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ABSTRACT

In this paper, we study geometry of the pseudo-slant submanifold of a Kenmotsu space form. Necessary and sufficient
conditions are given for a submanifold to be a pseudo-slant submanifold in Kenmotsu manifolds. Finally, we give some
results for totally umbilical pseudo-slant submanifold in a Kenmotsu manifold and Kenmotsu space form.
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1. INTRODUCTION

The differential geometry of slant submanifolds has shown an incresing development since B-Y. Chen [9, 10] defined slant
submanifolds in complex manifolds as a natural generalization of both the holomorphic and totally real submanifolds.
Many research articles have been appeared on the existence of these submanifolds in different knows spaces. The slant
submanifols of an almost contact metric manifolds were defined and studied by A. Lotta [14]. After, these submanifolds
were studied by J. L Cabrerizo et. al [6] of Sasakian manifolds. Recently, in [3]. M. Atceken studied slant and pseudo-

slant submanifold in (LCS),,-manifolds.

The notion of semi-slant submanifolds of an almost Hermitian manifold was introduced by N. Papagiuc [15]. Cabrerizo et
al. studied and characterized slant submanifolds of K- contact and Sasakian manifolds and have given sereval examples
of such submanifolds. Recently, Carizzo [7, 6] defined and studied bi-slant immersions in almost Hermityen manifolds and
simultaneously gave the notion of pseudo-slant submanifold in almost Hermityen manifolds. The contact version of
pseudo-slant submanifolds has been defined and studied by V. A. Khan and M. A Khan [12]. The present paper is
organized as follows.

In this paper, we study pseudo-slant submanifolds of a Kenmotsu manifold. In section 2, we review basic formulas and
definitions for a Kenmotsu manifold and their submanifolds. In section 3, we recall the definition and some basic results of
a pseudo-slant submanifold of almost contact metric manifold. In section 4, we will give same results for totally umbilical

pseudo-slant submanifold in a Kenmotsu manifold and Kenmotsu space form M (c).

2. PRELIMINARIES

In this section, we give some notations used throughout this paper. We recall some necessary fact and formulas from the
theory of Kenmotsu manifolds and their submanifols.

Let M be a (2m+1) — dimensional almost contact metric manifold together with a metric tensor g a tensor field ¢ of

type (1,1), avector field & and a 1-form 77 on M which satisfy

@ (X) ==X +7(X)& (1)
9s =0, n(eX)=0, n()=1L n(X)=9(X,%) (2)
and
9(pX,Y) = g(X,Y)—n(X)n(Y), 9(eX,Y)=-g(X,¢Y) (3)
for any vector fields X,Y on M If in addition to above relations
(Vi)Y =g(@X,Y)&—n(Y)eX (4)
then, M is called Kenmotsu manifold, where V is Levi-Civita connection of g. We have also on a Kenmotsu
manifold M
V& =X =n(X)§ =-p*X (5)

forany X,Y e (TM).

Let R be the curvature tensor of the connection V. The sectional curvature of a @ —section is called a
@ —holomorphic sectional curvature. A Kenmotsu manifold with constant ¢ — holomorphic sectional

curvature C is said to be a Kenmotsu space form and it is denoted by M (€).The curvature tensor R eofa

Kenmotsu space form M (C) is given by

(c-3) (c+1)

R(X,Y)Z = {9(Y,Z)X —g(X,Z)Y} + {n(XInZ)Y —n(Y)n(Z)X
+n(Y)9(X,Z)E-n(X)a(Y,Z)E+9(X, @Z)pY —g(Y,pZ)pX +29(X, oY )pZ }

forany X,Y e (TM).

(6)
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Now, let M be a submanifold of a contact metric manifold M with the induced metric g. Also, let V and

V*  be the induced connections on the tangent bundle TM and the normal bundle T*M of M,
respectively. Then the Gauss and Weingarten formulas are, respectively, given by

V.Y =V, Y +5(X,Y) (7)
and

V.Y =—A X +V4Y, (8)

where o and A, are the second fundamental form and the shape operator (corresponding to the normal

vector field V ), respectively, for the submanifold of M into M. The second fundamental form o and
shape operator A, are related by

9(A X,Y)=9(a(X,Y),V) (9)
forany X,Y e['(TM) and V eI'(T*M).

let peMand {el,ez,...,e2m+1} be an orthonormal basis of tangent space T, (p) such that {el,ez,...,el}

are tangentto M at p. We H denote the mean curvature vector, that is
l |
H(p)ziza(ei’ei)' (10)
i=1

A submanifold M of an contact metric manifold M fis said to be totally umbilical if
o(X,Y)=9g(X,Y)H. (11)

A submanifold M is said to be totally geodesic submanifold if (X,Y) =0, foreach X,Y e['(TM) and
M is said to be minimal submanifold if H =0.

Also, we get

o;=09(c(e,e)e), 1<i,j<I, I+1<r<2m+],

where, the coefficients O'i; denote of the second fundamental form o with respect to {el,ez,..., ele},

and

le* = a(oee,) e e)).

ij=1
For any submanifold M of a Riemannian manifold M , the equation of Gauss is given by
RXYV)Z =R(XY)Z+A, 20 = Ay 2yx +(V0)(Y. Z) = (Vy0)(X, Z), (12)

forany X,Y eI'(TM), where R and R denote the Riemannian curvature tensor of M and M,

respectively. The covariant derivative Vo of o is defined by
(V,0)Y.Z)=Vio(Y,2)~0(V,Y,Z)~o(V,Z,Y) (13)

and the covariant derivative VA is also defined by

(VALY =V, (AY) =AY =AV,Y, (14)
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forany X,Y,Z eI'(TM) and V eI'(T*M). The normal and tangent components of (12) are, respectively,
given by

(R(X,Y)Z)" = (Vo)Y,Z)~(Vyo)(X,2), (15)
and
(RIX.Y)Z) =R(X,Y)Z+A )Y = Ay 1 X. (16)

If (R(X,Y)Z)", then M is said to be curvature — invariant submanifold of M. The Ricci equation is also
given by

g(ROX,Y)V,U) =g(R*(X,Y)V,U)+g([A,, A IX,Y), (17)

forany X,Y e(TM) and V,U eT(T*M), where R* denotes the Riemannian curvature tensor of the
normal T*M. Here, if R*(X,Y)V =0, then the normal connection of M is called flat.

A Kenmotsu manifold M is said to be 77— Einstein if its Ricci tensor S of type (0, 2) is of the from
S(X,Y)=ag(X,Y)+bn(X)n(Y) (18)

where a,b are smooth fonctions on M. Form the definition it is clear that if b =0, then the manifold is
called Einstein.

3. PSEUDO-SLANT SUBMANIFOLD OF KENMOTSU MANIFOLD

In this section, we will study pseudo-slant submanifolds in a Kenmotsu manifold, give some characterization
and submanifold is characterized.

Now, let M be a submanifold of an almost contact metric manifold M, then for any X eI'(TM) we
can write

X =TX +NX, (19)

where TX is the tangential component and NX is the normal component of @X. Similarly for
V eI'(T"M), we can write

oV =tV +nV, (20)

where tV is the tangential component and nV s also the normal component of @V. Thus by using (1),
(19) and (20), we obtain

T?=—1+np®&—tN, Nt+nN=0 (21)
and
Tt+tn=0, NT-+n?=-I. (22)

Furthermore, the covariant derivatives of the tensor field T, N,t and n are, respectively, defined by

(V,T)Y =V, TY =TV, Y, (23)
(V,N)Y =VLNY —NV, Y, (24)
(V, 1V =V, 1V -tV V, (25)
and
(V,n)V =VyinV —nV,V. (26)
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Furthermore, forany X,Y e '(TM), we have g(TX,Y)=-g(X,TY) and V,U e[(T*M), we get
g(U,nV)=—-g(nU,V). These Show that T and N are also skew-symmetric tensor fields. Moreover, for
any X eI'(TM) and V eI'(T*M), we have

g(NX,V)=—-g(X,tV), (27)
which gives the relation between N and t.

Taking into account (6) and (17), we have

g(R-0YV.U) =2 g (6, ) g(U. 1) - (Y ) g (X V)

+29(X,0Y)a(eV ,U)} —g([A,, A 1X,Y)

forany X,Y eI’(TM) and V,U e (T "M). By using (6) and (12), the Riemannian curvature tensor R of

an immersed submanifold M of a Kenmotsu space form M (c) is given by

(28)

RO 2 =22 g(r,2)x - g%, 2+ 2 r0m@)Y i) x
()X, 2)E=n(X)9(Y, Z)E + 9(X, gZ)TY (Y. p2)TX (29

+29(X, (pY)TZ} + AG(Y,Z)X - AJ(X’Z)Y.
From (6) and (12), for a submanifold, Codazzi equation is given by

(c+1)

(Vio)(Y,Z)~(Vyo)(X,2Z)= {9(X,pZ)NY —g(Y,pZ) NX

+2g(X, oY )NZ}.

(30)

A submanifold M is said to be invariant if N is identically zero, that is, X e '(TM) for all X eI"(TM).

On the other hand, M is said to be anti-invariant if T is identically zero, that is, @X EF(TJ'M) for all
X €I'(TM). By an easy computation, we obtain the following formulas

(V,T)Y = A X +ta(X,Y)+9(TX,Y)E—n(Y)TX (31)
and

(ViN)Y =no(X,Y)—o(X,TY) —n(Y)X. (32)
Similarly, forany V e '(T*M) and X eI'(TM), we obtain

(VxV = g(NX,V)&+ A, X ~TA, X (33)
and

(V,n)V =—o(tV, X)—NA, X. (34)
Since M is tangent to &, making use of (5) and (9) we obtain

Ac=0(X,8)=0 (35)

forall V eI'(T*M) and X e'(TM).

In contact geometry, A. Lotta introduced slant immersions as follows [14].
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Definition 3. 1. Let M be a submanifold of a Kenmotsu manifold M . A distribution D on M issaidtobea
slant if for each non-zero vector X € Dp, the angle & between @X and Dp is constant, that is,

independent of p e M and X e Dp. The constant angle @ is called the slant angle of the slant distribution.
So a submanifold M of M is said to be a slant submanifold if the tangent bundle TM of M is slant [14].

So invariant and anti-invariant submanifolds are slant submanifolds with slant angle #=0 and
0= Erespectlvely. A proper slant submanifolds is neither invariant nor anti-invariant. Thus invariant and

anti invariant submanifolds are special cases of slant submanifolds.

If M is a slant submanifold of an almost contact metric manifold, then the tangent bundle TM of M can
be decomposed as

TM=D®¢,

where & denotes the distribution spanned by the structure vector field £ and D is complementary of
distribution of & in TM, known as the slant distribution on M. Recently, Cabrerizo et al. [6] extended the

above result in to a characterization for a slant submanifold in a contact metric manifold. In fact, they
obtained the following crucial theorem.

Theorem 3. 1. [6]. Let M be a slant submanifold of an almost contact metric manifold M such that
£ eIl (TM). Then, M is slant submanifold if and only if there exist a constant A €[0,1] such that

T?=-A(1 -n®¢%) (36)
furthermore , in this case, if @ is the slant angle of M, then A =c0s? 6.

Corollary 3. 1. [6]. Let M be a slant submanifold of an almost contact metric manifold M with slant angle
0. Then forany X,Y eI'(TM), we have

g(TX, TY) = cos? H{g(X,Y) - n(X)n(Y)} 7)

and
g(NX, NY) =sin® 9{g(X,Y)=n(X)n(Y)}. (38)

Definition 3. 2. [12]. Let M be a slant submanifold of an almost contact metric manifold M. M issaid to
be pseudo-slant of M if there exit two orthogonal distributions D* and D’ on M such that:

i) TM has the orthogonal direct decomposition TM = D* @D,, &eT'(D,).
i) The distribution D™ is anti-invariant, that is, (/)(DL) cT+M.
i) The distribution D, is a slant, that is, the slant angle between of D, and @(D,) is a constant.
Let d, and d, be dimensional of distributions D" and D,, respectively. Then
i) If d2 =0 then, M is an anti-invariant submanifold.

i) 1fd, =0 and @=0 then, M is an invariant submanifold.

i) If d=0andfe (0,%) then, M proper slant submanifold.
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iv) If 0 :% then, M is an anti-invariant submanifold.

v) If d.d,#0and 8¢ (O,%) then, M is a proper pseudo-slant submanifold.

vi) If d,.d; #0 and 8 =0 then, M is a semi-invariant submanifold.

If we denote the projections on D* and D, by P, and P,, respectively, then for any vector field

X eT'(TM), we can write

X =BX+PBX+n(X)S&. (39)
On the other hand, applying ¢ on both sides of equation (39), we have
X =P X + P, X
and
TX+NX =NPX+TRX +NPX, TPX =0. (40)
From which, we can easily to see
TX =TP,X, NX =NPX +NPE,X
and

oPX =NPX, TRX =0, ¢PX =TPRX+NPX, TPX eI'(D,). (41)

If we denote the orthogonal complementary of ¢TM in T*M by M, then the normal bundle T'M canbe
decomposed as follows

T'M =N(D")®N(D,)® w. (42)

We can easily see that the bundle # is an invariant subbundle with respect to . Since D" and D, are

orthogonal distributionon M, g(Z, X) =0 foreach Z eI'(D") and X € I'(D?). Thus, by equation (3)
and (19), we can write

g(NZ,NX) =g(pZ,pX)=9(Z,X) =0
that is, the distributions N(D") and N(D,) are also mutually perpendicular. In fact, the decomposition
(42) is an orthogonal direct decemposition.
Theorem 3. 2. Let D be a distribution on M, orthogonal to &. Then D is a slant if and only if there is a
constant A €[0,1] such that

(TP)>X =-AX (43)

forall X eI'(D), where P denotes the orthogonal projection on D. Furthermore, in this case, the slant
angle @ of M satisfies A =cos? @ [6].

It is well known that to =0 plays an important role in the geometry of submanifolds. This means that the
induced structure T is a Kenmotsu structure on M. Then (31) reduces to

(VxT)Y =g(TX,Y)g—n(Y)TX, (44)
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for X,Y €I'(D,). For example, this means that the induced structure T is a Kenmotsu structure on M if

the ambient manifold M is a Kenmotsu manifold.

Moreover, forany Z,W e (D) and U eI'(TM), also by using (4) and (9), we have

g(AW — Ay Z,U)=g(cW,U),NZ)-g(c(Z,U),NW)
=g(V W, 9Z)-g(VyZ,oW)
=9(pVyZ,W) - g(pV W, Z)
= 9(Vy0Z,W)-g((Vy9)Z,W)
~g(VyW,Z) +g((Vy @)W, Z)
=9(VypZ W) -g(g(el, Z)E -n(Z)pd W)
—9(Vy@W, Z) +9(9(pZ,U)E -n(U)pZ W)
~9(AzU.W) +g(AyY.2)
9(AwZ — AW, U).

It follws that
AwZ =AW, (45)
forany Z,W e I(D").

Theorem 3. 3. Let M be a proper pseudo-slant submanifold of a Kenmotsu manifold M. The tensor field
N is parallel if and only if shape operatory A, satisfies

AY =sec’ 9A, TY
forany Y e(TM) and V e(T*M).
Proof. If N is parallel, from (32), we have
no(X,Y)—o(X,TY)—n(Y)NX =0
forany X,Y € '(TM). This implies
0=no(X,TY)=c(X,T?)
=no(X,TY)+cos? 9o (X,Y —n(Y)E).
Thus we have
0=g(no(X,TY),V)+cos*g(a(X,Y —=n(Y)E),V)
=-g(a(X,TY),nV)+cos? 8g(a(X,Y —7(Y)&),V)
=-g(A,TY, X)+cos” 9g(A, X,Y =n(Y)$)
=-g(A,TY, X)+cos’ 8g(A, X,Y)
=-g(A,TY, X)+cos’ 9g(A X,Y)

forany V eI'(T"M). This equivalent to
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AY =sec’ OA,TY.
Theorem 3. 4. Let M be a proper pseudo-slant submanifold of a Kenmotsu manifold M. If the shape

operator of the pseudo-slant submanifold M is parallel, then M is a totally geodesic submanifold.

Proof. If the shape operator A, of M is parallel, then by using (5) and (14), we have
V. (AY)- Av§vY -AV,Y =0,

forany X,Y e(TM) and V e I'(T"M). Here, choosing Y = & and taking into account (14) and (35), we
obtain

A& A Ve ==A (X =1(X)5) =0.
This yields to A, X =0. This proves our assertion.
Theorem 3. 5. Let M be a proper pseudo-slant submanifold of a Kenmotsu manifold M. If the
endomorphism T is parallel if and only if M is anti-invariant submanifold M.
Proof. If T is parallel, then from (31) and (35), we have
0=g(AyX,&)+9(MX,Y)-n(Y)g(TX,$)
=g(a(X,&),NY)+g(TX,Y) (46)
=g(TX,Y).
Here, taking Y =TX equation (46), we have g(TX,TX) =0 forany X,Y € '(TM). This implies that
cos’ H{Q(X, X)—?]Z(X)} =0, thatis, M is anti-invariant submanifold.

Theorem 3. 6. Let M be a proper pseudo-slant submanifold of a Kenmotsu manifold M.If the
endomorphism N is parallel on M, then M is an invariant submanifold M.
Proof. If N is parallel, then from (32), we have

no(X,Y)—o(X,TY)—-n(Y)NX =0,
for any X,Y eI'(TM). Here, choosing Y =& and taking into account that o(X,&) =0, (2) and (38), we
conclude that sin® H{Q(X, X) —772(X)} = 0. This proves our assertion.

Theorem 3. 7. Let M be a proper pseudo-slant submanifold of a Kenmotsu manifold M. Then the tensor
N is parallel if and only if the tensor t is parallel.

Proof. By using (32) and (33), we have
g((VxN)Y.V)=g(no(X,Y),V)-g(a(X,TY),V)-n(Y)g(NX,V)
=-g(h(X,Y),nV) —g(A X,TY) - g(NX,V)7(Y)
=—g(Ay X,Y)+9(TA X,Y)—g(NX,V)n(Y)
=—-9(-Ay X +TA X -g(NX,V)Z,Y)
=—-g((V4)V,Y),
forany X,Y eI’(TM) and V e I'(T*M). This proves our assertion.

Theorem 3. 8. Let M be a proper pseudo-slant submanifold of a Kenmotsu manifold M. The derivation of
T is skew-symmetric, that is
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g((VyT)Y,Z)=-9((VT)Z.Y)
forany X,Y,Z eI'(TM).
Proof. Forany X,Y,Z €I'(TM), by using (9), (27), (31), we obtain
g((ViT)Y,Z) = 9(Ay X +ta(X,Y) +g(TX,Y)E—n(Y)TX, Z)

=9(o(X,2),NY)-g(c(X,Y),NZ) +7(2)g(TX,Y) —n(Y)g(TX,Z)
=—9(to(X,2),Y) - 9(A X,Y)+n(2)9(TX,Y)-n(Y)g(TX, Z)
=—g(A; X +to(X,Z2)+9(TX,Z2),—n(Z)TX,Y)
=-9((VxT)Z.Y).

This complete of the proof.

Theorem 3. 9. Let M be a proper pseudo-slant submanifold of a Kenmotsu manifold M. Then we have the
following assertion

g((Vxn)V,U) =-g((V,nU,V),
forany X eI'(TM) and V,U eI'(T*M).
Proof. Forany X eI'(TM) and V,U eI'(T*M), from (9), (27) and (34), we reach
g((VxmV,U) =-g(-o(tV, X)—NA, X,U)

=-g(-A X, tV)+g(A X,tU)
=g(NA, X ,V)+g(o(X,tU),V)
=—g(-NA, X —a(X,tU),V)
——g((V,MU V).

This proves our assertion.

Theorem 3. 10. Let M be a proper pseudo-slant submanifold of a Kenmotsu manifold M. Then the tensor
N is parallel if and only if the shape operator A, of M satisfies the condition

AU = AtV, (47)
forall V,U e (T "M).
Proof. Forall V,U e I'(T*M), from (27) and (34), we have

0=-g(o(tV,X),U)-g(NA X ,U)

=—g(A,tV, X)+g(A X,tU)
= g(ATU - AjtV, X),

forall X e'(TM). The proof is complete.

Theorem 3. 11. Let M be a proper pseudo-slant submanifold of a Kenmotsu manifold M. If n is parallel
then, M s totally geodesic submanifold of M.

Proof. If N is parallel, from (34) and (19), we have
oV, X)+pA X =0 (48)

forall X eI'(TM) and V eI(T"M). Applying @ to (48) and taking into account (1) and (35), we obtain
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0=¢°A X +po(tV, X)
=—A X +7n(A X)+totV, X)+no(TV, X).
This yields to
-A X +to(tV, X) =0. (49)
On the other hand, also by using (9), (22), (27) and (47), we conclude that
9(A X,Z)=9(to(tV, X),Z) =-g(o(tV, X),NZ)
=—9(AtV, X) =-g(ANZ,X)

for Z eT(TM). Taking into account of tNZ =—Z +1(Z)& —T?Z, we obtain

9(AZ,X)=-g(-AZ+n(Z)A$-AT?Z,X)
=9(A/Z,X)+9(A X,T?2)
=g(A X +T?A X, 2).

Here, by using (21), we conclude

0=g(A X,T?Z)=g(A X,~Z +1(Z)¢ ~tNZ)
=—9(A X,Z)+g(NA X,NZ)
=—cos” 0g(A X,Z)

for all ZeI'(TM). Since M is a proper pseudo-slant submanifold, we arrive at A, =0, thatis, M s
totally geodesic in M.
4, PSEUDO-SLANT SUBMANIFOLD IN KENMOTSU SPACE FORMS

In this section, we will study pseudo-slant submanifolds in a Kenmotsu space form, give some
characterization and submanifold is characterized.

=secdTe,,...,

€6, ---.€,,€,,, =secdle e .,
Let

} be an orthonormal basis of I'(TM) such that

€y, =5eCHTe 65001 =&1€5,,21€ 5,301 €0 paqu

1 ¥2p+g+l

€,6,...,6,,e ,=secdle, e ,=
s - are tangent to I'(D,) and {e2p+2,e2p+3,... e } are tangent
secdle,,....e,, =secdle .e, , =&

(DY)

Theorem 4. 1. Let M be a pseudo-slant submanifold of a Kenmotsu manifold space form M (C) such that
c#-1. If M is a pseudo-slant curvature-invariant submanifold, then M is either semi-invariant or anti-
invariant submanifold.

Proof. We suppose that M is a pseudo-slant curvature-invariant submanifold of a Kenmotsu space form
M (c) such that ¢ #—1. Then from (30), we have

g(X, TZ)NY —g(Y,TZ)NX +2g(X,TY)NZ =0, (50)
forany X,Y,Z eI'(TM). Taking X =Z in equation (50), we have
0=—g(Y,TZ)NZ +2g(Z, TY)NZ = -3g(TZ,Y)NZ. (51)

Here taking Y =TZ in equation (51), we have
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9(TZ,TZ)NZ =0.

From (37) and (38), we obtain
cos’ @sin? e{g(Z,Z) —772(2)}2 =

This implies that sin 29{g(Z,Z) -n’ (Z)} =0, thatis, M is either a semi-invariant or an anti-invariant
submanifold. Thus the proof is complete.

Theorem 4. 2. Let M be a pseudo-slant submanifold of a Kenmotsu manifold of a Kenmotsu space form
M (c) with flat normal connection such that ¢ = —1. If TA, = A, T for any vector V normalto M, then

M is either an anti-invariant or generic submanifold of M (c).

Proof. If the normal connection of M s flat, then from (28), we have

a([A AIX.Y) = (Cf’{g(x MG, oY)~ g(Y. N )g(eX,U)
+29(X,9Y)g(eV,U)}

forall X,Y e['(TM) and V,U eI'(T*M). Here, choosing U =nV and Y =TX, by direct calculations,
we can state

@+D

a([A,, AVIX,TX) =— {a(MX, TX)g(nV,nV)},

that is,

(c+1)

g(AVATX —A A TX, X) =——={g(TX,TX)g(nV,nV)j,

from which

) (c+1)

tr(AyAT)-tr(A A, T) ==_=tr(T*)g(nV,nV).

If TA, = AT and because of T is skew-symmetric, then we conclude that tr(A, A, T)=tr(A A, T) and
thus

(Czl) tr(T?)g(nv,nv),

from here dim(TM) =2p+q+1, the we can easily to see that

(2p+q+1)cos’ @ (c+1)

g(nV,nV)=0.
Thus @ is either vanishes or N =0. This implies that M is either an anti-invariant or it is a generic
submanifold.

Theorem 4. 3. Let M be a pseudo-slant submanifold of a Kenmotsu manifold of a Kenmotsu space form
M (C). There exist no totally umbilical proper pseudo-slant submanifolds in a Kenmotsu space form M (c)
such that ¢ = —1.

Proof. We suppose that M is totally umbilical pseudo-slant submanifold in Kenmotsu space form M (c).
Since every totally umbilical submanifold in Kenmotsu manifold is totally geodesic, we have
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9(R(X.Y)Z,9Z) = g((V0)Y,Z) = (V,0)(X,Z),9Z) =0 (52)
forany X,Y eI'(D,) and Z e['(D"). Since the ambient space M is a Kenmotsu space form, from (6) we
infer

= (c+1

9(R(X,Y)Z,pZ) = 9(X,9Y)g(NZ,NZ). (53)

Taking Y =TX in equation (53), we have
D 4 (X, 6TX)g(NZ, NZ) =0. (54)

Here, taking X =Z in equation (54). From, (37) and (38), we obtain
cos’ 9sin’ 6{g(Z,2) —nZ(Z)}z =
This implies that sin 29{g(Z,Z) -n° (Z)} =0, thatis, M is either a semi-invariant or an anti-invariant

submanifold. This proves our assertion.

Theorem 4. 4. Let M be a pseudo-slant submanifold of a Kenmotsu manifold of a Kenmotsu space form
M (c). Then the Ricci tensor S of M is given by

S(X,W)= {( )(2p q)+( )(3c056? 1)}g(X W)

LoD (1—q—2p—3cos? &)n(X)n(W) (55)

+ 2P+ 9 +D (X W), H) = Y glole,W),o(X.e,)

forany X,W eI(TM).
Proof. Forany X,Y,Z eI'(TM), by using (6) and (12), we have
(c-3)

g(R(X,Y)Z,W) = {9(Y,Z)g(X,W)—g(X,Z)g(Y, W)}

n(C+ >{ (X)n(Y)g(Y W) = 7(Y)7(Z) g(X, W)

+77(Y)77(W)9(X,Z) =n(X)nW)g(Y, 2)
+09(X,9Y)g(pY W) -g(Y,pZ)g(pX W)
+29(X, 9Y)g(pZ, W)} +g(a(X,W),o(Y,Z))
—g(o(Y,W), (X, 2)).

€,e,...e,e,, =secdle,e ,=secdle,,...,
Let be an orthonormal basis of I'(TM) such that
e _SeCHTe e2p+1 - é’eZp+21eZp+37""eZp+q+l
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{el €, 8,8, =5ecdle e, , =

are tangentto I'(D,) and e, .., .,..., e are tangent
secHTe2 ..... €0 secHTep,e2p+1 :5} 0 { 2p+2° ©2pe3 2p+q+l}

['(D"). Hence, taking Y =Z =¢,,€;,6,,& and 1<i< p,p+1<j<2p,&,2p+2<k<2p+q+1 then,

we obtain
S(x,W)z_zpl:g(R(x,ei)ei,W)+_Zzpjlg(R(x,secmej)secmej,W)
+g(R(x,é)é,W)+:p:2q:g(R(x,ek)ek,W).
- %
aROX e)e W) = 2 pg o, W)-g(X g, W)
+ D o) ++39(7X ) gl TW)) (56)

+9(a(X,W),o(e,8)) —g(o(e,W),o(X,¢)),

(c-3)

g(R(X,secdTe,)secdTe;, W) = {Pg(X,W)—g(X,sechTe)gW,secdTe,)|

+(Cf:1){—pn(X)n(\N) +39(TX,secaTe;)g(secTe;, TW)|  (s7)

+9(c(X,W),o(secdTe;,secdTe;))
—g(o(secdTe;,W),o(X,secdTe))),

(0—3){g(x,W)—g(X.é)g(é,W)}

(CZl){n(X)n(vw (X W)

g(R(X,&)eW) =

(58)

and

a(R(X, e, e W) =2

{ag(X,W)-g(X,e)g(e, W)}

(CZ”{ p(X)7W)g+3g(TX, &) (e, TW)! (59)

+{g(‘7(xyw)'0(ek’ek))_g(U(ewW)’U(X'ek))}-

From here
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2p+q

3" 9(o(e, W), o(X &) = Y 9(o(e,W).o(X )

2p

+ Y. g(o(secdTe; W),o(X,secHTe,))
j=p+1
2p+g+1

vy gloe.W),o(X.8)).

k=2p+2
Hence, equation (56), (57), (58) and (59), we obtain

S(X,W)= {(Cf;?’)(Zp+q) +%(3cos2 9—1)}g(x W)

c+1
+ 28 1 q-2p-30057 ) (X)7W)
2p+q
+(2p+q+Dg(a(X,W),H)- > g(o(e, . W),o(X,e,)).
m=1
This complete the proof.

Thus we have the following corollary.

Corollary 4. 1. Every totally umbilical pseudo-slant submanifold M of a Kenmotsu space form M (c) isan
1 — Einstein submanifold. Since totally umbilical pseudo-slant submanifold of a Kenmotsu minimal.

Theorem 4. 5. Let M be a pseudo-slant submanifold of a Kenmotsu manifold of a Kenmotsu space form
M (c). Then the scalar curvature p of M is given by

p:{(c—3) (2p+Qq)+ () (3cosz¢9—1)}(2p+q+1)
4 4 (60)

—%(30052¢9+2p+q—1)+(2p+q+1)2||H||2—||p||2.

Proof. From (55) by using X =W =g,_, we have
2p+g+1
p= > S(e,.en)
m=1

which gives (60). Thus the proof is complete.
Thus we have the following corollary.

Corollary 4. 2. Let M be a pseudo-slant submanifold of a Kenmotsu manifold of a Kenmotsu space form
M (C). Then scalar curvature p of M is given by

p:{(Cf;?’)(Zerq)jL%@cosz49—1)}(2p+q+1)
—%(300529+2p+q—1).

Example 4. 1. Let M be a submanifold of [J " defined by the equation
(«/§u,v, vsin &,V Ccos a, WC0S f3,—WCOS f3, Z).

We can easily to see that the tangent bundle of M is spanned by the tangent vectors
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e1:\/§i, e2:£+sinai+005ai, e3:cosﬂi—cosﬂ£,
8)(1 1 aXZ 2 a 3 3
. 0 . 0 0

e, =—Wsin f—+Wwsin f—, e =&=—.

4 ﬂaxs B S &=

For the almost contact structure ¢ of [ " whose coordinate systems (Xl, Vi X5, Yo X5, Vs, Z) choosing

0 0
p(—)= gy

2 1<i, j<3
o' oy

a [
co(ayj)—

i

then, we have

(pelzﬁi ¢e=—i+3in0{i—cosai
o X %Y, %,

0 0 . 0 ’ 0
@e, =Cos f—+Ccosf—, @e,=—-Wwsinf——wsin f—.
? ays 6X3 5 ays 6X3

By direct calculations, we can infer D, = span {el, ez} is a slant distribution with slant angle

o 9E.8) 2
[e:llpe] 2

Cos
0 =45".

Since
9(¢pe;.€) = 9(pe;,e,) = g(ge;,e,) = 9(ge;,65) =0,
9(¢e,.€) = 9(¢e,.€,) = 9(pe,. &) = 9(¢e;,6) =0
orthogonalto M, D* =span{e,,e,} isan anti-invariant distribution. Thus M is a 5— dimensional proper

pseudo-slant submanifold of [ ’ with it’s usual almost contact metric structure.
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