑖

0

 𝑑𝑠  3 .   

(See Liptser and Shiryaev [12]), which is admits a continuous version 𝑄𝑖  a.s. 

Proof: (see the proof of proposition 2) in [7]. 

      By independent of individuals, 𝑃𝜓 = ⨂𝑖=1
𝑛 𝑃𝜓

𝑖  is the distribution of (∅𝑖 , 𝜇𝑖 , 𝑋𝑖 .  ), 𝑖 = 1, … , 𝑛 and 𝑄𝜓 = ⨂𝑖=1
𝑛 𝑄𝜓

𝑖  is the 

distribution of the sample  𝑋𝑖 𝑡 , 𝑡 ∈  0, 𝑇𝑖 , 𝑖 = 1, … , 𝑛  . 

  We can compute the density of  𝑄𝜓   w.r.t.  𝑄 = ⨂𝑖=1
𝑛 𝑄𝑖  as follow: 

𝑑𝑄𝜓

𝑑𝑄𝑖
 𝑋𝑖 =   𝐿𝑇𝑖

 𝑋𝑖 , 𝜑, 𝜇 𝑔 𝜑, 𝜃 𝑕 𝜇, 𝛽 𝑑𝑣(𝜑)𝑑𝑢(𝜇)
ℝℝ+

= 𝛾𝑖 𝑋𝑖 , 𝜓 .  

The distribution 𝑄𝜓  admits a density given by:  

𝑑𝑄𝜓

𝑑𝑄 
 𝑋1, … , 𝑋𝑛 =  𝛾𝑖 𝑋𝑖 , 𝜓 ,

𝑛

𝑖=1

 

And the exact likelihood of whole sample  𝑋𝑖 𝑡 , 𝑡 ∈  0, 𝑇𝑖 , 𝑖 = 1,… , 𝑛   is  

𝜉𝑛(𝜓) =  𝛾𝑖 𝑋𝑖 , 𝜓 .

𝑛

𝑖=1

 

3.2 A Specific distributions for the random effects  

Consider model (1) with nonlinear random effects in the diffusion coefficient 𝜍 𝑥, 𝜑, 𝜇 =
1

𝜑+𝜇
𝜍(𝑥)  where  𝜑 ∈ ℝ , 𝜇 ∈

ℝ+ and 𝑏 .  , 𝜍(. ) are known functions. We assume that:  

 
𝑏2 𝑋𝑖 𝑠  

𝜍2 𝑋𝑖 𝑠  

𝑇𝑖

0

 𝑑𝑠 < ∞ , 𝑄𝜑,𝜇
𝑥 𝑖 ,𝑇𝑖 − 𝑎. 𝑠, 

for all 𝜑, 𝜇 and for 𝑖 = 1, … , 𝑛 ; 𝑇𝑖 = 𝑇, 𝑥𝑖 = 𝑥, so that  𝑋𝑖 𝑡 , 𝑡 ∈  0, 𝑇 , 𝑖 = 1,… , 𝑛   are 𝑖. 𝑖. 𝑑. We will use the well define 

statistics as follow:   

 𝑈𝑖 =  
𝑏 𝑋𝑖 𝑠  

𝜍2(𝑋𝑖 𝑠 )

𝑇

0

 𝑑𝑋𝑖 𝑠             ,     𝑉𝑖 =  
𝑏2 𝑋𝑖 𝑠  

𝜍2(𝑋𝑖 𝑠 )

𝑇

0

 𝑑𝑠                                 4 .    

So that the density 𝛾𝑖(𝑋𝑖 , 𝜓) is given by: 

𝛾𝑖 𝑋𝑖 , 𝜓 =   exp  𝜑 + 𝜇 2   𝑈𝑖 −
1

2
𝑉𝑖  𝑔 𝜑, 𝜃 𝑕 𝜇, 𝛽 𝑑𝑣 𝜑 𝑑𝑢 𝜇 

ℝℝ+

 5 . 
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 For a general distributions, 𝑔 𝜑, 𝜃 𝑑𝑣 𝜑  of the random effect ∅𝑖  and 𝑕 𝜇, 𝛽 𝑑𝑣(𝜑)of the random effect 𝜇, it is not 

possible find an explicit expression for 𝛾𝑖(𝑋𝑖 , 𝜓) above, therefor we propose a specific distributions (Gaussian 

(𝜆, 𝜔2)for the random effects 𝜑 and exponential (𝛽) for the random effect 𝜇 ) which will give an explicit likelihood and 
then find the maximum likelihood estimators of the unknown parameters. In the next proposition an evident 
expression for 𝛾𝑖(𝑋𝑖 , 𝜓)is obtained when the above distributions of the random effects is with unknown parameter 𝜓 =
(𝜆, 𝜔2 , 𝛽) ∈ ℝ × ℝ+ × ℝ+.The true value is denoted by𝜓0 = (𝜆0 , 𝜔2

0 , 𝛽0). 

Proposition 3.2 suppose that 𝑔 𝜑, 𝜃 𝑑𝑣 𝜑 = 𝒩(𝜆,𝜔2), and 𝑕 𝜇, 𝛽 𝑑𝑢 𝜇 = 𝑒𝑥𝑝(𝛽) then:   

𝛾𝑖 𝑋𝑖 , 𝜓 =
 𝜋𝛽

 𝑀𝑖

 𝑒𝑥𝑝  −
1

4

(𝛽 1 − 2𝑀𝑖𝜔
2 − 2𝜆𝑀𝑖)

2

𝑀𝑖 1 − 2𝜔2𝑀𝑖 
+

 𝜆2 − 𝜆(1 − 2𝑀𝑖𝜔
2) 

2𝜔2 1 − 2𝑀𝑖𝜔
2 

  , 

where 𝑀𝑖 =  𝑈𝑖 −
1

2
𝑉𝑖  . 

 

Proof: from (5) we compute the joint density of  ∅𝑖 , 𝜇𝑖 , 𝑋𝑖 : 

exp   𝜑 + 𝜇 2   𝑈𝑖 −
1

2
𝑉𝑖  ×

1

 2𝜋𝜔2
𝑒𝑥𝑝  −

1

2𝜔2
 𝜑 − 𝜆 2 × 𝛽𝑒𝑥𝑝 −𝛽𝜇 . 

Let 𝑀𝑖 =  𝑈𝑖 −
1

2
𝑉𝑖   , then the exponent become: 

𝐷𝑖 = 𝜑2𝑀𝑖 −
1

2𝜔2
 𝜑 − 𝜆 2 + 2𝜑𝜇𝑀𝑖 + 𝜇2𝑀𝑖 − 𝛽𝜇.                               6 . 

We will compute the first part (𝜑2𝑀𝑖 −
1

2𝜔2
 𝜑 − 𝜆 2 + 2𝜑𝜇𝑀𝑖)  of the exponent as follow: 

𝜑2𝑀𝑖 −
1

2𝜔2
 𝜑 − 𝜆 2 + 2𝜑𝜇𝑀𝑖 =  𝑀𝑖 −

1

2𝜔2 𝜑2 +  
𝜆

𝜔2 + 2𝜇𝑀𝑖 𝜑 −
𝜆2

2𝜔2 

=
−1

2
 

1

𝜔2 − 2𝑀𝑖  𝜑2 − 2
𝜆 + 2𝜔2𝑀𝑖𝜇

1 − 2𝜔2𝑀𝑖
𝜑 −

𝜆2

2𝜔2 

=
−1

2
 

1

𝜔2
− 2𝑀𝑖   𝜑2 −

𝜆 + 2𝜔2𝑀𝑖𝜇

1 − 2𝜔2𝑀𝑖
 

2

−  
𝜆 + 2𝜔2𝑀𝑖𝜇

1 − 2𝜔2𝑀𝑖
 

2

 −
𝜆2

2𝜔2
 

=
−1

2
 

1 − 2𝜔2𝑀𝑖

𝜔2   𝜑 −
𝜆 + 2𝜔2𝑀𝑖𝜇

1 − 2𝜔2𝑀𝑖
 

2

+
 𝜆 + 2𝜔2𝑀𝑖𝜇 

2

2𝜔2 1 − 2𝜔2𝑀𝑖 
−

𝜆2

2𝜔2  .  

Now, bysplliting the result into two parts that are independent and dependent on the random effect 𝜑  respectively, the 

integral of the dependent part is the integral of a Gaussian density. 

Then the first integral in (5) with respect to 𝜑 yields the following result : 

1

 1 − 2𝜔2𝑀𝑖

𝑒𝑥𝑝   
 𝜆 + 2𝜔2𝑀𝑖𝜇 

2

2𝜔2 1 − 2𝜔2𝑀𝑖 
−

𝜆2

2𝜔2 .                    

By substituting in (5), the second part of the exponent is: 

𝐸𝑖 =  
 𝜆 + 2𝜔2𝑀𝑖𝜇 

2

2𝜔2 1 − 2𝜔2𝑀𝑖 
+ 𝜇2𝑀𝑖 − 𝛽𝜇 −

𝜆2

2𝜔2 

=   
2𝜔2𝑀𝑖

2

1 − 2𝜔2𝑀𝑖
+ 𝑀𝑖 𝜇2 −  𝛽 −

2𝜆𝑀𝑖

1 − 2𝜔2𝑀𝑖
 𝜇 +  

𝜆2 − 𝜆 1 − 2𝜔2𝑀𝑖 

2𝜔2 1 − 2𝜔2𝑀𝑖 
 

=  
𝑀𝑖

1 − 2𝜔2𝑀𝑖
 𝜇2 −  

𝛽 1 − 2𝜔2𝑀𝑖 − 2𝜆𝑀𝑖

𝑀𝑖
 𝜇 + 

𝜆2 − 𝜆 1 − 2𝜔2𝑀𝑖 

2𝜔2 1 − 2𝜔2𝑀𝑖 
 

=  
𝑀𝑖

1 − 2𝜔2𝑀𝑖
  𝜇 −

1

2

𝛽 1 − 2𝜔2𝑀𝑖 − 2𝜆𝑀𝑖

𝑀𝑖
 

2

−  
1

2

𝛽 1 − 2𝜔2𝑀𝑖 − 2𝜆𝑀𝑖

𝑀𝑖
 

2

 +  
𝜆2 − 𝜆 1 − 2𝜔2𝑀𝑖 

2𝜔2 1 − 2𝜔2𝑀𝑖 
 

=  −
1

2

𝑀𝑖

𝜔2𝑀𝑖 −
1

2

 𝜇 −
1

2

𝛽 1 − 2𝜔2𝑀𝑖 − 2𝜆𝑀𝑖

𝑀𝑖
 

2

−
1

4

 𝛽 1 − 2𝜔2𝑀𝑖 − 2𝜆𝑀𝑖 
2

𝑀𝑖 1 − 2𝜔2𝑀𝑖 
+ 

𝜆2 − 𝜆 1 − 2𝜔2𝑀𝑖 

2𝜔2 1 − 2𝜔2𝑀𝑖 
  . 

Now, by rearrange the second integral we see that the first part is normal depend on the random effect 𝜇 with mean is  

𝛿𝑖 =
1

2

𝛽 1 − 2𝜔2𝑀𝑖 − 2𝜆𝑀𝑖

𝑀𝑖
 , 
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And variance, 

𝜌𝑖
2 =

𝜔2𝑀𝑖 −
1

2

𝑀𝑖
 , 

Then, the conditional distribution of  (∅𝑖 , 𝜇𝑖)  given 𝑋𝑖 is  𝒩(𝛿𝑖 , 𝜌𝑖
2). 

And hence, 

𝛾𝑖 𝑋𝑖 , 𝜓 =
 𝜋𝛽

 𝑀𝑖

 𝑒𝑥𝑝  −
1

4

 𝛽 1 − 2𝑀𝑖𝜔
2 − 2𝜆𝑀𝑖 

2

𝑀𝑖 1 − 2𝜔2𝑀𝑖 
+

𝜆2 − 𝜆(1 − 2𝑀𝑖𝜔
2)

2𝜔2 1 − 2𝑀𝑖𝜔
2 

 . □ 

 

3.3 Maximum likelihood estimator for 𝜓 = (𝜆, 𝜔2, 𝛽): 

Since we find the density 𝛾𝑖 𝑋𝑖 , 𝜓  , a natural approach to estimate𝜓 is the maximum likelihood estimation, so in order 

to find MLE  𝜓 , the likelihood function is written as: 

𝜉𝑛 𝜓 =  

𝑛

𝑖=1

 𝜋𝛽

 𝑀𝑖

 𝑒𝑥𝑝  −
1

4

 𝛽 1 − 2𝑀𝑖𝜔
2 − 2𝜆𝑀𝑖 

2

𝑀𝑖 1 − 2𝜔2𝑀𝑖 
+

 𝜆2 − 𝜆 1 − 2𝑀𝑖𝜔
2  

2𝜔2 1 − 2𝑀𝑖𝜔
2 

 . 

And hence, the logarithm of likelihood function is,  

ℒ𝑛 𝜓 = 𝑙𝑜𝑔 𝑛
𝑖=1 𝜉𝑛(𝜓)                                                                                        (7) 

= 𝑙𝑜𝑔𝜋
1

2𝛽𝑛 +
1

2
log 𝑀𝑖 −   

1

4

 𝛽 1 − 2𝑀𝑖𝜔
2 − 2𝜆𝑀𝑖 

2

𝑀𝑖 1 − 2𝜔2𝑀𝑖 
−

 𝜆2 − 𝜆(1 − 2𝑀𝑖𝜔
2) 

2𝜔2 1 − 2𝑀𝑖𝜔
2 

 .

𝑛

𝑖=1

 

We will study the following score function  

𝐺𝑛 𝜓 =  
∂

∂𝜇
ℒ𝑛 𝜓 ,

∂

∂𝛽
ℒ𝑁 𝜓 ,

∂

∂𝜔2
ℒ𝑛 𝜓  

′

 , where 𝑥′denotes the transpose of 𝑥, such that: 

∂

∂𝜆
ℒ𝑛 𝜓 =   

𝛽 1 − 2𝑀𝑖𝜔
2 − 2𝜆𝑀𝑖

1 − 2𝜔2𝑀𝑖
+

2𝜆 − (1 − 2𝑀𝑖𝜔
2)

2𝜔2 1 − 2𝑀𝑖𝜔
2 

 

𝑛

𝑖=1

 , 

∂

∂𝜔2 ℒ𝑛 𝜓 =   
 𝛽 1 − 2𝑀𝑖𝜔

2 − 2𝜆𝑀𝑖 𝛽

1 − 2𝑀𝑖𝜔
2 −

1

2

 𝛽 1 − 2𝑀𝑖𝜔
2 − 2𝜆𝑀𝑖 

2

 1 − 2𝜔2𝑀𝑖 
2 −

𝜆2 2 − 8𝑀𝑖𝜔
2 

 2𝜔2 1 − 2𝑀𝑖𝜔
2  

2 +
𝜆

2 𝜔2 2  ,

𝑛

𝑖=1

 

∂

∂𝛽
ℒ𝑛 𝜓 =   

1

𝛽
−

1

2
𝛽 1 − 2𝑀𝑖𝜔

2 

𝑀𝑖
+ 𝜆 .

𝑛

𝑖=1

 

When 𝜔0
2, 𝛽0  are known, the explicit estimator 𝜆0 is: 

𝜆 𝑛 =
 

1−2𝑀𝑖𝜔0
2𝛽0

2𝑀𝑖

𝑛
𝑖=1

 
1−2𝑀𝑖𝜔0

2

1−2𝑀𝑖𝜔0
2

𝑛
𝑖=1

 , 

and when 𝜔0
2 , 𝜆0  are known, the explicit estimator of 𝛽0 is: 

𝛽 𝑛 =

 
 
 

 
 −2𝑛𝜆 +  4𝑛2𝜆0

2 + 8𝑛𝐾𝑖

2𝐾𝑖

−2𝑛𝜆 −  4𝑛2𝜆0
2 + 8𝑛𝐾𝑖

2𝐾𝑖

  , 

where𝐾𝑖 =  
1−2𝑀𝑖𝜔0

2

𝑀𝑖

𝑛
𝑖=1  . 

If all the parameters are unknown, the MLEs of 𝜓0 = (𝜆0, 𝜔0
2 , 𝛽0) are given by the system: 

𝜆 𝑁 =   
1 − 2𝑀𝑖𝜔 𝑁

2 𝛽 𝑁
2𝑀𝑖

𝑛

𝑖=1

   
1 − 2𝑀𝑖𝜔 𝑁

2

1 − 2𝑀𝑖𝜔 𝑁
2

𝑛

𝑖=1

 

−1
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𝛽 𝑛 =

 
  
 

  
 −2𝑛𝜆 +  4𝑛2𝜆 𝑛

2 + 8𝑛𝐾𝑖

2𝐾𝑖

−2𝑛𝜆 −  4𝑛2𝜆 𝑛
2 + 8𝑛𝐾𝑖

2𝐾𝑖

  , 

Such that 𝛽 𝑛  is a maximum likelihood estimator defined as any solution of 

ℒ𝑛 𝛽 𝑛 = 𝑠𝑢𝑝𝜓∈𝚯ℒ𝑁 𝜓 . 

 
1

2

 𝛽 𝑛 1 − 2𝑀𝑖𝜔 𝑛
2 − 2𝜆 𝑛𝑀𝑖 

2

𝜆 𝑛 1 − 2𝜔 𝑛
2𝑀𝑖 

2
−

 𝛽 𝑛 1 − 2𝑀𝑖𝜔 𝑛
2 − 2𝜆 𝑛𝑀𝑖 𝛽 𝑛

𝜆 𝑛 1 − 2𝑀𝑖𝜔 𝑛
2 

−
𝜆 𝑛

2  2 − 8𝑀𝑖𝜔 𝑛
2 

𝜆 𝑛 2𝜔 𝑛
2 1 − 2𝑀𝑖𝜔 𝑛

2  
2

𝑛

𝑖=1

=  
1

2 𝜔 𝑛
2 2

𝑛

𝑖=1

 . 

The second derivatives of ℒ𝑁 𝜓  with respect to the parameters isas follow: 

∂2

∂𝜆2 ℒ𝑛 𝜓 =   
−2𝑀𝑖

1 − 2𝜔2𝑀𝑖
+

1

𝜔2 1 − 2𝑀𝑖𝜔
2 

  8 ,

𝑛

𝑖=1

 

∂2

∂𝜔2 ∂𝜔2 ℒ𝑛 𝜓 =  
−4𝜆𝑀𝑖

2𝛽

 1 − 2𝜔2𝑀𝑖 
2 +

2𝑀𝑖𝛽 𝛽 1 − 2𝑀𝑖𝜔
2 − 2𝜆𝑀𝑖 

 1 − 2𝜔2𝑀𝑖 
2 −

𝜆

 𝜔2 3

𝑛

𝑖=1

 

−
2𝑀𝑖 𝛽 1 − 2𝑀𝑖𝜔

2 − 2𝜆𝑀𝑖 
2

 1 − 2𝜔2𝑀𝑖 
3 +

8𝑀𝑖
2𝜆2

 2𝜔2 1 − 2𝜔2𝑀𝑖  
2 −

2𝜆2 2 − 8𝜔2 2

 2𝜔2 1 − 2𝜔2𝑀𝑖  
3
 9 ,  

∂2

∂𝛽2 ℒ𝑛 𝜓 =   −
 1 − 2𝑀𝑖𝜔

2 

𝑀𝑖
 

𝑛

𝑖=1

 10 ,  

∂2

∂𝜆 ∂𝜔2
ℒ𝑛 𝜓 =   

−4𝜆𝑀𝑖
2

 1 − 2𝜔2𝑀𝑖 
2
−

𝜆 1 − 4𝑀𝑖𝜔
2 

 𝜔2 1 − 2𝑀𝑖𝜔
2  

2 +
1

2 𝜔2 2
 

𝑛

𝑖=1

 

    =
∂2

∂𝜔2 ∂𝜆
ℒ𝑁 𝜓  11 , 

∂2

∂𝜆 ∂𝛽
ℒ𝑛 𝜓 = 𝑛 =

∂2

∂𝛽 ∂𝜆
ℒ𝑛 𝜓         ,        

∂2

∂𝜔2 ∂𝛽
ℒ𝑛 𝜓 = 𝑛𝛽 =

∂2

∂𝛽 ∂𝜔2
ℒ𝑛 𝜓  12 .   

And the information matrix , 

𝐼(𝜓) =

 

 
 
 
 

𝐸𝜓  
∂2

∂𝜆2 ℒ𝑛 𝜓  𝐸𝜓  
∂2

∂𝜆 ∂𝜔2 ℒ𝑛 𝜓  𝐸𝜓  
∂2

∂𝜆 ∂𝛽
ℒ𝑛 𝜓  

𝐸𝜓  
∂2

∂𝜔2 ∂𝜆
ℒ𝑛 𝜓  𝐸𝜓  

∂2

∂𝜔2 ∂𝜔2 ℒ𝑛 𝜓  𝐸𝜓  
∂2

∂𝜔2 ∂𝛽
ℒ𝑛 𝜓  

𝐸𝜓  
∂2

∂𝛽 ∂𝜆
ℒ𝑛 𝜓  𝐸𝜓  

∂2

∂𝛽 ∂𝜔2 ℒ𝑛 𝜓  𝐸𝜓  
∂2

∂𝛽2 ℒ𝑛 𝜓  
 

 
 
 
 

   (13), 

is the covariance matrix of the vector 

 

 
 
 
 

∂

∂𝜆
ℒ𝑛 𝜓 

∂

∂𝜔2
ℒ𝑛 𝜓 

∂

∂𝛽
ℒ𝑛 𝜓 

 

 
 
 
 

. 

The following lemma is important to investigate the consistency and asymptotic normality of the estimators. 

Lemma 3.1 If 𝐻𝑖 = −2𝑀𝑖, for all  𝜓 = (𝜆, 𝜔2 , 𝛽) ∈ ℝ × ℝ+ × ℝ+ and all 𝑚 ∈ ℝ, 

𝐸𝜓  𝑒𝑥𝑝  𝑚
𝑀𝑖

1 + 𝜔2𝐻𝑖
  < +∞. 

The proof of the above lemma is similar to proof of lemma 1 in [7] and omitted. 

Remark 3.1 from lemma (3.1) and proof of proposition (7) in [7], the second derivatives of log-likelihood function 

ℒ𝑛 𝜓  has finite expectation. 
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We need the following additional assumptions to prove the asymptotic properties: 

 H3 The parameter set 𝚯 is a compact subset of   ℝ × ℝ × ℝ+. 

 H4 The true value 𝜓0 belongs to 𝚯o . 

 H5 The matrix 𝐼 𝜓0 is invertible. 

 

4 Asymptotic properties of maximum likelihood estimator 

4.1 Consistency of MLE  

We consider the theorem 7.49 and 7.54 of schervish (1995) [16] and verify the regularity conditions in this theorem for 
our purpose with suppose that 𝛺 is compact. The consistency here is strong consistency that is mean any solution of 

the likelihood is consistent.  

Theorem 1 [16]:  

Let {𝑥𝑛 }𝑛=1
∞  be conditionally 𝑖. 𝑖. 𝑑 given 𝜃 with density 𝑓1(𝑥 𝜃 ) with respect to a measure 𝑣 on a space(𝜒1 , ℬ1). Fix 

𝜃𝜊 ∈ 𝛺 , and define, for each 𝑀 ⊆  𝛺 and 𝑥 ∈ 𝜒1, 

𝑍 𝑀, 𝑥 = 𝑖𝑛𝑓𝛼∈𝑀𝑙𝑜𝑔
𝑓1(𝑥 𝜃𝜊

 )

𝑓1(𝑥 𝛼 )
. 

Assume that for each 𝜃 ≠ 𝜃𝜊 , there is an open set 𝑁𝜃  such that 𝜃 ∈ 𝑁𝜃  and that𝐸𝜃𝜊
𝑍 𝑁𝜃 , 𝑋𝑖 > −∞ . 

Also assume that 𝑓1(𝑥 . ) is continuous at 𝜃 for every 𝜃, a.s. [𝑃𝜃𝜊
]. 

Then if 𝜃 𝑛  is the MLE of 𝜃 corresponding to 𝑛 observations. It holds that lim𝑛→∞ 𝜃 𝑛 = 𝜃𝜊  a.s. [𝑃𝜃𝜊
]. 

We note that for any 𝑥 , 𝑓1 𝑥 𝜓  = 𝜆1 𝑥, 𝜓 = 𝜆 𝑥, 𝜓 . Which is clearly continuous in  𝜓. In our case we compute for 

every 𝜓 ≠ 𝜓𝜊 : 

𝑙𝑜𝑔
𝑓1 𝑥 𝜓𝜊

  

𝑓1 𝑥 𝜓  
= 𝑙𝑜𝑔

𝛽0

𝛽
−

1

4

 𝛽0 1 − 2𝜔0
2𝑀𝑖 − 2𝜆0𝑀𝑖 

2

𝑀𝑖 1 − 2𝜔0
2𝑀𝑖 

+
𝜆0−

2 𝜆0 1 − 2𝜔0
2𝑀𝑖 

2𝜔0
2 1 − 2𝜔0

2𝑀𝑖 
 

+
1

4

 𝛽 1 − 2𝜔2𝑀𝑖 − 2𝜆𝑀𝑖 
2

𝑀𝑖 1 − 2𝜔2𝑀𝑖 
+

𝜆2 − 𝜆 1 − 2𝜔2𝑀𝑖 

2𝜔2 1 − 2𝜔2𝑀𝑖 
 

= 𝑙𝑜𝑔
𝛽0

𝛽
−

1

4
 
 𝛽0

2 1 − 2𝜔0
2𝑀𝑖 

2 − 4𝛽0𝜆0𝑀𝑖 1 − 2𝜔0
2𝑀𝑖 + 4𝜆0

2𝑀𝑖
2 

2

𝑀𝑖 1 − 2𝜔0
2𝑀𝑖 

+
𝜆0

2

2𝜔0
2 1 − 2𝜔0

2𝑀𝑖 
−

𝜆0

2𝜔0
2 + 

1

4
 
 𝛽2 1 − 2𝜔2𝑀𝑖 

2 − 4𝛽𝜆𝑀𝑖 1 − 2𝜔2𝑀𝑖 + 4𝜆2𝑀𝑖
2 

2

𝑀𝑖 1 − 2𝜔2𝑀𝑖 
+

𝜆2

2𝜔2 1 − 2𝜔2𝑀𝑖 
−

𝜆

2𝜔2  

= 𝑙𝑜𝑔
𝛽0

𝛽
−

1

4

𝛽0
2 1 − 2𝜔0

2𝑀𝑖 

𝑀𝑖
+ 𝛽0𝜆0 −

𝜆0
2𝑀𝑖

1 − 2𝜔0
2𝑀𝑖

+
𝜆0

2

2𝜔0
2 1 − 2𝜔0

2𝑀𝑖 
−

𝜆0

2𝜔0
2 +

1

4

𝛽2 1 − 2𝜔2𝑀𝑖 

𝑀𝑖
− 𝛽𝜆 +

𝜆2𝑀𝑖

1 − 2𝜔2𝑀𝑖

+
𝜆2

2𝜔2 1 − 2𝜔2𝑀𝑖 
−

𝜆

2𝜔2 

= 𝑙𝑜𝑔
𝛽0

𝛽
−

1

4
 
𝛽0

2 1 − 2𝜔0
2𝑀𝑖 

𝑀𝑖
−

𝛽2 1 − 2𝜔2𝑀𝑖 

𝑀𝑖
 −  

𝜆0
2𝑀𝑖

1 − 2𝜔0
2𝑀𝑖

−
𝜆2𝑀𝑖

1 − 2𝜔2𝑀𝑖
  

+  
𝜆0

2

2𝜔0
2 1 − 2𝜔0

2𝑀𝑖 
+

𝜆2

2𝜔2 1 − 2𝜔2𝑀𝑖 
 −  𝛽𝜆−𝛽0𝜆0 −  

𝜆0

2𝜔0
2 −

𝜆

2𝜔2
 . 

We note that 𝐸𝜓𝜊
𝑙𝑜𝑔

𝛽0

𝛽
 , 𝐸𝜓𝜊

 𝛽𝜆−𝛽0𝜆0 and 𝐸𝜓𝜊
 

𝜆0

2𝜔0
2 −

𝜆

2𝜔2  are finite and by using lemma(3.1) ,𝐸𝜓𝜊
 
𝛽0

2 1−2𝜔0
2𝑀𝑖 

𝑀𝑖
−

𝛽21−2𝜔2𝑀𝑖𝑀𝑖,𝐸𝜓𝜊𝜆02𝑀𝑖1−2𝜔02𝑀𝑖−𝜆2𝑀𝑖1−2𝜔2𝑀𝑖and𝐸𝜓𝜊𝜆022𝜔021−2𝜔02𝑀𝑖+𝜆22𝜔21−2𝜔2𝑀𝑖 are also finite, 

and by assume that 𝑁𝜓 = (𝜆, 𝜆) × (𝜔2 , 𝜔2) × (𝛽, 𝛽) , follows that𝐸𝜓𝜊
𝑍 𝑁𝜓 , 𝑋𝑖 > −∞, hence  lim𝑛→∞ 𝜓 𝑁 = 𝜓𝜊  a.s. 

[𝑃𝜓𝜊
]. □ 

4.2 Asymptotic normality of MLE  

To corroborate asymptotic normality of MLE  𝜓  , we investigate the conditions in the next theorem provided in ([16], 

Theorem 7.63):  

Theorem 2 [16]: Let  𝛺  be a subset of ℝ𝑑  and let  {𝑥𝑛}𝑛=1
∞   be conditionally 𝑖. 𝑖. 𝑑 given 𝜃 with density 𝑓1(.  𝜃 ) .let  

𝜃 𝑁  be an MLE .Assume that 𝜃 𝑛
𝑃
→ 𝜃0  under 𝑃𝜃   for all  𝜃. Assume that𝑓1(𝑥 𝜃 )  has continuous second partial 
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derivatives with respect to 𝜃  and that differentiation can be passed under the integral sign. Assume that there exist 

𝐻𝑟 𝑥, 𝜃  such that, for each 𝜃0 ∈ 𝑖𝑛𝑡(𝛺)  and each  𝑘, 𝑗 ,  

sup 𝜃−𝜃0 ≤𝑟  
∂2

∂𝜃𝑘 ∂𝜃𝑗
log 𝑓𝑋1 Θ

  𝑥 𝜃0
  −

∂2

∂𝜃𝑘 ∂𝜃𝑗
log 𝑓𝑋1 Θ

  𝑥 𝜃   ≤ 𝐻𝑟 𝑥, 𝜃0 ,          (14) 

With   

lim𝑟→0 𝐸𝜃0
𝐻𝑟 𝑥, 𝜃0 = 0.   (15) 

Assume that the fisher information matrix 𝐼(𝜃) is finite and non-singular. Then under 𝑃𝜃𝜊
, 

 𝑛 𝜃 𝑛 → 𝜃0 
ℒ
→𝒩(𝟎, 𝐼−1(𝜃0)). 

The maximum likelihood estimator 𝜓  is almost sure consistency (see section 4.1 above) that is mean 𝜓 𝑛
𝑃
→ 𝜓0 under 

𝑃𝜓 , ∀𝜓 .The differentiation can be passed under the integral sign (see [7], proof of proposition 5) and from H4 we 

fined 𝜓0 ∈ 𝑖𝑛𝑡(𝛺) .from  (8),(9),(10),(11) and (12), we deduce that  
∂2

∂𝜃𝑘 ∂𝜃𝑗
log 𝑓𝑋1 Θ

 (𝑥 𝜃 ) is differentiable in 𝜓 =

(𝜆, 𝜔2 , 𝛽).From remark (3.1) , the derivatives has finite expectation , Hence (14) and (15) holds, we obtain that the 

information matrix 𝐼(𝜃) is finite and from H5 , 𝐼(𝜃) is invertible, hence 𝜓   is asymptotically normal.□ 
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