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Introduction  

Manifolds known as Kenmotsu manifolds have been studied by K. Kenmotsu (see [8]). The author set up one 

of the three classes of almost contact Riemannian manifolds whose automorphism group attains the 

maximum dimension. A Kenmotsu manifold can be defined as a normal almost contact metric manifold such 

that 𝑑𝜂 = 0 and 𝑑𝛷 = 2𝜂 ∧ 𝛷.Kenmotsu manifolds can be qualifed through their Levi-Civita connection, given 

by (𝛻𝑋𝜑)𝑌 = 𝑔(𝜑𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝜑𝑋, for any vector fields 𝑋 and 𝑌. Kenmotsu described a certain structure 

similar to the warped product and it was characterized by tensor equations. The author showed that such a 

manifold 𝑀²ⁿ⁺¹ is locally a warped product (−𝜀, +𝜀) × 𝑓 𝑁²ⁿ being a Kaehlerian manifold and 𝑓(𝑡) = 𝑐𝑒𝑡 where 

𝑐 is a positive constant. Moreover, Kenmotsu showed locally symmetric Kenmotsu manifolds are of constant 

curvature −1 that means locally symmetry is a strong restriction for Kenmotsu manifolds.  

It is well known that there exist contact metric manifolds (𝑀²ⁿ⁺¹, 𝜑, 𝜉, 𝜂, 𝑔), for which the curvature tensor 𝑅 

and the direction of the characteristic vector field 𝜉 satisfy 𝑅(𝑋, 𝑌)𝜉 = 0, for any vector fields on 𝑀²ⁿ⁺¹. Using a 

𝐷-homothetic deformation to a contact metric manifold with 𝑅(𝑋, 𝑌)𝜉 = 0 we get a contact metric manifold 

satisfying the following special condition 

𝑅(𝑋, 𝑌)𝜉 = 𝜂(𝑌)(𝜅𝐼 + 𝜇ℎ)𝑋 − 𝜂(𝑋)(𝜅𝐼 + 𝜇ℎ)𝑌,                                                                       (1.1) 

where 𝜅, 𝜇 are constants and ℎ is the self-adjoint (1,1)-tensor field. This condition is called (𝜅, 𝜇)-nullity on 

𝑀²ⁿ⁺¹. Contact metric manifolds with (𝜅, 𝜇)-nullity condition studied for 𝜅, 𝜇 = 𝑐𝑜𝑛𝑠𝑡. (see [1]). 

Moreover, Pastore and Dileo are studied the curvature properties of almost Kenmotsu manifolds, with special 

attention to (𝜅, 𝜇)-nullity condition for 𝜅, 𝜇 = 𝑐𝑜𝑛𝑠𝑡. and 𝜈 = 0 ((see [6]). The authors prove that an almost 

Kenmotsu manifolds 𝑀²ⁿ⁺¹ is locally a warped product of an almost Kaehler manifold and an open interval. If 

additionally 𝑀²ⁿ⁺¹ is locally symmetric then it is locally isometric to the hyperbolic space 𝐻²ⁿ⁺¹ of constant 

sectional curvature 𝑐 = −1. It is recall that model spaces for almost cosymplectic case were given by Olszak 

(see [4, 5]). 

In 2009, Öztürk et al. studied (𝑀, 𝜑, 𝜉, 𝜂, 𝑔) almost 𝛼-Kenmotsu manifold in the light of the following relation 

𝑅(𝑋, 𝑌)𝜉 = 𝜂(𝑌)(𝜅𝐼 + 𝜇ℎ + 𝜈𝜑ℎ)𝑋 − 𝜂(𝑋)(𝜅𝐼 + 𝜇ℎ + 𝜈𝜑ℎ)𝑌,                                              (1.2) 

where 𝜅, 𝜇, 𝜈 ∈ 𝑅𝜂𝑀 such that 𝑑𝑓 ∧ 𝜂 = 0  and  ℎ = (
1

2
) (𝐿𝜉𝜑) (see [12]). Such manifolds are said to be almost 𝛼-

Kenmotsu (𝜅, 𝜇, 𝜈)-spaces and (𝜑, 𝜉, 𝜂, 𝑔) be called almost 𝛼-Kenmotsu (𝜅, 𝜇, 𝜈)-structure. 

In this paper, the geometry of almost alpha Kenmotsu (𝜅, 𝜇)-spaces are studied. Finally, we give an illustrative 

example on almost alpha Kenmotsu (𝜅, 𝜇)-space with dimension 3. 

Preliminaries 

Let 𝑀²ⁿ⁺¹ almost contact manifold be an odd-dimensional manifold. The triple (𝜑, 𝜉, 𝜂) is defined as follow.  It 

transports a field 𝜑 of endomorphisms of the tangent spaces, 𝜉 is a vector field that is called characteristic or 

Reeb vector field , and 𝜂 is a 1-form such that 𝜑² = −𝐼 + 𝜂 ⊗ 𝜉 and 𝜂(𝜉) = 1. The mapping defined by 

𝐼: 𝑇𝑀²ⁿ⁺¹ → 𝑇𝑀²ⁿ⁺¹, is called identity mapping. By using the definition of these it follows that 𝜑𝜉 = 0, 𝜂 ∘ 𝜑 = 0 

and that the (1,1)-tensor field φ has constant rank 2𝑛 (see [1]). An almost contact manifold (𝑀²ⁿ⁺¹, 𝜑, 𝜉, 𝜂) is 

said to be normal if the Nijenhuis torsion tensor 𝑁𝜑 = [𝜑, 𝜑] + 2𝑑𝜂 ⊗ 𝜉 vanishes for any vector fields 𝑋, 𝑌 on 

𝑀²ⁿ⁺¹. If 𝑀²ⁿ⁺¹ admits a Riemannian metric 𝑔, such that                        

𝑔(𝜑𝑋, 𝜑𝑌) = 𝑔(𝑋, 𝑌) − 𝜂(𝑋)𝜂(𝑌),                                                                               (2.1) 

for any vector fields 𝑋, 𝑌 on 𝑀²ⁿ⁺¹, then this metric 𝑔 is said to be a compatible metric and the manifold 𝑀²ⁿ⁺¹ 

together with the structure (𝑀²ⁿ⁺¹, 𝜑, 𝜉, 𝜂, 𝑔) is called an almost contact metric manifold. Hence,  (2.1) means 
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that 𝜂(𝑋) = 𝑔(𝑋, 𝜉) for any vector field 𝑋 on 𝑀²ⁿ⁺¹. On such a manifold, the fundamental 2-form Φ of 𝑀²ⁿ⁺¹ is 

defined by 𝛷(𝑋, 𝑌) = 𝑔(𝜑𝑋, 𝑌). An almost contact metric manifold (𝑀²ⁿ⁺¹, 𝜑, 𝜉, 𝜂, 𝑔) is said to be almost 

cosymplectic if 𝑑𝜂 = 0 and 𝑑𝛷 = 0, where 𝑑 is the exterior differential operator. An almost contact metric 

manifold 𝑀²ⁿ⁺¹ is said to be almost alpha Kenmotsu if 𝑑𝜂 = 0 and 𝑑𝛷 = 2𝛼𝜂 ∧ 𝛷, 𝛼 being a non-zero real 

constant. It is obvious that a normal almost cosymplectic manifold is called a cosymplectic manifold and a 

normal almost Kenmotsu manifold is called Kenmotsu manifold. 

Considering the deformed structure for Kenmotsu metric structure (𝜑, 𝜉, 𝜂, 𝑔)  

                         𝜂∗ = (1/𝛼)𝜂,  𝜉∗ = 𝛼𝜉,   𝜑∗ = 𝜑,    

                                𝑔∗ = (1/𝛼²)𝑔,   𝛼 ≠ 0, 𝛼 ∈ 𝑅,                                              (2.2) 

where 𝛼 is a non-zero real constant. Thus we obtain an almost alpha Kenmotsu structure (𝜑∗,  𝜉∗, 𝜂∗, 𝑔∗). This 

deformation called a homothetic deformation on 𝑀²ⁿ⁺¹  (see [10]). 

Now, we set 𝐴 = −𝛻𝜉 and ℎ = (1/2)(𝐿𝜉𝜑). These definitions requires that 𝐴(𝜉) = 0 and ℎ(𝜉) = 0. Furthermore, 

𝐴 and ℎ are symmetric operators and holds the following relations 

𝛻𝑋𝜉 = −𝛼𝜑²𝑋 − 𝜑ℎ𝑋,                                                                                                                                   (2.3) 

(𝜑 ∘ ℎ)𝑋 + (ℎ ∘ 𝜑)𝑋 = 0,                                                                                                                              (2.4) 

(𝜑 ∘ 𝐴)𝑋 + (𝐴 ∘ 𝜑)𝑋 = −2𝛼𝜑,                                                                                                                    (2.5) 

(𝛻𝑋𝜂)𝑌 =  𝛼[𝑔(𝑋, 𝑌) − 𝜂(𝑋)𝜂(𝑌)] + 𝑔(𝜑𝑌, ℎ𝑋),                                                                                  (2.6) 

𝛿𝜂 =  −2𝛼𝑛,   𝑡𝑟(ℎ) = 0,                                                                                                                               (2.7) 

for any vector fields 𝑋, 𝑌 𝑜𝑛 𝑀²ⁿ⁺¹. It is clear that ℎ vanishes iff 𝛻𝜉 = −𝛼𝜑².   

Some Curvature Properties 

Lemma 3.1 The following relations are held for an almost alpha Kenmotsu manifolds 

𝑅(𝑋, 𝑌)𝜉 = (𝛼² + 𝜉(𝛼)) + ([𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋] − 𝛼[𝜂(𝑋)𝜑ℎ𝑌 − 𝜂(𝑌)𝜑ℎ𝑋] 

                                        +(𝛻𝑌𝜑ℎ)𝑋 − (𝛻𝑋𝜑ℎ)𝑌,                                                                                        (3.1) 

𝑅(𝑋, 𝜉)𝜉 = (𝛼² + 𝜉(𝛼)) 𝜑²𝑋 + 2𝛼𝜑ℎ𝑋 − ℎ²𝑋 + 𝜑(𝛻𝜉ℎ)𝑋,                                                              (3.2) 

(𝛻𝜉ℎ)𝑋 = −𝜑𝑅(𝑋, 𝜉)𝜉 − (𝛼² + 𝜉(𝛼)) 𝜑𝑋 − 2𝛼ℎ𝑋 − 𝜑ℎ²𝑋,                                                             (3.3) 

𝑅(𝑋, 𝜉)𝜉 − 𝜑𝑅(𝜑𝑋, 𝜉)𝜉 = 2[(𝛼² + 𝜉(𝛼)) 𝜑²𝑋 − ℎ²𝑋],                                                                     (3.4) 

𝑆(𝑋, 𝜉) = −2𝑛[𝛼2 + 𝜉(𝛼)]𝜂(𝑋) − (𝑑𝑖𝑣(𝜑ℎ))𝑋,                                                                                  (3.5) 

𝑆(𝜉, 𝜉) = −[2𝑛(𝛼² + 𝜉(𝛼))  + 𝑡𝑟(ℎ²)],                                                                                                  (3.6) 

for any vector fields on 𝑋, 𝑌 on 𝑀²ⁿ⁺¹ where 𝛼 be a smooth function such that 𝑑𝛼 ∧ 𝜂 = 0.  In these formulas, 𝛻 

is the Levi-Civita connection and 𝑅 the Riemannian curvature tensor of 𝑀²ⁿ⁺¹. 
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Some Results 

Now, we are especially interested in almost almost alpha Kenmotsu manifolds whose almost alpha Kenmotsu 

structure (𝜑, 𝜉, 𝜂, 𝑔) satisfies the condition (1.1) for 𝜅, 𝜇∈𝑅𝜂(𝑀²ⁿ⁺¹). Such manifolds are said to be almost alpha 

Kenmotsu (𝜅, 𝜇)-spaces and (𝜑, 𝜉, 𝜂, 𝑔) be called almost alpha Kenmotsu (𝜅, 𝜇)-structure.  

Proposition 4.1 The following relations are held for an almost alpha Kenmotsu (𝜅, 𝜇)-space  

𝑙 = −𝜅𝜑² + 𝜇ℎ,                                                                                                                                               (4.1) 

𝑙𝜑 − 𝜑𝑙 = 2𝜇ℎ𝜑,                                                                                                                                            (4.2) 

ℎ² = (𝜅 + 𝛼2)𝜑2,            𝜅 ≤ −𝛼²,                                                                                                             (4.3 

(𝛻𝜉ℎ) = −𝜇[𝜑ℎ + 2𝛼]ℎ,                                                                                                                              (4.4) 

𝛻𝜉ℎ² = −4𝛼(𝜅 + 𝛼²)𝜑²,                                                                                                                              (4.5) 

𝜉(𝜅) = −4𝛼(𝜅 + 𝛼²),                                                                                                                                  (4.6) 

             𝑅(𝜉, 𝑋)𝑌  =  𝜅(𝑔(𝑌, 𝑋)𝜉 − 𝜂(𝑌)𝑋) + 𝜇(𝑔(ℎ𝑌, 𝑋)𝜉 − 𝜂(𝑌)ℎ𝑋)                                                         (4.7) 

𝑄𝜉 = 2𝑛𝜅𝜉,                                                                                                                                                    (4.8 

(𝛻𝑋𝜑)𝑌 = 𝑔(𝛼𝜑𝑋 + ℎ𝑋, 𝑌)𝜉 − 𝜂(𝑌)(𝛼𝜑𝑋 + ℎ𝑋),                                                                               (4.9) 

(𝛻𝑋𝜑ℎ)𝑌 − (𝛻𝑌𝜑ℎ)𝑋  =  −(𝜅 + 𝛼²)(𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌) − 𝜇(𝜂(𝑌)ℎ𝑋 − 𝜂(𝑋)ℎ𝑌) 

+𝛼(𝜂(𝑌)𝜑ℎ𝑋 − 𝜂(𝑋)𝜑ℎ𝑌),                                                                                                                        (4.10) 

(𝛻𝑋ℎ)𝑌 − (𝛻𝑌ℎ)𝑋  =  (𝜅 + 𝛼2)(𝜂(𝑌)𝜑𝑋 − 𝜂(𝑋)𝜑𝑌 + 2𝑔(𝜑𝑋, 𝑌)𝜉)                                              (4.11) 

+𝜇(𝜂(𝑌)𝜑ℎ𝑋 − 𝜂(𝑋)𝜑ℎ𝑌) + 𝛼(𝜂(𝑌)ℎ𝑋 − 𝜂(𝑋)ℎ𝑌), 

𝑄𝜑 − 𝜑𝑄 = 2ℎ[𝜇𝜑],                                                                                                                                      (4.12) 

for all vector fields 𝑋, 𝑌 on 𝑀²ⁿ⁺¹  and and 𝜉(𝛼) = 0. 

Proof. The above relations can be proved with the help of the same techniques that used by Öztürk et al. 

where 𝜉(𝛼) = 0 and 𝜅, 𝜇 ∈ 𝑅𝜂(𝑀²ⁿ⁺¹), (see [12]). 

Theorem 4.1 For almost alpha Kenmotsu (𝜅, 𝜇)-space, the following relation holds  

0  =  𝜉(𝜅)(𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌) + 𝜉(𝜇)(𝜂(𝑌)ℎ𝑋 − 𝜂(𝑋)ℎ𝑌) − 𝑋(𝜅)𝜑2𝑌 + 𝑋(𝜇)ℎ𝑌 

                                     −𝑌(𝜇)ℎ𝑋 + 𝑌(𝜅)𝜑2𝑋 + 2(𝜅 + 𝛼2)𝜇𝑔(𝜑𝑋, 𝑌)𝜉 + 2𝜇𝑔(ℎ𝑋, 𝜑ℎ𝑌)𝜉.                         (4.13) 

 here 𝜉(𝛼) = 0.  
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Proof. By the means of [12], we have the desired result for 𝜉(𝛼) = 0.  

Lemma 4.1 Let (𝑀²ⁿ⁺¹, 𝜑, 𝜉, 𝜂, 𝑔) be an almost alpha Kenmotsu (𝜅, 𝜇)-space. For every 𝑝 ∈ 𝑁, there exists 

neighborhood 𝑊 of 𝑝 and orthonormal local vector fields 𝑋𝑖 , 𝜑𝑋𝑖 and 𝜉 for 𝑖 = 1, … , 𝑛 defined on 𝑊, such that 

ℎ𝑋𝑖 = 𝜆𝑋𝑖 , ℎ𝜑𝑋𝑖 = −𝜆𝑋𝑖 , ℎ𝜉 = 0,                                                                                           (4.14) 

for 𝑖 = 1, … , 𝑛 where 𝜆 = √−(𝜅 + 𝛼²). 

Proof. According to Öztürk et al. (see [12]), the proof can be easily seen for almost alpha Kenmotsu (𝜅, 𝜇)-

space with 𝜈 = 0 and 𝜉(𝛼) = 0. 

Now, we explain why the smooth functions 𝜅 and 𝜈 are element of 𝑅𝜂(𝑀²ⁿ⁺¹). With the help of above Lemma 

4.1, we state the following theorem. 

Theorem 4.2 Let (𝑀²ⁿ⁺¹, 𝜑, 𝜉, 𝜂, 𝑔) be an almost alpha Kenmotsu manifolds. If the manifold satisfies the 

conditions given in Lemma 4.1 then there exists almost alpha Kenmotsu (𝜅, 𝜇)-space where the 𝜅 and 𝜇 

functions are non-constants defined 𝑑𝑓 ∧ 𝜂 = 0 in 𝑅𝜂(𝑀²ⁿ⁺¹).   

Proof. By means of Lemma 1, using the local orthonormal basis {𝑋𝑖 , 𝜑𝑋𝑖 ,𝜉} and (4.13) we have 

 [𝑒𝑖(𝜅) − 𝜆𝑒𝑖(𝜇)]𝜑𝑒𝑖 + [−𝜆𝜑𝑒𝑖(𝜇) − 𝜑𝑒𝑖(𝜅)] = 0, 

for 𝑋 = 𝑒𝑖 , 𝑌 = 𝜑𝑒𝑖 and for 𝜉(𝛼) = 0. Since {𝑒𝑖 , 𝑒𝑋𝑖} is linearly independent, we obtain 𝑒𝑖(𝜅) − 𝜆𝑒𝑖(𝜇) = 0 and  

𝜆𝜑𝑒𝑖(𝜇) − 𝜑𝑒𝑖(𝜅) = 0. Then replacing 𝑋 and 𝑌 by 𝑒𝑖 and 𝑒𝑗 , respectively, for 𝑖 ≠ 𝑗, (4.13) shows that 

𝑒𝑖(𝜅) + 𝜆𝑒𝑖(𝜇) = 0. 

Also, substituting 𝑋 = 𝜑𝑒𝑖 and 𝑌 = 𝜑𝑒𝑗  in (4.13) for 𝑖 ≠ 𝑗, we have 

𝜑𝑒𝑖(𝜅) − 𝜆𝜑𝑒𝑖(𝜇) = 0. 

In view of the last three equations, we deduce 

𝑒𝑖(𝜅) = 𝑒𝑖(𝜇) = 𝜑𝑒𝑖(𝜅) = 𝜑𝑒𝑖(𝜇) = 0. 

For an arbitrary function 𝜅, we obtain 𝑑𝜅 = 𝜉(𝜅)𝜂 in the last equation system. Thus we have 

0 = 𝑑²𝜅 = 𝑑(𝑑𝜅) = 𝑑𝜉(𝜅) ∧ 𝜂 + 𝜉(𝜅)𝑑𝜂. 

Since 𝑑𝜂 = 0, it follows that 𝑑𝜉(𝜅) ∧ 𝜂 = 0. Similarly, the same method can be used for an arbitrary function 𝜇. 

Therefore, there exists almost alpha Kenmotsu (𝜅, 𝜇)-space where the 𝜅 and 𝜇 functions are non-constants 

defined 𝑑𝑓 ∧ 𝜂 = 0 in 𝑅𝜂(𝑀²ⁿ⁺¹).  
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Example 4.1 Suppose that three dimensional manifold is defined by 

𝑀³ = {(𝑥, 𝑦, 𝑧) ∈ 𝑅³, 𝑧 ≠ 0}, 

where (𝑥, 𝑦, 𝑧) are the cartesian coordinates in 𝑅³. We define three vector fields on 𝑀³ as 

𝑒 = (
𝜕

𝜕𝑥
), 

𝜑𝑒 = (
𝜕

𝜕𝑦
), 

𝜉 = [𝛼𝑥 − 𝑦(𝑒{−2𝛼𝑧} + 𝑧)] (
𝜕

𝜕𝑥
) 

+[𝑥(𝑧 − 𝑒{−2𝛼𝑧}) + 𝛼𝑦] (
𝜕

𝜕𝑦
) + (

𝜕

𝜕𝑧
). 

 We easily get 

[𝑒, 𝜑𝑒] = 0, 

[𝑒, 𝜉] = 𝛼𝑒 + (𝑧 − 𝑒^{−2𝛼𝑧})𝜑𝑒, 

[𝜑𝑒, 𝜉] = −(𝑒^{−2𝛼𝑧} + 𝑧)𝑒 + 𝛼𝜑𝑒. 

Moreover, the matrice form of the metric tensor 𝑔, the tensor fields 𝜙 and ℎ are given by 

𝑔 = (
1 0 −𝑑
0 1 −𝑘

−𝑑 −𝑘 1 + 𝑑² + 𝑘²
) ,   𝜑 = (

0 −𝑑 𝑘
1 0 −𝑑
0 0 0

) , ℎ = (
𝑒^{−2𝑧} 0 𝑘 − 𝑑𝑒^{−2𝑧}

0 −𝑒^{−2𝑧} 𝑘𝑒^{−2𝑧}
0 0 0

),  

where 

 𝑑  =  𝛼𝑥 − 𝑦(𝑒^{−2𝛼𝑧} + 𝑧), 

𝑘  =  𝑥(𝑧 − 𝑒^{−2𝛼𝑧} + 𝛼𝑦. 

Let 𝜂 be the 1-form defined by 𝜂 = 𝑘₁𝑑𝑥 + 𝑘₂𝑑𝑦 + 𝑘₃𝑑𝑧 for all vector fields on 𝑀³. Since 𝜂(𝑋) = 𝑔(𝑋, 𝜉), we can 

easily obtain that 𝜂(𝑒) = 0, 𝜂(𝜑𝑒) = 0 and 𝜂(𝜉) = 1. By using these equations, we get 𝜂 = 𝑑𝑧 for all vector 

fields. Since 𝑑𝜂 = 𝑑(𝑑𝑧) = 𝑑²𝑧, we obtain 𝑑𝜂 = 0. Using Koszul's formula, we have seen that 𝑑𝛷 = 2𝛼𝜂 ∧ 𝛷. 

Hence, it has been showed that 𝑀³ is an almost alpha Kenmotsu manifold. Thus we obtain 

𝑅(𝑋, 𝑌)𝜉 = −(𝑒^{−4𝛼𝑧} + 𝛼²)[𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌] + 2𝑧[𝜂(𝑌)ℎ𝑋 − 𝜂(𝑋)ℎ𝑌], 

where 𝜅 = −(𝑒{−4𝛼𝑧} + 𝛼2)𝑎𝑛𝑑 𝜇 = 2𝑧. Also, we remark that this example is provided according to Theorem 

7.3.1 in [12] for 𝜉(𝛼) = 0. 
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