ANOTHER PROOF OF BEAL'S CONJECTURE

JAMES E. JOSEPH AND BHAMINI M. P. NAYAR

ABSTRACT. Beal's Conjecture : The equation $z^\xi=x^\mu+y^\nu$ has no solution in relatively prime positive integers x,y,z with μ,ξ and ν odd primes at least 3. A proof of this longstanding conjecture is given.

Beal's Conjecture: The equation $z^{\xi} = x^{\mu} + y^{\nu}$ has no solution in relatively prime positive integers x, y, z with ξ, μ and ν odd primes at least 3. A history of this problem can be found in [1].

Suppose $z^{\xi} = x^{\mu} + y^{\nu}$ is true for any relatively prime positive integers x, y, z and odd primes ξ, μ and ν with ξ, μ, ν at least 3. When x, y and z are relatively prime, $(z^{\xi}), (x^{\xi})$ and (y^{ξ}) are also relatively prime. Then $(z^{\xi})^{\xi} = (x^{\xi})^{\mu} + (y^{\xi})^{\nu}$. That is, suppose $(z^{\xi})^{\xi} = (x^{\mu})^{\xi} + (y^{\nu})^{\xi}$.

The Proof.

It is clear that if $(z^{\xi})^{\xi} = (x^{\mu})^{\xi} + (y^{\nu})^{\xi}$, then either x^{μ} or y^{ν} or z^{ξ} is divisible by 2. Suppose z^{ξ} is divisible by 2. Then x^{μ} and y^{ν} are odd.

Since $(z^{\xi})^{\xi} = (x^{\mu})^{\xi} + (y^{\nu})^{\xi}$, $(z^{\xi})^{\xi}$ is $2^{m\xi}$ times an odd integer, where m is an integer, and $(x^{\mu})^{\xi} + (y^{\nu})^{\xi} = (x^{\mu} + y^{\nu})(\sum_{k=0}^{\xi-1} (x^{\mu})^k (y^{\nu})^{\xi-1-k})$, by prime factorization, $x^{\mu} + y^{\nu}$ is even. Hence,

$$x^{\mu} + y^{\nu} = 2^{m\xi}.\tag{1}$$

Also.

$$x^{\mu} + y^{\nu} - z^{\xi} \equiv 0 \pmod{2}.$$
 (2)

So,

$$(x^{\mu} + y^{\nu} - z^{\xi})^{\xi} \equiv 0 \pmod{2^{\xi}};$$

and

$$(x^{\mu} + y^{\nu})^{\xi} - (z^{\xi})^{\xi} \equiv 0 \pmod{2^{\xi}},$$
 (3)

Date: 8/4/2018.

 $2010\ Mathematics\ Subject\ Classification.\ Primary\ 11Yxx.$

Key words and phrases. Beal's Conjecture.

since, by expanding $(x^{\mu} + y^{\nu} - z^{\xi})^{\xi}$ using binomial expansion,

$$(x^{\mu} + y^{\nu} - z^{\xi})^{\xi} - ((x^{\mu} + y^{\nu})^{\xi} - (z^{\xi})^{\xi}) = \sum_{k=1}^{\xi-1} C(\xi, k) (x^{\mu} + y^{\nu})^{\xi-k} (-z^{\xi})^{k}.$$

Hence, in view of equation (2) and (3),

$$(z^{\xi})^{\xi} - (x^{\mu})^{\xi} - (y^{\nu})^{\xi} = (x^{\mu} + y^{\nu})^{\xi} - (x^{\mu})^{\xi} - (y^{\nu})^{\xi}$$

$$= \sum_{k=1}^{\xi-1} C(\xi, k) (x^{\mu})^{\xi-k} (y^{\nu})^k \equiv 0 \pmod{2^{\xi}}. \tag{4}$$

So, $y^{\nu} \equiv 0 \pmod{2}$ and $x^{\mu} \equiv 0 \pmod{2}$. That is, if z^{ξ} is even, z, x and y are even.

Now assume that x^{μ} is even and we have $(x^{\mu})^{\xi} = (z^{\xi})^{\xi} - (y^{\nu})^{\xi}$. Since x^{μ} is even, z^{ξ} and y^{ν} are odd; $z^{\xi} - y^{\nu} = 2^{n\xi}$ for some integer n and hence

$$z^{\xi} - y^{\nu} - x^{\mu} \equiv 0 \ (mod \ 2). \tag{5}$$

So,

$$(z^{\xi} - y^{\nu} - x^{\xi})^{\xi} \equiv 0 \pmod{2^{\xi}}.$$
 (6)

Also

$$(z^{\xi} - y^{\nu} - x^{\mu})^{\xi} - ((z^{\xi} - y^{\nu})^{\xi} - (x^{\mu})^{\xi}) = \sum_{k=1}^{\xi-1} C(\xi, k) (z^{\xi} - y^{\nu})^{\xi-k} (-x^{\mu})^{k} \equiv 0 \pmod{2^{\xi}}.$$
 (7)

So,

$$(z^{\xi} - y^{\nu})^{\xi} - (x^{\mu})^{\xi} \equiv 0 \pmod{2^{\xi}}.$$
 (8)

Hence,

$$(x^{\mu})^{\xi} - (z^{\xi})^{\xi} + (y^{\nu})^{\xi} = (z^{\xi} - y^{\nu})^{\xi} - (z^{\xi})^{\xi} + (y^{\nu})^{\xi}$$
$$= \sum_{k=1}^{\xi-1} C(\xi, k) (z^{\xi})^{\xi-k} (-y^{\nu})^{k} \equiv 0 \pmod{2^{\xi}}$$

So, $z^{\xi} \equiv 0 \pmod{2}$; and $y^{\nu} \equiv 0 \pmod{2}$ and hence z and y are even.

The case when y^{ν} is even is similar to the case when x^{μ} is even. So, if either x or y or z is even then, all are even which leads to a contradiction of the equation. Hence Beal's Conjecture is proved.

REFERENCES

 $[1]\ \mathrm{https://www.beal conjecture.com/}$

Department of Mathematics, Howard University, Washington, DC 20059, USA

 $E\text{-}mail\ address{:}\ \texttt{jjoseph@Howard.edu}$

Current address: 35 E Street NW #709, Washington, DC 20001, USA

 $E ext{-}mail\ address: j122437@yahoo.com}$

Department of Mathematics, Morgan State University, Baltimore, MD 21251, USA

 $E\text{-}mail\ address \colon \texttt{Bhamini.Nayar@morgan.edu}$