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Abstract   

The integral geometry methods are the techniques could be the more naturally applied to study of the 

characterization of the moduli stacks and solution classes (represented cohomologically) obtained under the 

study of the kernels of the differential operators of the corresponding field theory equations to the space-

time. Then through a functorial process a classification of differential operators is obtained through of the co-

cycles spaces that are generalized Verma modules to the space-time, characterizing the solutions of the field 

equations. This extension can be given by a global Langlands correspondence between the Hecke sheaves 

category on an adequate moduli stack and the holomorphic bundles category with a special connection 

(Deligne connection). Using the classification theorem given by geometrical Langlands correspondences are 

given various examples on the information that the geometrical invariants and dualities give through moduli 

problems and Lie groups acting. 
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1. Introduction.  

Equivalence spaces modulo a congruence relation are constructed on field solutions to establish an Universe 

theory that includes the quantum field theory (QFT), super-symmetries (SUSY), and the incorporating of the 

heterotic strings theory using sheaves of corresponding differential operators of the same field equations and 

coherent −D modules sheaves [1].   

This identification will use to construct on the base of these equivalences the corresponding Zuckerman functor 

that is one of the universal functors of Harish-Chandra derived sheaves to the geometrical Langlands 

programme in mirror theory [2, 3]. The incorporating of the geometrical Langlands ramifications will establish 

extensions of a connection beyond of the holomorphicity to much of the complex vector bundles that can be 

constructed to a wide stack of physical phenomena, in the searching to obtain field solutions through of the 

curvature and torsion tensors of the space-time.         

The obtained development includes complexes of infinite dimension −D modules, generalizing for this via, to 

the BRST-cohomology, the connection in this context. With it, the integrable system class can be extended in 

mathematical physics and with it, the possibility to obtain a general theory of integrals to study of the space-

time (integral operator cohomology [4]) considering the kernels of the germs of the sheaves corresponding to 

the complex vector bundles, and therefore the measure of much of their field observables [5]. 

Having these Langlands correspondences we can to tend a bridge to complete a classification of the different 

operators to the field equations using on the base the Verma modules that are classifying spaces, the differential 

operators of ),1,1( +nSO where elements of the Lie algebra ),1,1( +nsl are differential operators of the modern 

mathematical physics [1]. The cosmological problem that exist is to reduce the number of the field equations 

that are resoluble under the same gauge field (Verma modules) and extend the gauge solutions to other fields 

using the symmetries of topological groups that define their interactions.     

This extension can be given for a global Langlands correspondence between categories of Hecke sheaves on an 

adequate moduli stack and the category of holomorphic −GL
bundles with a special connection (Deligne 

connection). The corresponding −D modules can be viewed as sheaves of conformal blocks (or co-invariants) 

being images under a version of the generalized Penrose transform [1, 6], naturally arising in the frame of the 

conformal field theory. 

Main Result. 

We consider the results obtained in [2, 7, 8] on kernels of differential operators and complex cohomology class 

to the space-time, likewise as the theorem 4. 1, [8] to use the geometrical Langlands correspondence: 

(1)))((Bun))((OperBRST  

Gy

n 

GL DDD  

Then we have the following result. 

      Theorem (F. Bulnes) 2. 1 [8]. The derived category of quasi- −G equivariants −HGD / modules formed 

with the extended and generalized Verma modules given for  ),()( V MM =L
),(

L
LocV can 

be identified for a critically twisted sheaves category of D-modules on the moduli stack XyyG ,Bun ,

(singularity) identified by the Hecke category , , , yG KH (geometrical Langlands correspondence), if this is an 

image of integral transforms acting on ramifications of the Hecke category ,GH  h (for example   G,H

) on the flag manifold B,/G  with weight corresponding to twisted differential operators on  .Bun ,yG   
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To demonstrate this result we used the inherent arguments of the demonstration realized to the theorem 4. 1 

[8] to characterize the complexes to this case [2], with the modality of the functors defined for ,L
and using 

the geometrical Langlands equivalence given for (1). Then applying the     Penrose transform on ,BunG 

L
we 

have  

)2(,FunOp End
c



  GLV
g

 

where ).(FunOpFunOp 
 DGGL  

Considering some conjectures in ramification theory [8], we arrive to that the unique objects that are coefficients 

of the cohomological space of zero dimension are certain Verma modules. Then considering the Springer fiber, 

we characterize the derived categories that will give the Hecke category of the Verma modules 

)),(( r-)( yw

L  +

 V ,Ww which are the ramifications of the Hecke category ,GH  h . This 

demonstrates the theorem and proposes a classification of the differential operators to the field equations (see 

the table).  

The following table is a corollary of the theorem. 

Table 1. Classification. 
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2. Some Field Equations and their Ramifications as corollaries of the Theorem 2. 1.  

We consider the following example. 

Example 3. 1. (Higgs Bundles).  We consider the Abelian Hodge theory approach [9], and let )(Loc C
GL , with 

C , the curve of their corresponding ramification with the same geometry to construct the pair or Langlands 

data ), ,( M  where ,BunHiggs M = and  

)3(,: 1

/Higgs BMM →  

The differential field equation is  

 )4(,0=   

 This connection is a meromorphic relative flat connection acting along of fibers of the Hitchin mapping: 

)5(,Bun: Higgs Bh →  

Furthermore by construction the bundle with connection ), ,( M is a Hecke eigen D-module with eigenvalue 

), ,( E (as the found in the theorem 4. 1 [10]) but with respect to an Abelianized version 

    )6(,),(BunD),(BunD: HiggsHiggs OO Cbbi

Abelian

L →  

of Hecke functors. These are defined again for ,1,,3,2,1 −= ni  as integral transforms with respect to the 

trivial local system on the Abelianized Hecke correspondences , G,H  with ,BunHiggs and CHiggsBun , in the 

classic scheme of the double fibration of the integral geometry (Penrose transforms!) on micro-local objects of 

these bundles. 
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Example 3. 2. (Extension of a connection on singularities). We consider a complex Riemannian manifold 

,M with a singularity such that exists around of this singularity a decomposing of factors lines bundle (or zeros 

of homogeneous polynomial) that can to give integrals in  ),)(,( OM•H to certain differential field equation 

where ,s is the singular connection component.   

Then by the theorem 2. 1, to each integral weight *h , we have the invariant line bundle  C= Gl , on 

B./G Here we have one of the Verma modules )),(( -)( yw

L  +



V and their cycles in this case are complex 

hyper-lines [8].  Indeed, the line bundle ,L  on ,Bun , yIG is defined in such way that their restriction to each 

fiber of the projection p , is isomorphic to l .Then one solution characterized by the functors established in the 

theorem 2. 1, of the section 2, is the integral transform: 

)8(),,ker()
~

,( : QUH n +•

LMP  

where *
~

p=  LL . Here Q+ , can be viewed as the connection of g,other thin  Deligne +  1 [jmss] 

belonging to one “twisted” sub-category of −D modules on the moduli stack with eigenvalues .} , ,{\ 1 nyyXE 

Then their geometrical Langlands ramification in the points },,,{ 1 nyy   is the enveloping of the Langlands 

correspondence of loop groups  obtained of the context of the group GL
, of the moduli space ) ,(Flat CGLM

. The property of being “twisted” is demonstrated by the argument of the Penrose transform that involve to the 

twistor transform in (8). The twistor transform followed of Penrose ),(TP evaluates the kernels of the 

cohomological groups that are isomorphisms in the sense of the equivalences of the Kashiwara theorem [12-

14].  

Example 3. 3. (Electromagnetic basting of Space-Time Carpet). We consider a non-compact Minkowskian 

space such that in their electromagnetic field appear gauge fields in the quotient group  (1),)/ (2, USL C and 

in the group .nSU )(  Then when the gauge group is  (2),SU and  G, is a non-compact maximal subgroup of 

                                                           
1 ),,ker() Bun,(Dcoh s

L U +D then their images under the inverse Penrose transform are elements in sheaves of the 

category ),(OperBRST

n 

GL

D  since by [11] ,02 =BRSTQ which is equivalent to the application of Cousin cohomology and their 

involved twistor transform haves kernel isomorphic (this could be in )~(
c

gZ ) to ).(FunOp DL By the Opers theory 

,)(proj)(Op
)1( +  jd

L KDD  where ,
n

K  is the space of −n differentials on ,D  and )(proj D , is the 

−
2

K  torsor of projective connections on ,D which is conformed s .Also we can see the content of the space 

).(/}))(()()({)(Loc tGttAtA LL

tGL g+=D To the case exposed here (that is to say l ), )(Loc C
GL .  This is 

much seemed to the analytic continuation studied in complex variable. In this case is more complicated, since ,onsramificati+

can be viewed as images under functors of the type ,hypothesislGeometrica+ using our integral transforms.  

 

)7(,0)( =+ s
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 1), (3,SO (considering in general the quotient  G/H ) the unique invariant solutions are Abelian Maxwell fields 

[15]. Then this produce to the field operator  Q, [11], the field equation: 

)9(0, 2

BRST  Q =  

(zero branes stability), that is to say, the  -D module of the  Q - brane is the torus which is isomorphic to  U (1)
2 . The mosaic of the space-time to these electromagnetic fields is the of symmetrical electromagnetic waves. 

The corresponding moduli space is  ). ,( 3

0 g, dPM  Then a solution of the field equation (9) is: 

 In particular,  g  0, = and  d  1, = then (9), is the classical Penrose transform which gives the solution to the 

Laplace equation  

)11( 0, 2 =    

in a neighborhood  .4SU M In this case the Verma modules are the of table 1,  ),,( • LMH n
with 

,M=M ).2(−= OL Here, ,M is a complex manifold which also can be modeled as the Grassmanian 

manifold ).(4,2 CG  Their corresponding moduli space is  1). ,( 3

0 0, PM To the stacking of the space-time is 

necessary to have the strings  ,T and  ,S and the electromagnetic carpet of the space-time is given in the figure 

1. These are solutions to (9), to two types of  Q  - branes. 

A B  

 

Fig. 1. Re-normalizing of the Group in semi-groups of electrodynamical quotients from  (1),)/ (2, USL C when 

0, 2

BRST =Q [16]. A). Stack to moduli space 1), ,( 3

0 0, PM solutions. B). Stack to moduli space 

,  ) ,(
433

0 g, PP =dM solutions. 

                                                           
2 The co-weight lattice of  G, is defined as the lattice of homomorphisms from ),1(U  to a maximal torus  ,T of  G.

The weight lattice of  G, is the lattice of homomorphisms from  ,T to ).1(U  

(10) , ),ker())(- ,(: BRST

0 QUkOH MP
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Example 3. 4. (Dualities). Mirror equivalences to sources and holes of the quantum electromagnetic fields. The 

first image corresponds to the hole or singularity of the  (1) −U connections. The two images correspond to 

the source of the gauge –  (1)U field field. Both geometrical objects are equivalent inside of the dualities of the 

moduli spaces ), ,(FLAT CGLM and the Hitchin moduli space ), ,( CGL

HM  (Figure 2).  The geometrical 

correspondence is to this case given by the moduli identity: 

(12),) ,() ,( FLAT KCGCGH MM =  

Where ,K a vector homogeneous bundle of lines, whose polynomials have zeros equal to poles or singularities 

of field.    

 

Fig. 2. Mirror equivalences between sources and holes in the space-time. 

A re-interpretation of the singularities of the electromagnetic type in the space-time are given as sources of 

electromagnetic radiative fields3 where through the twistor geometry these singularities can be zeros (or roots) 

of certain polynomials of the homogeneous lines bundles. Also these can be poles of certain surfaces, where 

can be projected fields whose origin are charges Q (see the figure 3). For example considering the sphere ,2S  

which we can identify through twistor theory as twistor space ,TP with their two orbits ,+TP and ,−TP are 

projectivized the poles as ,NP and ,SP to each semi-sphere ,+S and ,−S identified these with the two orbits 

of .TP Likewise the line ,1S (Ecuador circle) divide to the holomorphic functions ( −0H elements) in ,2S in 

their parts of positive or negative  frequency in ,+S and ,−S respectively. If we consider to the signals that come 

or go of the Riemann sphere ,2S through the solutions of the complex equations  

)13(,0=tiDAe 
 

these can be interpreted as signals emitted or received by a encoder in ,2S of an field energy signal coming 

from of the space-time.  

Example 3. 5. (Gravitational Diffeomorphism and their decoupling from Electromagnetic field 

component).  We consider the following application given for the Brans-Dicke argumentation4, from a point of 

view of the variation of the gravitational constant, which varies from the place in time. Then assuming the 

                                                           
3 These could be multi-radiative electromagnetic fields to hyper-transmission-reception of signals. 
4 As mentioned before, the Brans–Dicke theory of gravitation is a theoretical framework to explain gravitation from a point 

of view of electromagnetic wave to explain the variation of the gravitational constant that is assumed in this theory as 

function of a time, possibly is an inverse time. The gravitational interaction is mediated by a scalar field and also the 

corresponding tensor field of general relativity. Then the scalar field can vary from place to place and in time. 
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gravitational field with invariant due the gravitational diffeomorphism E,TET 
 )( 2m+

→


 where ,E is the “energy 

space” which has topological space structure isomorphic to Einstein manifold, is had that:  

)14(
2

 T(x),g 
1

- T(x))g
2

1
(x)( m  (x)G(x)G 2





  =++−  

whose action is constant then the gravitational waves are evidenced from the remote source (figure 10). But if 

is affected by a dilaton action, the corresponding scalar field action due the electromagnetic action of the dilaton 

could “dilute the gravity” action trying vacuum in the space-time. Likewise, if we consider one of the Brans-Dicke 

equations, for example,  

(15)T,
23

8
 






+
=  

The equation says that the trace of the stress-energy acts as the source for the scalar field   . But 

electromagnetic fields contribute only a traceless term to the stress-energy tensor, which implies that in a region 

of space-time containing only electromagnetic field the right side of (15) vanishes and the curved space-time 

obeys the wave equation.  

    But, this electromagnetic wave is propagated infinitely (see figure 4). In such case, we can say that the field is 

a long-range field. 

 

Fig. 4. Variation of the gravitational constant. 

Therefore, the moduli space of the electromagnetic dilaton actions on space-time   

 

 

Fig. 5.  2-Dimensional of electromagnetic wave solutions on space-time without matter-energy (long-range 

field) [16]. 
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In the figure 5, we have electromagnetic waves in conformal actions of the group  2), (2,SU on a 2-dimensional 

flat model of the space-time. The ultra-hyperbolic wave equation is satisfied. In both sides of an axis  appear 

the auto-dual Maxwell fields of positive frequency and negative frequency on ,M respectively that go being 

added in each time to each orbit. This corresponds to partial waves expansions in 2-dimensions.  

Example 3. 6. (Gravitational waves as oscillations in the space-time curvature/spin). We consider now 

 .) (1, GGL G L= C We consider the bundle stack given for5 

(16) ),Pic( C=M  

which is known as Picard variety of  .C Then the Hecke functor is the mapping 

 (17) ), ),Pic(() ),(Pic(: cohcoh

1 DD CCDCD →  

which is pull-back of the Abel-Jacobi mapping: 

)18(),(Pic)(PicC:aj 1 CC dd +→  

with correspondence rule 

)19(),(),( xLxL   

In this case, the geometrical Langlands correspondence comes give as: 

)20(,

 asmonodromy  same

 thehas ),(Piccomponent each on n restrictio  whose),Pic(

on variety system localon rank invariant on  translatiunique The

)(
















=

.L
L CC d

 c  

where ,L is the space of the Langlands data (bundle and connection) ),,( L that is a rank one local system on  

.C  Due to that )),((Pic1 Cd is the abelianization of ),(1 C and the monodromy of the space ,L is Abelian, 

we can view this space ,L as a local system on each component  ),(Pic Cd
of  ).(Pic C   

Them likewise, considering the pull-back of the local system ,L  to the various factors of the th  −d Cartesian 

power ,dC
 of ,C and tensor of these pull-backs to get rank one local system ,dL  where , is a micro-local 

tensor product.From a point of view of the field equations, each component of the correspondences space 

,)( c L on ),(Pic Cd
a trace of particles in the symplectic geometry that can be characterized in a Hamiltonian 

manifold, with the due quantization of the coherent sheaves of the differential operators of the field equations. 

Likewise, using a Hitchin’s abelianization we can induce the geometrical Langlands correspondence  , c as was 

planted to the case of the group   ), ,( CnGL G = considering the correspondence , c as: 

)21(,quantquant 1

Bun

−= C c  

                                                           
5 Here  ),Pic(C is the moduli stack  Bun.    



 

7889 

Where , is the Fourier-Mukai transform defined to this case as: 

 (22) ), ,quant() ,(quant: BuncohBuncoh DD → CDD  

Here, the quantization procedures ,quant Bun and ,quant C are appropriately understood non-Abelian Hodge 

correspondences. An adequate Hitchin mapping can give solution to the equations through Hamiltonian states, 

in the non-Abelian context of the Hodge theory [17] in hypercohomology: 

)23(,0)( =dad  

)],([ DOpa
GLC having as integral the integral transforms composition: 

)24(, = Lc  

where the states of the quantum field are the cotangent vector (Higgs fields) h , such that 

(25) 0,  Isom =hd  

Then by superposing of these states considering the field corresponding ramifications, we have: 

(26)),ω)ω)ω CCC
n = ((( 21 000

HHH H  

Which has their re-interpretation as the curvature energy expressed through the H-states which can be written 

using the superposing principle to each connection ,ω j
C


(with ,C a curve) that describes the corresponding 

dilaton (photon). Likewise, in a Hamiltonian densities space [10] we have the figure 6A, considering a Hitchin 

base. 

C) 

A)                                             B) 

Fig. 6. A). Direct sum of H-states to establish the curvature measure by field ramification.   B). The waves that 

are spinor waves which can be consigned in oscillations in the space-time in the presence of curvature to the 

change of particles spin. C). Gravitational waves produced by quantum gravity due the H-states on cylindrical 

surface.  Their propagation is realized on axis X. These gravitational waves are originated for the oscillations in 

the space-time-curvature/spin (that is to say using causal fermions systems).     

In the case of spinor representation the corresponding H-states can be given as spinor waves (see figure 6B) 

which can be consigned in oscillations in the space-time-curvature/spin, to a microscopic deformation measured 

in .H  
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Example 3. 7. (Maxwell twistor Framework). We consider the twistor Maxwell theory given by  

)27(,0 •→→C  

The first and last sheaves that are ,O and ),4(−O and the cohomology space of type ,1H of these, gives 

respectively potential modulo gauge for left-handed and right-handed Maxwell fields ),,( 31 +PH and  

).,(1
O

−PH But the constant sheaf ,C has relevance in the electromagnetic charge that live in (27), (as has 

been to some elaborate representation space of the conformal group, as for example )2,2(SU ). In this sense 

we can consider the Penrose transform framework to obtain two pieces to ),,''( 11 UH [18] indeed,  

)28(,  on U} potentials handed-rightfor  gauge restricted - gauge{),( 31 =+PH  

and respectively  

(29) on U}, potentials handed-left{).,(1 =−
OPH  

These two pieces are conformal blocks of electromagnetic representations of the space-time [18]. 

Also the Penrose transform of ),,''( 21 UH is as (28)is a Verma module of type ),,(,

• LMH nn
as given in the 

table 1.  

In these identifications, “gauge-restricted” refers to the imposition of the conformally invariant conditions as for 

example to field equations [10, 18]: 

(30),02 =f  

And  

(31),0= 


  

(see the figure 5). Then the Penrose transform of the complex (27) contains all the spaces of fields that one is 

the Maxwell theory table [18], where some are gauge to other fields. 

Example 3. 8. (BRST-Cohomology). [17] We consider the field equations in BRST-cohomology:  

)32(
,

)(,

1

0





=

−=

adzb

Daab




 O

 

have solutions such that ),,(Ext))(,(Immod 10

0 OOOO DDDDDHb =  with ,D a divisor on the 

complex line C , that is to say: 

)33(,0)(0 →→→−→ DD OOO



 



 

7891 

Reciprocally )),(,(),(Ext 01

DDD DDH OOOO = 
with the field equations 

)34(
),(

,0)(

10

1





−=

=

zdbb

zdb






 

which have solutions as the extended field ).(Oper~
BRSTBRST =+=+=  

Here precisely 

,BRST is the solution to the field equation with differential operators in )).( DDD OO 
 

3. Conclusions. 

  The theorem 2. 1, proposes a classification of the differential operators as points of a complex sheaf of quasi-

coherent D-modules. The obtained functors ,L
 on generalized Verma modules of certain character that can 

to shape the bridge of the geometrical objects in physical stacks through the corresponding G-invariant vector 

bundles and the algebraic objects of the corresponding operators algebra, where these operators are the 

connections of the Langlands data or geometrical ramifications of the differential operators of the equations in 

field theory. The integral transforms methods permits explore in qualitative way, using cohomology to the 

algebraic structure of the operators that act in the geometrical stacks given through holomorphic vector bundles 

of the corresponding sheaves of the differential operators of the field equations. The bosons, fermions, tachyons, 

etcetera, are ramifications of connections of the field equations with an geometrical interpretation in extended 

holomorphic bundles and their corresponding context in derived geometry as deformed derived categories. 

These relations comes given for the geometrical Langlands correspondences.       
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