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ABSTRACT 

In this paper, we study geometry of the pseudo-slant submanifold of a Kenmotsu space form. Necessary and sufficient 
conditions are given for a submanifold to be a pseudo-slant submanifold in Kenmotsu manifolds. Finally, we give some 
results for totally umbilical pseudo-slant submanifold in a Kenmotsu manifold and Kenmotsu space form. 
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1. INTRODUCTION 

The differential geometry of slant submanifolds has shown an incresing development since B-Y. Chen [9, 10] defined slant 
submanifolds in complex manifolds as a natural generalization of both the holomorphic and totally real submanifolds. 
Many research articles have been appeared on the existence of these submanifolds in different knows spaces. The slant 
submanifols of an almost contact metric manifolds were defined and studied by A. Lotta [14]. After, these submanifolds 
were studied by J. L Cabrerizo et. al [6] of Sasakian manifolds. Recently, in [3].  M.  Atçeken studied slant and pseudo-

slant submanifold in ( )nLCS -manifolds.  

The notion of semi-slant submanifolds of an almost Hermitian manifold was introduced by N. Papagiuc [15].  Cabrerizo et 
al. studied and characterized slant submanifolds of K- contact and Sasakian manifolds and have given sereval examples 
of such submanifolds. Recently, Carizzo [7, 6] defined and studied bi-slant immersions in almost Hermityen manifolds and 
simultaneously gave the notion of pseudo-slant submanifold in almost Hermityen manifolds. The contact version of 
pseudo-slant submanifolds has been defined and studied by V. A. Khan and M. A Khan [12]. The present paper is 
organized as follows. 

In this paper,  we study pseudo-slant submanifolds of a Kenmotsu manifold. In section 2,  we review basic formulas and 
definitions for a Kenmotsu manifold and their submanifolds. In section 3, we recall the definition and some basic results of 
a pseudo-slant submanifold of almost contact metric manifold.  In section 4,  we will give same results for totally umbilical 

pseudo-slant submanifold in a Kenmotsu manifold and Kenmotsu space form ( ).M c  

2. PRELIMINARIES 

In this section, we give some notations used throughout  this paper. We recall some necessary fact and formulas from the 
theory of Kenmotsu manifolds and their submanifols. 

Let M  be a (2 1)m   dimensional almost contact metric manifold together with a metric tensor g  a tensor field   of 

type (1,1) , a vector field   and a 1-form   on  M  which satisfy 

2( ) ( )X X X                                                                                      (1)  

0,    ( ) 0,    ( ) 1,    ( ) ( , )X X g X                                                       (2) 

and  

( , ) ( , ) ( ) ( ),    ( , ) ( , )g X Y g X Y X Y g X Y g X Y                                                    (3) 

for any vector fields ,X Y  on M  If in addition to above relations  

( ) ( , ) ( )X Y g X Y Y X                                                                           (4) 

then, M  is called Kenmotsu manifold, where   is Levi-Civita connection of .g  We have also on a Kenmotsu 

manifold M  

2( )X X X X                                                                              (5) 

for any , ( ).X Y TM   

Let  R  be the curvature tensor of the connection .  The sectional curvature of a   section is called a 

  holomorphic sectional curvature. A Kenmotsu manifold with constant   holomorphic sectional 

curvature c  is said to be a Kenmotsu space form and it is denoted by ( ).M c The curvature tensor R  e of a 

Kenmotsu space form ( )M c is given by 

  



( 3) ( 1)
( , ) ( , ) ( , ) ( ) ( ) ( ) ( )

4 4

                   ( ) ( , ) ( ) ( , ) ( , ) ( , ) 2 ( , )

c c
R X Y Z g Y Z X g X Z Y X Z Y Y Z X

Y g X Z X g Y Z g X Z Y g Y Z X g X Y Z

   

         

 
   

    


      (6)                                 

for any , ( ).X Y TM   
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Now, let M  be a submanifold of a contact metric manifold M with the induced metric .g  Also, let   and 
   be the induced connections on the tangent bundle TM  and the normal bundle T M of ,M  

respectively. Then the Gauss and Weingarten formulas are, respectively, given by 

( , )X XY Y X Y                                                                            (7) 

and  

,X V XY A X Y                                                                              (8) 

where   and VA   are the second fundamental form and the shape operator (corresponding to the normal 

vector field V ), respectively, for the submanifold of M  into .M  The second fundamental form   and 

shape operator VA  are related by 

( , ) ( ( , ), )Vg A X Y g X Y V                                                                           (9) 

for any  , ( )X Y TM  and ( ).V T M  

Let p M and  1 2 2 1, ,..., me e e   be an orthonormal basis of tangent space ( )MT p  such that   1 2, ,..., le e e  

are tangent to M  at .p  We H  denote the mean curvature vector, that is  

1

1
( ) ( , ).

l

i i

i

H p e e
l




                                                                          (10) 

A submanifold M  of an contact metric manifold M  f is said to be totally umbilical if  

( , ) ( , ) .X Y g X Y H                                                                             (11) 

A submanifold M  is said to be totally geodesic submanifold if ( , ) 0X Y  ,  for each , ( )X Y TM  and 

M  is said to be minimal submanifold if 0.H   

Also, we get  

( ( , ), ),    1 , ,    1 2 1,r

ij i j rg e e e i j l l r m         

where, the coefficients r

ij   denote of the second fundamental form   with respect to  1 2 2 1, ,..., ,me e e   

and  

2

, 1

( ( , ), ( , )).
l

i j i j

i j

g e e e e  


  

For any submanifold M  of a Riemannian manifold ,M  the equation of Gauss is given by 

( , ) ( , )( , ) ( , ) ( )( , ) ( )( , ),X Z Y Z X X YR X Y Z R X Y Z A Y A Y Z X Z                            (12)                                                

for any  , ( ),X Y TM  where R  and R  denote the Riemannian curvature tensor of M  and ,M  

respectively. The covariant derivative   of   is defined by  

( )( , ) ( , ) ( , ) ( , )X X X XY Z Y Z Y Z Z Y                                            (13) 

and the covariant derivative A  is also defined by  

 

( ) ( ) ,
X

X V X V V XV
A Y A Y A Y A Y

                                                          (14) 
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for any , , ( )X Y Z TM  and ( ).V T M  The normal and tangent components of (12) are, respectively, 

given by  

( ( , ) ) ( )( , ) ( )( , ),X YR X Y Z Y Z X Z                                                             (15) 

and  

( , ) ( , )( ( , ) ) ( , ) .T

X Z Y ZR X Y Z R X Y Z A Y A X                                                   (16) 

If ( ( , ) ) ,TR X Y Z  then M  is said to be curvature – invariant submanifold of .M  The Ricci equation is also 

given by  

( ( , ) , ) ( ( , ) , ) ([ , ] , ),U Vg R X Y V U g R X Y V U g A A X Y                                       (17) 

for any , ( )X Y TM  and , ( ),V U T M  where R  denotes the Riemannian curvature tensor of the 

normal .T M  Here, if ( , ) 0,R X Y V   then the normal connection of M  is called flat.  

A Kenmotsu manifold M  is said to be   Einstein if its Ricci tensor S  of type (0,2)  is of the from 

( , ) ( , ) ( ) ( )S X Y ag X Y b X Y                                                              (18) 

where ,a b  are smooth fonctions on .M  Form the definition it is clear that if 0,b   then  the manifold is 

called Einstein.  

3. PSEUDO-SLANT SUBMANIFOLD OF KENMOTSU MANIFOLD 

In this section, we will study pseudo-slant submanifolds in a Kenmotsu manifold, give some characterization 
and submanifold is characterized. 

       Now, let M  be a submanifold of an almost contact metric manifold ,M  then for any ( )X TM  we 

can  write 

,X TX NX                                                                                        (19) 

where TX  is the tangential component and NX  is the normal component of .X  Similarly for  

( ),V T M  we can write  

,V tV nV                                                                                          (20) 

where tV  is the tangential component and nV  is also the normal component of .V  Thus by using (1), 

(19) and (20), we obtain  

                                                            2 ,    0T I tN Nt nN                                                                    (21) 

and   

20,    .Tt tn NT n I                                                                          (22) 

Furthermore, the covariant derivatives of the tensor field , ,T N t  and n  are, respectively, defined by  

( ) ,X X XT Y TY T Y                                                                              (23) 

( ) ,X X XN Y NY N Y                                                                            (24) 

( ) ,X X Xt V tV t V                                                                                (25) 

and  

( ) .X X Xn V nV n V                                                                               (26) 
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Furthermore, for any , ( ),X Y TM  we have ( , ) ( , )g TX Y g X TY   and  , ( ),V U T M  we get 

( , ) ( , ).g U nV g nU V   These Show that T  and n  are also skew-symmetric tensor fields. Moreover, for 

any ( )X TM  and  ( ),V T M  we have 

( , ) ( , ),g NX V g X tV                                                                                  (27) 

which gives the relation between  N  and .t  

Taking into account (6) and (17), we have  





( 1)
( ( , ) , ) ( , ) ( , ) ( , ) ( , )

4

                                2g(X, )g( , ) ([ , ] , )U V

c
g R X Y V U g X V g U Y g Y V g X U

Y V U g A A X Y

   

 

 
 

 


                             (28) 

for any , ( )X Y TM  and , ( ).V U T M  By using (6) and (12), the Riemannian curvature tensor R  of 

an immersed submanifold M  of a Kenmotsu space form ( )M c  is given by  

  

 ( , ) ( , )

( 3) ( 1)
( , ) ( , ) ( , ) ( ) ( ) ( ) ( )  

4 4

                   ( ) ( , ) ( ) ( , ) ( , ) ( , )

                   2 ( , ) .Y Z X Z

c c
R X Y Z g Y Z X g X Z Y X Z Y Y Z X

Y g X Z X g Y Z g X Z TY g Y Z TX

g X Y TZ A X A Y 

   

     



 
   

   

  

                (29)                                               

From (6) and (12), for a submanifold, Codazzi equation is given by  





( 1)
( )( , ) ( )( , ) ( , ) ( , )

4

                                                2 ( , ) .

X Y

c
Y Z X Z g X Z NY g Y Z NX

g X Y NZ

   




    



 
                                   (30) 

A submanifold M  is said to be invariant if N  is identically zero, that is, ( )X TM   for all ( ).X TM   

On the other hand, M  is said to be anti-invariant if T  is identically zero, that is, ( )X T M   for all 

( ).X TM  By an easy computation, we obtain the following formulas 

   ( ) ( , ) ( , ) ( )X NYT Y A X t X Y g TX Y Y TX                                             (31) 

and  

( ) ( , ) ( , ) ( ) .X N Y n X Y X TY Y X                                                              (32) 

Similarly, for any ( )V T M  and ( ),X TM  we obtain  

( ) ( , )X nV Vt V g NX V A X TA X                                                                   (33) 

and  

( ) ( , ) .X Vn V tV X NA X                                                                                  (34) 

Since M  is tangent to ,   making use of (5) and (9) we obtain  

( , ) 0VA X                                                                                                 (35) 

for all ( )V T M  and ( ).X TM  

In contact geometry, A. Lotta introduced slant immersions as follows [14]. 
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Definition 3. 1. Let M  be a submanifold of a Kenmotsu manifold .M  A distribution D  on M  is said to be a 

slant if for each non-zero vector ,pX D  the angle    between X  and pD   is constant, that is, 

independent of p M  and .pX D  The constant angle   is called the slant angle of the slant distribution. 

So a submanifold M  of M  is said to be a slant submanifold if the tangent bundle TM  of M  is slant [14]. 

 So invariant and anti-invariant submanifolds are slant submanifolds with slant angle 0   and 

2


  respectively. A proper slant submanifolds is neither invariant nor anti-invariant. Thus invariant and 

anti invariant submanifolds are special cases of slant submanifolds. 

If M  is a slant submanifold of an almost contact metric manifold, then the tangent bundle TM  of M  can 
be decomposed as 

,TM D    

where   denotes the distribution spanned by the structure vector field   and D  is complementary of 

distribution of   in ,TM  known as the slant distribution on .M  Recently, Cabrerizo et al. [6] extended the 

above result in to a characterization for a slant submanifold in a contact metric manifold. In fact, they 
obtained the following crucial theorem. 

Theorem 3. 1. [6]. Let M  be a slant submanifold of an almost contact metric manifold M  such that 

( ).TM   Then, M  is slant submanifold if and only if there exist a constant [0,1]  such that  

2 ( )T I                                                                                      (36) 

furthermore , in this case, if   is the slant angle of ,M  then 2cos .   

Corollary 3. 1.  [6].  Let M  be a slant submanifold of an almost contact metric manifold M  with slant angle 

.  Then for any , ( ),X Y TM   we have 

 2( , ) cos ( , ) ( ) ( )g TX TY g X Y X Y                                                         (37) 

and   

 2( , ) sin ( , ) ( ) ( ) .g NX NY g X Y X Y                                                       (38) 

Definition 3. 2.   [12]. Let M  be a slant submanifold of an almost contact metric manifold .M   M  is said to 

be pseudo-slant of M  if there exit two orthogonal distributions D  and D  on M  such that: 

i) TM  has the orthogonal direct decomposition ,  ( ).TM D D D     

ii) The distribution D
 is anti-invariant, that is, ( ) .D T M    

iii) The distribution D  is a slant, that is, the slant angle between of D  and ( )D  is a constant.  

Let 1d  and 1d  be dimensional of distributions D
 and ,D  respectively. Then  

i) If 2 0d   then, M  is an anti-invariant submanifold.  

ii) If 1 0d   and 0   then, M  is an invariant submanifold. 

iii) If  1 0d   and (0, )
2


   then,  M  proper slant submanifold.  
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iv) If 
2


   then, M  is an anti-invariant submanifold.  

v) If  
1 2. 0d d   and (0, )

2


   then, M  is a proper pseudo-slant submanifold.  

vi) If 
2 1. 0d d   and 0   then, M  is a semi-invariant submanifold.  

If we denote the projections on D  and D  by 
1P  and 

2 ,P   respectively, then for any vector field  

( ),X TM  we can write  

 

1 2 ( ) .X PX P X X                                                                   (39) 

On the other hand, applying   on both sides of equation (39), we have 

1 2X PX P X     

and  

1 2 2 1,    0.TX NX NPX TP X NP X TPX                                                     (40) 

From which, we can easily to see 

2 1 2,   TX TP X NX NPX NP X    

and  

1 1 1 2 2 2 2,    0,    ,    ( ).PX NPX TPX P X TP X NP X TP X D                                  (41) 

If we denote the orthogonal complementary of TM  in T M  by ,  then the normal bundle T M  can be 

decomposed as follows 

( ) ( ) .T M N D N D                                                                          (42) 

We can easily see that the bundle   is an invariant subbundle with respect to .  Since  D  and D  are 

orthogonal distribution on ,M ( , ) 0g Z X   for each ( )Z D  and ( ).X D  Thus, by equation (3) 

and (19), we can write  

( , ) ( , ) ( , ) 0g NZ NX g Z X g Z X     

that is, the distributions ( )N D  and ( )N D  are also mutually perpendicular. In fact, the decomposition 

(42) is an orthogonal direct decemposition.  

Theorem 3. 2.  Let D  be a distribution on ,M  orthogonal to .  Then D  is a slant if and only if there is a 

constant [0,1]  such that  

2( )TP X X                                                                                        (43) 

for all ( ),X D  where P  denotes the orthogonal projection on .D  Furthermore, in this case, the slant 

angle   of M  satisfies 2cos   [6]. 

It is well known that 0t   plays an important role in the geometry of submanifolds. This means that the 

induced structure T  is a Kenmotsu structure on .M  Then (31) reduces to  

( ) ( , ) ( ) ,XT Y g TX Y Y TX                                                       (44) 
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for , ( ).X Y D  For example, this means that the induced structure  T  is a Kenmotsu structure on M  if 

the ambient manifold M  is a Kenmotsu manifold.  

Moreover, for any , ( )Z W D  and ( ),U TM  also by using (4) and (9), we have  

 

 

( , ) ( ( , ), ) ( ( , ), )

                                ( , ) ( , )

                                ( , ) ( , )

                                ( , ) (( )

NZ NW

U U

U U

U U

g A W A Z U g W U NZ g Z U NW

g W Z g Z W

g Z W g W Z

g Z W g

 

 

 

 

  

   

   

   

 

 

  , )

                                ( , ) (( ) , )

                                ( , ) ( ( , ) ( ) , )

                                ( , ) ( ( , ) ( ) , )

            

U U

U

U

Z W

g W Z g W Z

g Z W g g U Z Z U W

g W Z g g Z U U Z W

 

    

    

   

   

   

 





                    ( , ) ( , )

                                ( , ).

NZ NW

NW NZ

g A U W g A U Z

g A Z A W U

  

 

 

It follws that  

,NW NZA Z A W                                                                               (45) 

for any , ( ).Z W D  

Theorem 3. 3. Let M  be a proper pseudo-slant submanifold of a Kenmotsu manifold .M  The tensor field 

N  is parallel if and only if shape operatory VA  satisfies 

2secV nVA Y A TY  

for any ( )Y TM  and ( ).V T M  

Proof. If N  is parallel, from (32), we have  

( , ) ( , ) ( ) 0n X Y X TY Y NX      

for any , ( ).X Y TM  This implies  

2

2

0 ( , ) ( , )

  ( , ) cos ( , ( ) ).

n X TY X T Y

n X TY X Y Y

 

   

 

  
 

Thus we have 

2

2

2

2

2

0 ( ( , ), ) cos ( ( , ( ) ), )

  ( ( , ), ) cos ( ( , ( ) ), )

  ( , ) cos ( , ( ) )

  ( , ) cos ( , )

  ( , ) cos ( , )

nV V

nV V

nV V

g n X TY V g X Y Y V

g X TY nV g X Y Y V

g A TY X g A X Y Y

g A TY X g A X Y

g A TY X g A X Y

    

    

  





  

   

   

  

  

 

for any  ( ).V T M  This equivalent to  
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2sec .V nVA Y A TY  

Theorem 3. 4. Let M  be a proper pseudo-slant submanifold of a Kenmotsu manifold .M  If the shape 

operator of the pseudo-slant submanifold M  is parallel, then M  is a totally geodesic submanifold. 

Proof. If the shape operator VA of M  is parallel, then by using (5) and (14), we have  

( ) 0,
X

X V V XV
A Y A Y A Y

      

for any , ( )X Y TM  and ( ).V T M  Here, choosing Y   and taking into account (14) and (35), we 

obtain  

( ( ) ) 0.
X

V X VV
A A A X X   

        

This yields to 0.VA X   This proves our assertion.  

Theorem 3. 5. Let M  be a proper pseudo-slant submanifold of a Kenmotsu manifold .M  If the 

endomorphism T   is parallel if and only if M  is anti-invariant submanifold .M  

Proof. If T  is parallel, then from (31) and (35), we have  

0 ( , ) ( , ) ( ) ( , )

  ( ( , ), ) ( , )

  ( , ).

NYg A X g TX Y Y g TX

g X NY g TX Y

g TX Y

  

 

  

 



                                                (46) 

Here, taking Y TX  equation (46), we have ( , ) 0g TX TX   for any , ( ).X Y TM  This implies that 

 2 2cos ( , ) ( ) 0,g X X X    that is, M  is anti-invariant submanifold. 

Theorem 3. 6. Let M  be a proper pseudo-slant submanifold of a Kenmotsu manifold .M If the 

endomorphism N  is parallel on ,M  then M  is an invariant submanifold .M  

Proof. If N  is parallel, then from (32), we have  

( , ) ( , ) ( ) 0,n X Y X TY Y NX      

for any , ( ).X Y TM  Here, choosing Y   and taking into account that ( , ) 0,X    (2) and (38), we 

conclude that  2 2sin ( , ) ( ) 0.g X X X    This proves our assertion.  

Theorem 3. 7.  Let M  be a proper pseudo-slant submanifold of a Kenmotsu manifold .M  Then the tensor 

N  is parallel if and only if the tensor t  is parallel.  

Proof.  By using (32) and (33), we have  

(( ) , ) ( ( , ), ) ( ( , ), ) ( ) ( , )

                       ( ( , ), ) ( , ) ( , ) ( )

                       ( , ) ( , ) ( , ) ( )

                       (

X

V

nV V

nV V

g N Y V g n X Y V g X TY V Y g NX V

g h X Y nV g A X TY g NX V Y

g A X Y g TA X Y g NX V Y

g A X TA

  





   

   

   

    ( , ) , )

                       (( ) , ),X

X g NX V Y

g t V Y



  

 

for any , ( )X Y TM   and ( ).V T M  This proves our assertion.  

Theorem 3. 8.  Let M  be a proper pseudo-slant submanifold of a Kenmotsu manifold .M  The derivation of 

T  is skew-symmetric, that is  
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(( ) , ) (( ) , )X Xg T Y Z g T Z Y     

for any , , ( ).X Y Z TM  

Proof. For any , , ( ),X Y Z TM   by using (9), (27), (31), we obtain  

(( ) , ) ( ( , ) ( , ) ( ) , )

                      ( ( , ), ) ( ( , ), ) ( ) ( , ) ( ) ( , )

                      ( ( , ), ) ( , ) ( ) ( , ) ( ) ( , )

             

X NY

NZ

g T Y Z g A X t X Y g TX Y Y TX Z

g X Z NY g X Y NZ Z g TX Y Y g TX Z

g t X Z Y g A X Y Z g TX Y Y g TX Z

  

   

  

    

   

    

         ( ( , ) ( , ) ( ) , )

                      (( ) , ).

NZ

X

g A X t X Z g TX Z Z TX Y

g T Z Y

      

  

 

This complete of the proof.  

Theorem 3. 9. Let M  be a proper pseudo-slant submanifold of a Kenmotsu manifold .M  Then we have the 
following assertion 

(( ) , ) (( ) , ),X Xg n V U g n U V     

for any ( )X TM   and , ( ).V U T M  

Proof. For any ( )X TM   and , ( ),V U T M  from (9), (27) and (34), we reach  

(( ) , ) ( ( , ) , )

                      ( , ) ( , )

                      ( , ) ( ( , ), )

                      ( ( , ), )

                      (( ) , ).

X V

U V

U

U

X

g n V U g tV X NA X U

g A X tV g A X tU

g NA X V g X tU V

g NA X X tU V

g n U V







    

   

 

   

  

 

This proves our assertion.  

Theorem 3. 10. Let M  be a proper pseudo-slant submanifold of a Kenmotsu manifold .M  Then the tensor 

n  is parallel if and only if the shape operator VA  of M  satisfies the condition  

,V UA tU A tV                                                                                          (47) 

for all , ( ).V U T M  

Proof. For all , ( ),V U T M  from (27) and (34), we have  

0 ( ( , ), ) ( , )

 ( , ) ( , )

 ( , ),

V

U V

V U

g tV X U g NA X U

g A tV X g A X tU

g A TU A tV X

  

  

 

 

for all ( ).X TM  The proof is complete.  

Theorem 3. 11. Let M  be a proper pseudo-slant submanifold of a Kenmotsu manifold .M  If n  is parallel 

then, M  is totally geodesic submanifold of .M  

Proof. If n  is parallel, from (34) and (19), we have  

( , ) 0VtV X A X                                                                                (48) 

for all ( )X TM   and ( ).V T M  Applying   to (48) and taking into account (1) and (35), we obtain 
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20 ( , )

  ( ) ( , ) ( , ).

V

V V

A X tV X

A X A X t tV X n TV X

 

   

 

    
 

This yields to  

( , ) 0.VA X t tV X                                                                                        (49) 

On the other hand, also by using (9), (22), (27) and (47), we conclude that  

( , ) ( ( , ), ) ( ( , ), )

                 ( , ) ( , )

V

NZ V

g A X Z g t tV X Z g tV X NZ

g A tV X g A tNZ X

   

   
 

for ( ).Z TM  Taking into account of 2( ) ,tNZ Z Z T Z      we obtain  

2

2

2

( , ) ( ( ) , )

                 ( , ) ( , )

                 ( , ).

V V V V

V V

V V

g A Z X g A Z Z A A T Z X

g A Z X g A X T Z

g A X T A X Z

     

 

 

 

Here, by using (21), we conclude  

2

2

0 ( , ) ( , ( ) )

                           ( , ) ( , )

                           cos ( , )

V V

V V

V

g A X T Z g A X Z Z tNZ

g A X Z g NA X NZ

g A X Z

 



    

  

 

 

for all ( ).Z TM  Since M is a proper pseudo-slant submanifold, we arrive at 0,VA   that is, M  is 

totally geodesic in .M  

4. PSEUDO-SLANT SUBMANIFOLD IN KENMOTSU SPACE FORMS 

In this section, we will study pseudo-slant submanifolds in a Kenmotsu space form, give some 
characterization and submanifold is characterized.  

Let   
1 2 1 1 2 2

2 2 1 2 2 2 3 2 1

, ,..., , sec , sec ,...,

sec , , , ,...,

p p p

p p p p p p q

e e e e Te e Te

e Te e e e e

 

 

 

    

   
 

   

 be an orthonormal basis of ( )TM  such that  

1 2 1 1 2

2 2 2 1

, ,..., , sec ,

sec ,..., sec ,

p p p

p p p

e e e e Te e

Te e Te e



  

 



   
 

   

 are tangent to ( )D  and   2 2 2 3 2 1, ,...,p p p qe e e     are tangent 

( ).D  

Theorem 4. 1. Let M  be a pseudo-slant submanifold of a Kenmotsu manifold space form ( )M c  such that 

1.c     If M  is a pseudo-slant curvature-invariant submanifold, then M  is either semi-invariant or anti-
invariant submanifold.  

Proof. We suppose that M  is a pseudo-slant curvature-invariant submanifold of a Kenmotsu space form 

( )M c  such that 1.c    Then from (30), we have  

( , ) ( , ) 2 ( , ) 0,g X TZ NY g Y TZ NX g X TY NZ                                             (50) 

 for any , , ( ).X Y Z TM   Taking X Z   in equation (50), we have  

0 ( , ) 2 ( , ) 3 ( , ) .g Y TZ NZ g Z TY NZ g TZ Y NZ                                               (51) 

Here taking Y TZ  in equation (51), we have  
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( , ) 0.g TZ TZ NZ   

From (37) and (38), we obtain 

 
2

2 2 2cos sin ( , ) ( ) 0.g Z Z Z     

This implies that  2sin 2 ( , ) ( ) 0,g Z Z Z    that is, M  is either a semi-invariant or an anti-invariant 

submanifold. Thus the proof is complete.  

Theorem 4. 2. Let M  be a pseudo-slant submanifold of a Kenmotsu manifold of a Kenmotsu space form 

( )M c  with flat normal connection such that 1.c    If V VTA A T  for any vector V  normal to ,M   then 

M  is either an anti-invariant or generic submanifold of ( ).M c   

Proof. If the normal connection of M  is flat, then from (28), we have 





( 1)
([ , ] , ) ( , ) ( , ) ( , ) ( , )

4

                             2 ( , ) ( , )

U V

c
g A A X Y g X V g U Y g Y V g X U

g X Y g V U

   

 


 



 

for all , ( )X Y TM   and , ( ).V U T M  Here, choosing U nV  and ,Y TX  by direct calculations, 

we can state  

               
( 1)

([ , ] , ) ( , ) ( , ) ,
2

U nV

c
g A A X TX g TX TX g nV nV


   

that is,  

 
( 1)

( , ) ( , ) ( , ) ,
2

nV V V nV

c
g A A TX A A TX X g TX TX g nV nV


    

from which  

                                           2( 1)
( ) ( ) ( ) ( , ).

2
nV V V nV

c
tr A A T tr A A T tr T g nV nV


   

If V VTA A T  and because of T  is skew-symmetric, then we conclude that  ( ) ( )nV V V nVtr A A T tr A A T  and 

thus  

2( 1)
( ) ( , ),

2

c
tr T g nV nV


 

from here dim( ) 2 1,TM p q    the we can easily to see that  

2 ( 1)
(2 1)cos ( , ) 0.

2

c
p q g nV nV


    

Thus   is either vanishes or 0.n   This implies that M  is either an anti-invariant or it is a generic 
submanifold.  

Theorem 4. 3. Let M  be a pseudo-slant submanifold of a Kenmotsu manifold of a Kenmotsu space form 

( ).M c  There exist no totally umbilical proper pseudo-slant submanifolds in a Kenmotsu space form ( )M c  

such that 1.c    

Proof.  We suppose that M is totally umbilical pseudo-slant submanifold in Kenmotsu space form ( ).M c  

Since every totally umbilical submanifold in Kenmotsu manifold is totally geodesic, we have 
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( ( , ) , ) (( )( , ) ( )( , ), ) 0X Yg R X Y Z Z g Y Z X Z Z                                           (52) 

for any , ( )X Y D  and ( ).Z D  Since the ambient space M  is a Kenmotsu space form, from (6) we 

infer 

( 1)
( ( , ) , ) ( , ) ( , ).

2

c
g R X Y Z Z g X Y g NZ NZ 


                                                       (53) 

Taking Y TX  in equation (53), we have  

( 1)
( , ) ( , ) 0.

2

c
g X TX g NZ NZ


                                                          (54) 

Here, taking  X Z  in equation (54). From, (37) and (38), we obtain  

 
2

2 2 2cos sin ( , ) ( ) 0.g Z Z Z     

This implies that  2sin 2 ( , ) ( ) 0,g Z Z Z    that is, M  is either a semi-invariant or an anti-invariant 

submanifold. This proves our assertion.  

Theorem 4. 4. Let M  be a pseudo-slant submanifold of a Kenmotsu manifold of a Kenmotsu space form 

( ).M c  Then the Ricci tensor S  of M  is given by  

2

2

2

1

( 3) ( 1)
( , ) (2 ) (3cos 1) ( , )

4 4

( 1)
                (1 2 3cos ) ( ) ( )

4

                (2 1) ( ( , ), ) ( ( , ), ( , ))
p q

m m

m

c c
S X W p q g X W

c
q p X W

p q g X W H g e W X e



  

  




  
    
 


   

    

                            (55) 

for any , ( ).X W TM  

Proof. For any , , ( ),X Y Z TM  by using (6) and (12), we have  

 



( 3)
( ( , ) , ) ( , ) ( , ) ( , ) ( , )

4

( 1)
                           ( ) ( ) ( , ) ( ) ( ) ( , )

4

                           ( ) ( ) ( , ) ( ) ( ) ( , )

                           ( , )

c
g R X Y Z W g Y Z g X W g X Z g Y W

c
X Y g Y W Y Z g X W

Y W g X Z X W g Y Z

g X Y g

   

   




 


 

 





( , ) ( , ) ( , )

                           2 ( , ) ( , ) ( ( , ), ( , ))

                           ( ( , ), ( , )).

Y W g Y Z g X W

g X Y g Z W g X W Y Z

g Y W X Z

  

   

 



 



 

 

Let   
1 2 1 1 2 2

2 2 1 2 2 2 3 2 1

, ,..., , sec , sec ,...,

sec , , , ,...,

p p p

p p p p p p q

e e e e Te e Te

e Te e e e e

 

 

 

    

   
 

   

 be an orthonormal basis of ( )TM  such that  
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1 2 1 1 2

2 2 2 1

, ,..., , sec ,

sec ,..., sec ,

p p p

p p p

e e e e Te e

Te e Te e



  

 



   
 

   

 are tangent to ( )D  and   2 2 2 3 2 1, ,...,p p p qe e e   
 are tangent 

( ).D  Hence, taking , , ,i j kY Z e e e    and 1 , 1 2 , ,2 2 2 1i p p j p p k p q           then, 

we obtain  

2

1 1

2 1

2 2

( , ) ( ( , ) , ) ( ( ,sec )sec , )

               ( ( , ) , ) ( ( , ) , ).

p p

i i j j

i j p

p q

k k

k p

S X W g R X e e W g R X Te Te W

g R X W g R X e e W

 

 

  

 

 

 

 

 



 

Here  

 

 

( 3)
( ( , ) , ) ( , ) ( , ) ( , )

4

( 1)
                            ( ) ( ) 3 ( , ) ( , )

4

                            ( ( , ), ( , )) ( ( , ), ( , )),

i i i i

i i

i i i i

c
g R X e e W pg X W g X e g e W

c
p X W g TX e g e TW

g X W e e g e W X e

 

   


 


   

 

                              (56) 

 

 

 

( 3)
( ( ,sec )sec , ) ( , ) ( ,sec ) ( ,sec )

4

( 1)
                                                ( ) ( ) 3 ( ,sec ) (sec , )

4

                                            

j j j j

j j

c
g R X Te Te W pg X W g X Te g W Te

c
p X W g TX Te g Te TW

   

   


 


  

    ( ( , ), (sec ,sec ))

                                                ( (sec , ), ( ,sec )),

j j

j j

g X W Te Te

g Te W X Te

   

   





         (57) 

 

 

 

 

( 3)
( ( , ) , ) ( , ) ( , ) ( , )

4

( 1)
                           ( ) ( ) ( , )

4

c
g R X W g X W g X g W

c
X W g X W

   

 


 


 

                                           (58) 

and  

 

 

 

( 3)
( ( , ) , ) ( , ) ( , ) ( , )

4

( 1)
                             ( ) ( ) 3 ( , ) ( , )

4

                            ( ( , ), ( , )) ( ( , ), ( , )) .

k k k k

k k

k k k k

c
g R X e e W qg X W g X e g e W

c
X W q g TX e g e TW

g X W e e g e W X e

 

   


 


  

 

                   (59) 

From here 
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2

1 1

2

1

2

2 2

( ( , ), ( , )) ( ( , ), ( , ))

                                          ( (sec , ), ( ,sec ))

                                          ( ( , ), ( , )).

p q p

m m i i

m i

p

j j

j p

p

k k

k p

g e W X e g e W X e

g Te W X Te

g e W X e

   

   

 



 

 



 







 



1q



 

Hence, equation (56), (57), (58) and (59), we obtain  

2

2

2

1

( 3) ( 1)
( , ) (2 ) (3cos 1) ( , )

4 4

( 1)
                (1 2 3cos ) ( ) ( )

4

                (2 1) ( ( , ), ) ( ( , ), ( , )).
p q

m m

m

c c
S X W p q g X W

c
q p X W

p q g X W H g e W X e



  

  




  
    
 


   

    

 

This complete the proof.  

Thus we have the following corollary.  

Corollary 4. 1. Every totally umbilical pseudo-slant submanifold M  of a Kenmotsu space form ( )M c  is an 

  Einstein submanifold. Since totally umbilical pseudo-slant submanifold of a Kenmotsu minimal. 

Theorem 4. 5. Let M  be a pseudo-slant submanifold of a Kenmotsu manifold of a Kenmotsu space form 

( ).M c  Then the scalar curvature   of M  is given by  

2

2 22 2

( 3) ( 1)
(2 ) (3cos 1) (2 1)

4 4

( 1)
      (3cos 2 1) (2 1) .

4

c c
p q p q

c
p q p q H

 

 

  
      
 


       

                                   (60) 

Proof. From (55) by using ,mX W e   we have  

2 1

1

( , )
p q

m m

m

S e e
 



   

which gives (60). Thus the proof is complete.  

Thus we have the following corollary.  

Corollary 4. 2. Let M  be a pseudo-slant submanifold of a Kenmotsu manifold of a Kenmotsu space form 

( ).M c  Then scalar curvature   of M  is given by  

2

2

( 3) ( 1)
(2 ) (3cos 1) (2 1)

4 4

( 1)
      (3cos 2 1).

4

c c
p q p q

c
p q

 



  
      
 


   

 

Example 4. 1. Let M  be a submanifold of 7  defined by the equation  

( 3 , , sin , cos , cos , cos , ).u v v v w w z     

We can easily to see that the tangent bundle of M  is spanned by the tangent vectors 
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1 2 3

1 1 2 2 3 3

3 ,      sin cos ,    cos cos ,e e e
x y x y x y

   
     

     
     

 

4 5

3 3

sin sin ,    e .e w w
x y z

  
  

    
  

 

For the almost contact structure   of 7  whose coordinate systems 1 1 2 2 3 3( , , , , , , )x y x y x y z  choosing  

( ) ,     ( ) ,    1 , 3
i i j j

i j
x y y x

 
   

    
   

 

then, we have  

1 2

1 1 2 2

3 ,    sin cos ,e e
y x y x

   
   

    
   

 

3 4

3 3 3 3

cos cos ,    e sin sin .e w w
y x y x

     
   

    
   

 

By direct calculations, we can infer  1 2,D span e e   is a slant distribution with slant angle 

2 1

2 1

( , ) 2
cos

2

g e e

e e





   

45 .o    

 

Since  

3 1 3 2 3 4 3 5( , ) ( , ) ( , ) ( , ) 0,g e e g e e g e e g e e        

4 1 4 2 4 3 3 5( , ) ( , ) ( , ) ( , ) 0g e e g e e g e e g e e        

orthogonal to ,M   3 4,D span e e   is an anti-invariant distribution. Thus M  is a 5 dimensional proper 

pseudo-slant submanifold of 7  with it’s usual almost contact metric structure.  
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