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1. INTRODUCTION 

1.1 THE PYTHAGOREAN SCALE AND THE EQUAL TEMPERED SCALE 

Pythagorean scales are generated by a single pure interval. The simplest non-trivial harmonic ratios are 3/2 

(the perfect fifth) and 2/3, which  

normalizes (i.e., scaled by the appropriate power of two to lie in the “fundamental” octave of intervals between 

1 and 2) to 4/3 (the perfect fourth).  As intervals, these ratios are closely related.  Move up from the root by 

3/2 and then by 4/3 and the note reached is 2/1, or one octave. Starting with a root, moving up two perfect 

fifths produces a note that normalizes to 9/8 from the root.  This observation gives us one way to construct a 

sequence of notes from pure ratios.  In general, the ratio of the nth note of this sequence from the root note 

has a simple formula involving log2(3).  In this process, the normalized octave is noticeably sharp. Its 

normalized value is s approximately 1.0136. This ratio, now known as the Pythagorean Comma, presents a 

serious challenge for the Pythagorean system.  Insisting that each new note be related by a perfect fifth to 

some previous note in our scale does not ensure that arbitrary pairs of notes have any kind of nice harmonic 

relationship. It also fails to ever generate a perfect octave.One historical solution to this problem was to 

temper the Pythagorean scale by flattening the twelfth ratio into a perfect octave as proposed by Steven [6].  

In general, a temperament or tempered scale is any scale that results from adjusting the intervals of some 

other scale. 

Most often, we hear twinkling sound emanating from a well composed music; the idea behind it is no other 

work than the all-powerful equal tempered scale. It is on this note that Laura [5] was prompted into exploring 

the world of the equal tempered scale having also explored the Pythagorean scale. He discovered some 

unique and interesting thing about the equal tempered scale – the diatonic scale of music composition that is, 

the scale is the C to C diatonic scale and chromatic scale.He explained that, the equal tempered scale came 

because of the de-consonance associated with the Pythagorean scale when it fails to meet up with the 

generality of the problem posed. As a result, musicians found it so very difficult to play and compose songs 

using the Pythagorean scale. 

The difference between the seven octave and the twelve fifth of the Pythagorean scale was seen from the 

difference in its ratio and inequality in comparison. With this difference involved, it became difficult for 

musician to play music on this scale as one would not be able to play several keys of songs using this scale. 

So, the need to create a scale which divides the interval of the 12-tone scale into twelve equal intervals arises. 

After a long research and hard work, a geometric progression approach was applied where a=1 and r =  2
12

  

which divides the scale in twelve equal intervals thereby measuring the interval in cent; that  2
12

 is 100 cent 

par intervals. It was the perfect scale for music composition and highly adopted and used by musicians in 

playing song having different keys. This is how the tempered equal scale came about. 

Timothy [8] presents the work of diatonic theorists who have focused on aspects of the diatonic collection 

over the past decades (the book is in fact dedicated to Clough [1,2], one of the most prominent figures in the 

field of diatonic set theory). It is intended as a supplemental text (not a replacement text) for a music 

fundamentals course, or as reading for a course on music and mathematics, or on diatonic set theory 

1.2 TRANSPOSITION AND INVERSION OF KEYS AND SCALES 

Another area where mathematics is very useful in music istransposition and inversion of keys using 

mathematics arithmetic modulo twelve (12) and seven (7) with the adoption of diatonic scale. It is in this 

regard that, 

 Thomas [7] made use of arithmetic modular in determining transposition and Inversion as functions 𝑍12 → 𝑍12  

that are useful to every musician. There are also analogues for Z7. Transposition and inversion are often 

applied to melodies, although they can also be applied to chords. Transposition mathematically captures what 
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musicians do all the time: the restatement of a melody at higher and lower pitch levels in a way that preserves 

intervals. Inversion is another way to create musical variation while preserving the intervallic sound of a 

melody. 

1.3PITCHES, RATIOS, SUBDIVISION OF SCALE AND OCTAVE DETERMINATION 

Interval determination between pitches, conversion of ratios into cents or semitones, subdivision of chromatic 

scale into twelve equal intervals and octave identification is one intrinsic aspect in music that mathematics is 

largely applied. David [4] discovered that the pitches 440 Hz (A4) and 880 Hz differ, in that the latter has one 

octave above the former, hence 880 Hz is A5. The pitch 220 is one octave below A4, hence is A3. The difference 

between the frequencies of A3 and A4 is 220, while the difference between the frequencies of A4 and A5 is 440, 

yet the intervals are the same – one octave, that is, not associated with the difference between two 

frequencies, but rather the ratio between the two frequencies.  

He went further to say that to convert ratios into cents or semitones, logarithmic method of conversion is also 

appropriate. Meanwhile, as he investigated conversion of ratio, he also verged into the very possibilities of 

subdivision of chromatic scale into equal interval to suit a specific music composition. It is best that the 

subdivision be done as it resolves issues bordering on perfect music composition. For easy identification of 

notes, he brought forward the idea of numbering the chromatic scale which makes arithmetic modular twelve 

more appreciated as it is used extensively in composition of songs.  

1.4 DURATION OF NOTES AND SEQUENCE OF NOTES, DOTTED KEY NOTES AND DIVISION OF NOTES  

Time duration in music is one of the main constituents in music that without it, music would not be complete. 

To clearly bring to our understanding how time duration is important in music, David [4], analyzed how it 

associates to music by relating it with a beat produced also known as tempo in music. He explained saying 

that the representation of one beat in an interval is equivalent to a count-off time in measure per minute. He 

further explained that the basic designator of duration is the note and the duration of the note is determined 

by music signatures. 

This gives rise to sequence of music signatures where each signature produces a sequence of their duration in 

a descending order. Each of these signatures is always seen in music composition and rendition. 

His discovery also lead to his explaining how dotted note adds to the nitty-grittyof music. This is where he 

calculated the actual duration of a dotted note, bringing to our understanding the distinction between an 

undoted and dotted notes. Dotted notes have less value of time duration compared to the undotted notes. 

For more exquisite finishing in his work, he proposed that it is possible for note to be divided into several 

equal partition known as Tuplets. 

1.5 SYMMETRY IN MUSIC 

The word symmetry may be defined as a correct proportion of a part. In music, it is simply the even 

distribution of parts of melodies in rhyme. It is in this regard that Dave [3] explains the whole essence of 

symmetry in music as a symmetric group formulated in Mathematics.  

1.6 EQUAL TEMPERED SCALE 

Equal tempered scale is best achieved by creating a scale that divides the scale into equal parts giving it a 

twelve-tone equal scale. 

An application of geometric progression method was adopted, where a = 1 and 

r =  2
12

. 
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This method is measured in 100 cents (the least measure that can be obtained for interval measurement on an 

instrument) per interval is derived as follows: 

C  = 1  = 0 

C
#
/D

b 
 =  2

12
  = 100cents 

D  =   2
12

 
2
 = 200cents 

D
#
/E

b
  =   2

12
 

3
 = 300cents 

E  =   2
12

 
4
 = 400cents 

F  =   2
12

 
5
 = 500cents 

F
#
/G

b
  =   2

12
 

6
 = 600cents 

G  =   2
12

 
7
 = 700cents 

G
#
/A

b
  =   2

12
 

8
 = 800cents 

A  =   2
12

 
9
 = 900cents 

A
#
/B

b
  =   2

12
 

10
 = 1000cents 

B  =   2
12

 
11

 = 1100cents 

C  =     2  = 1200cents 

 

This new formulated scale is the best scale used in playing several songs in different keys. 

2. INVERSION AND TRANSPOSITION OF KEYS AND SCALES 

Given a chromatic scale having keys ranging from 0 to 12 and carrying out addition on modulo 12, we have. 

1 + 2 = 3 mod 12 

6 + 5  = 11 mod 12 

11 + 1 = 0 mod 12 

Performing these on an addition modulo 12 table we have: 

 

 

 

 



 

7987 
 

Table 1 

 Representation of Chromatic Scale Addition modulo 12 

+ 0 1 2 3 4 5 6 7 8 9 10 11 

0 0 1 2 3 4 5 6 7 8 9 10 11 

1 1 2 3 4 5 6 7 8 9 10 11 0 

2 2 3 4 5 6 7 8 9 10 11 0 1 

3 3 4 5 6 7 8 9 10 11 0 1 2 

4 4 5 6 7 8 9 10 11 0 1 2 3 

5 5 6 7 8 9 10 11 0 1 2 3 4 

6 6 7 8 9 10 11 0 1 2 3 4 5 

7 7 8 9 10 11 0 1 2 3 4 5 6 

8 8 9 10 11 0 1 2 3 4 5 6 7 

9 9 10 11 0 1 2 3 4 5 6 7 8 

10 10 11 0 1 2 3 4 5 6 7 8 9 

11 11 0 1 2 3 4 5 6 7 8 9 10 

 

Let C = 0, C
#
/D

b
 = 1, D = 2, D

#
/E

b
 = 3, E = 4, F = 5, F

#
/G

b
 = 6, G = 7,  

G
#
/A

b
 = 8, A = 9, A

#
/B

b
 = 10, B = 11. 

Substituting into table 1 appropriately yields: 

Table 2 

Keys Representing Elements of Addition Modulo 12 

+ C C
#
 D D

#
 E F F

#
 G G

#
 A A

#
 B 

C C C
#
 D D

#
 E F F

#
 G G

#
 A A

#
 B 

C
#
 C

#
 D D

#
 E F F

#
 G G

#
 A A

#
 B C 

D D D
#
 E F F

#
 G G

#
 A A

#
 B C C

#
 

D
#
 D

#
 E F F

#
 G G

#
 A A

#
 B C C

#
 D 

E E F F
#
 G G

#
 A A

#
 B C C

#
 D F 
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F F F
#
 G G

#
 A A

#
 B C C

#
 D F F

#
 

F
#
 F

#
 G G

#
 A A

#
 B C C

#
 D F F

#
 G 

G G G
#
 A A

#
 B C C

#
 D F F

#
 G G

#
 

G
#
 G

#
 A A

#
 B C C

#
 D F F

#
 G G

#
 A 

A A A
#
 B C C

#
 D F F

#
 G G

#
 A A

#
 

A
#
 A

#
 B C C

#
 D F F

#
 G G

#
 A A

#
 B 

B B C C
#
 D F F

#
 G G

#
 A A

#
 B C 

 

Definition 2.1 

Let n be an integer mod twelve. Then the function 1212: ZZTn   defined by the formula 𝑇𝑛 𝑥 = 𝑥 +

𝑛 𝑚𝑜𝑑 12 is called transposition about n. 

Example 2.1 

Given 𝑇7: 𝑍12𝑍12   find 𝑇𝑛 𝑥 = 𝑥 + 𝑛 𝑚𝑜𝑑 12 

Solution: 

𝑇7 3 = 3 + 7 =  10 

  𝑇7 6 = 6 + 7 =  1 

                                                            𝑇7 7 = 7 + 7 =  2 

                                                           𝑇7 10 = 10 + 7 =  5 

Definition 2.2 

Let n be an integer mod twelve. Then the function 𝑇𝑛 : 𝑍12𝑍12  defined by 

The formula 𝑇𝑛 𝑥 = −𝑥 + 𝑛 𝑚𝑜𝑑 12 is called inversion about n. 

Example 2.2 

Given 𝑇7: 𝑍12 𝑍12   find 𝑇𝑛 𝑥 = −𝑥 + 𝑛 𝑚𝑜𝑑 12 

Solution 

𝑇7 3 = −3 + 7 =  4 

𝑇7 7 = −7 + 7 =  0 

                                                          𝑇7 9 = −9 + 7 =  2 

                                                          𝑇7 10 = −10 + 7 = 3 
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3. PITCH CLASS RATIO AND RATIO CONVERSION 

Each note on the keyboard represents a pitch having various frequencies. 

Given that key of  A4= 440hz and A5 = 880hz. 

The note or key A4 and A5 are different pitches whose frequencies are one octave higher than the other. 

That is A5   > A4. 

The octave frequency difference is 2 times the interval of its frequencies which is best associated with the ratio 

of A4 and A5 which may be denoted asf1and f2 (f1, f2). The pair is of equivalent class known as the associated 

ratio in terms of intervals.The ratio of f1: f2, given as 

r =
𝑓1

𝑓2
  is the measurement of the interval between the pitches and is called interval ratio. 

f2>f1  is upward or monotonic increasing 

f2< f1 is downward or monotonic decreasing  

Definition 3.1 

Measurement of interval by ratio among pitches is called multiplicative, while measurement by interval in 

semitone, steps or octaves are called additive. 

4. CONVERSION OF SEMITONE TO RATIO AND CENTS TO RATIO. 

Let a be a real number and since twelve iteration of an interval gives an octave which has the ratio 2, we have. 

𝑎12    =    2 

𝑎   =     2 
12

= 2
1

12thus, for n semitone, the ratio equals  

 2
1

12  
𝑛

      =   2
𝑛

12  

Let b be the ratio corresponding to a cent and let 1200 iteration equals an octave, then  

𝑏1200     =   2     𝑖𝑚𝑝𝑙𝑖𝑒𝑠          𝑏 = 21 1200  

Hence, any   𝑥 𝑐𝑒𝑛𝑡 =  2𝑥 1200   𝑟𝑎𝑡𝑖𝑜         4.1 

5. CONVERSION OF RATIO TO CENT AND SEMITONE 

Let x and y be frequencies f1and f2 and are an octave apart. Applying logarithmic method, we have:  Let  
𝑥

𝑦
    =   2 

𝐿𝑜𝑔𝑏 
𝑥
𝑦  = 𝐿𝑜𝑔𝑏2     implies    𝐿𝑜𝑔𝑏𝑥 −  𝐿𝑜𝑔𝑏𝑦   =   𝐿𝑜𝑔𝑏2 

Let  

𝐿𝑜𝑔𝑏𝑥 −  𝐿𝑜𝑔𝑏𝑦   =   1, so that 

𝐿𝑜𝑔𝑏2 = 1 ⇒ 𝑏1  = 2   ⇒     𝑏 = 2   
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The desired base. 

Given r ratio of interval, to convert in cent, from (4.1); 

𝑟 = 2𝑥 1200           5.1 

Multiplying both sides of (5.1) by Log2, we have, 

𝐿𝑜𝑔2𝑟 = 𝐿𝑜𝑔2 2𝑥 1200    𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝐿𝑜𝑔2𝑟 =    𝑥 1200  

𝑥 = 1200 𝐿𝑜𝑔2𝑟         5.2 

So, for any interval, ratio „r‟ is measured in cents. 

6. CONVERSION OF RATIO TO SEMITONE 

Let 𝑟 = 2𝑛 12 n = 1,2,3…                       6.1 

Where r, is the geometric progression which subdivides the chromatic scale to obtain an evenly equal division 

of the scale, the desired scale. 

Multiplying both sides by 𝐿𝑜𝑔2 , (6.1) becomes. 

𝐿𝑜𝑔2𝑟  =  𝐿𝑜𝑔2 2𝑛 12     =    𝑛 12  

𝑟  =  12𝐿𝑜𝑔2𝑟         6.2 

Hence for any interval x,the ratio is measured in semitone as (6.1). 

7. DURATION OF NOTES AND SEQUENCE OF NOTES 

Times duration in music are often measured in beats, which are the temporal units by which music is notated. 

Frequently, one beat represents the time interval by which one would “count off”; the passing of time while 

the music is performed. The term tempo refers to the frequency of this count off usually measured in beats 

per minute. In a musical score, the basic designator of duration is, of cause, the note. The duration of notes is 

determined by such things as note heads, stem flag dots, ties and tuplet designations. The duration in beats 

(often four) dictated by the time signature. Notes are assigned a sequence of beats in     1 2𝑛   where n ≥ 0. It 

is also denoted by a symbol having different forms like; semibreve or full note, mini or half note, crotchet or 

quarter note, quaver or one-eight note, semiquaver or one-sixteenth note, semihemiquaver or one-thirty-two 

note and semihemidemiquaver or one-sixty-four note. All in the sequence of numbers as shown below: 

 

{1/2
n
}     = 1  ½  ¼         1/8         1/16      1/32  1/64    

It represents the duration as it appears in music. As we move from left to right in the sequence, the duration of 

the sound produce shortens up to the sixty-fourth note as the least note.  

In adjacent notes, flags may be replaced by beams connecting the stems: 

= = =
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8. DURATION OF A DOTTED KEY SIGNATURE 

A dot in front of a note or a rest adds to it one half of its original duration.  

Assume a quarter duration note in four beats with dot in front of it, then 

1

4
 1 +  

1

2
 =  

1

4
 .

3

2
=  

3

8
. 

 

Where ¼ is the duration of the sixteenth note in beat multiplied by the duration of the dot in front i.e. 1 + ½ 

which then yields 3/8 duration of the sixteenth note in beat.In general terms in calculating the duration of any 

note with dot in front, we have as in [4]: Let d be duration of note followed by m has duration dmgiven by: 

𝑑𝑚 = 𝑑  1 + 
1

2
 +  

1

22
+,.  .  . , +  

1

2𝑛
  

𝑑𝑚 = 𝑑  
1

2
 

𝑚

𝑖=0

𝑖

 

       = 𝑑  
1 −     

1

2
 
𝑚+𝑖

1    −     
1

2

  

       = 𝑑  
1 −     

1

2
 
𝑚+𝑖

1    −     
1

2

  

= 𝑑  2 1 −   
1

2
 
𝑚+𝑖

   𝑎𝑠 𝑖 = 0 

 = 𝑑  2 1 −   
1

2
 
𝑚

   

           = 𝑑  2  −   
1

2
 
𝑚

    

=  𝑑  1 + 1 −
1

2𝑚
  

       = 𝑑  1 +  
2𝑚 − 1

2𝑚
  

Where   
1−  

1

2
 
𝑚+1

1   −   
1

2

    is   𝑟𝑖 =   1 + 𝑟 + 𝑟2 + ⋯  𝑟𝑛   = 𝑚
𝑖=0

1− 𝑟𝑚+1

1   −   𝑟
 

which holds for any integer m≥0 and any real number r ≠ 1. 

 A note of duration d followed by m dots has duration  

𝑑𝑚 = 𝑑  2 −  
1

2
 
𝑚
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By convergence of sequences, 

lim
𝑚→∞

 2 −  
1

2
 
𝑚

   =  2.  

Hence, by mathematical induction 

lim
𝑚→∞
𝑖≥0

 2 −  
1

2
 
𝑚+𝑖

 =  2  

Example 8.1 

What is the duration of a triply dotted thirty-second note? 

Solution 

Thirty-second note is 1/32 and from the question it is dotted by a triply duration meaning m is 3. First, we 

must calculate the duration thirty-second note before being dotted and is 2d which arises from the limit. 

Hence  

𝑑 =
1

32
 . 2 =  

1

16
 

The number of dots (m) is 3, we have,  

𝑑3 =
1

16
 2−   

1

2
 

3

 =    
1

16
 2 −  

1

8
   =  

1

16
 .

15

8
  =  

15

128
 

The duration is 
15

128
th beat. In general, the numerator of the duration of any triply dotted note is always 15. In 

section 11 of this work, dm can be known with the formula stated. 

9. DIVISION OF NOTE 

A 
1

2𝑛
𝑡 note can be subdivided into k equal note, where k is not a power of 2. The division of note into k equal 

note is what is called a Tuplet where k forms a k-tuplet.Given   

2
r
< k < 2

r+1
        9.1 

Where r is a positive integer, the k-tupletof a note is given as  

1

2𝑛+1th note.        9.2 

Example 2 

For 3-tuplet note we have  

3.
1

2𝑛+1
 =  3.

1

22+1
   =  3.

1

23
=  3.

1

8
 =

3

8
 

This forms an eight not overset by 3, forming an eighth note triplet. 

Represented in a treble clef below: 
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Example 9.1 

What is the division of a quarter note into five equal notes? 

Solution 

Same method is applied as in example 2, but a slight difference. 

 A quarter note is   = 
1

4
𝑡 𝑛𝑜𝑡𝑒 = 

1

22 𝑡 𝑛𝑜𝑡𝑒 

Given, 

2
r
< k < 2

r+1
 

Since we are requested to divide the quarter note into 3 equal pieces, we have 

2
2
< 5 < 2

3 
  = 2

1
< 5 < 2

2 

Where r =2 and k =5 

For 5-tuplet note we have 

5.
1

2𝑛+1
 =  5.

1

22+2
   =  5.

1

24
=  5.

1

16
 =

5

16
 

This forms a sixteenth not overset by 5, forming a sixteenth note triplet. 

Represented in a treble clef below; 

 

10. SYMMETRIC GROUP 

Permutation can also be multiplied giving rise to certification of associative property and revealing identity 

and inverse element too.Let X be a set such that a and b are its subsets. 

Let     

𝑎 =  








34152

54321
=   (1 2 5 3)(4) 
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𝑏 = 








21453

54321
 =   (1 3 4)(2 5) 

𝑎𝑏 =  
41325

54321
 = (1 5 4) and ba = (2 3 4). 

Given S4 = 4! = 24 elements as follows: 

 
1 2
1 2

3 4
3 4

 ,  
1 2
1 2

3 4
4 3

 ,  
1 2
1 3

3 4
2 4

 ,  
1 2
1 3

3 4
4 2

  

 
1 2
1 4

3 4
2 3

 ,  
1 2
1 4

3 4
3 2

 ,  
1 2
2 1

3 4
3 4

 ,  
1 2
2 1

3 4
4 3

  

 
1 2
2 3

3 4
1 4

 ,  
1 2
2 3

3 4
4 1

 ,  
1 2
2 4

3 4
1 3

 ,  
1 2
2 3

3 4
4 1

  

 
1 2
3 1

3 4
2 4

 ,  
1 2
3 1

3 4
4 2

 ,  
1 2
3 2

3 4
1 4

 ,  
1 2
3 2

3 4
4 1

  

 
1 2
3 4

3 4
1 2

 ,  
1 2
3 4

3 4
2 1

 ,  
1 2
4 1

3 4
2 3

 ,  
1 2
4 1

3 4
3 2

  

 
1 2
4 2

3 4
1 3

 ,  
1 2
4 2

3 4
3 1

 ,  
1 2
4 3

3 4
1 2

 ,  
1 2
4 3

3 4
2 1

  

10.1 TRANSPOSITION AND INVERSION OF SONGS 

Transposition and inversion play a major role in diversifying music to a large extent. Looking at the chromatic 

scale of major triads, we shall see that successive keys of notes are derived by transposing and inverting one 

key to another. 

10.2   DIATONIC SCALE OF KEY OF C 

C = {C, D, E, F, G, A, B} = {d, r, m, f, s, l, t} 

On the chromatic scale, it is represented as 

C C
#
 D E

b
 E F F

#
 G A

b
 A B

b
 B 

0 1 2 3 4 5 6 7 8 9 10 11 

The sol-fa chords of key of C are; 

d-chord = {C D G B} = {0 4 7 11} = { d m s t} 

r-chord = {D F A C} = {2 5 9 0} = { r f l d} 

m-chord = {E G B D} = {4 7 11 2} = {m s t r} 

f-chord = {F A C E} = {5 9 0 4} = {f l d m} 

s-chord = {G B D F} = {7 11 2 5} = { s t r f} 

l-chord = {A C E G} = {9 0 4 7} = { l d m s} 
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t-chord = {B D F A} = {11 2 5 9} = { t r f l} 

This is the sol-fa chord of key of C. It can be transposed to another key applying the formula of transposition 

given as: 

𝑇𝑛 𝑥 = 𝑥 + 𝑛        10.1The answer obtained as it is 

known, is in arithmetic modulo twelve (12). 

10.3 TRANSPOSING KEY OF C TO G 

Diatonic Scale of key G = {G A B C D E F
#
} = { d r m f s l t} 

Since the count between key of C and key of G is 7, the transposition is doneby substituting each value of sol-

fa chord of key of C into equation 10.1 to have: 

𝑇7 0 = 0 + 7 = 7  ,    𝑇7 4 = 4 + 7 = 11,    𝑇7 7 = 7 + 7 = 2 

𝑇7 11 = 11 + 7 = 6  . This yields the d-chord of G: 

d-chord =  {G B D F
#
} = {7 11 2 6} = {d m s t} 

Carrying out the same calculation on r, m, f, s, l, t-chords of key of C and by substituting appropriately yields 

the remaining solfa chords of G as shown below: 

r-chord = {A C E G} = {9 0 4 7} = { r f l d} 

m-chord = {B D F
#
 A} = {11 2 6 9} = { m s t r} 

f-chord = { C E G B} = {0 9 7 11} = { f l d m} 

s-chord = {D F
#
 A C} = {2 6 9 0} = { s t r f} 

l-chord = { E G B D} = {4 7 11 2} = { l d m s} 

t-chord = { F
#
 A C E } = {6 9 0 4} = { t r f l} 

10.4 TRANSPOSING KEY OF C TO KEY OF C
# 

Diatonic Scale of C
# 

= {C
#
E

b
 F F

# 
A

b
 B C}={d r m f s l t}.Since the count between key of C to key of C

# 
is 1 in the 

chromatic scale, transposition of key of C
# 

is also obtained in a similar way as of key of G above, giving rise to 

the sol-fa chords of C
#
 as follows: 

𝑇1 0 = 0 + 1 = 1, 𝑇1 4 = 4 + 1 = 5, 𝑇1 7 = 7 + 1 = 8, 

𝑇1 11 = 11 + 1 = 0 

d-chord = {C
#
 F A

b
 C}  = {1 5 8 0} = {d m s t} 

r-chord = {E F B
b
 C

#
}  = {3 6 10 1} = {r f l d} 

m-chord = {F A
b
 C E

b
}  = {5 8 0 3} = {m s t r} 

f-chord = {F
#
 B

b
 C

#
 F} = {6 10 1 5} = {f l d m} 

s-chord = {A
b
 C E

b
 F

#
} = {8 0 3 6} = {s t r f} 
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l-chord = {B
b
 C

#
 F A

b
}  = {10 1 5 8} = {l d m s} 

t-chord = {C E
b
 F

#
 B

b
} = {0 3 6 10} = {t r f l} 

The diatonic scale of C in the chromatic scale is most used here because it is the neutral key of the chromatic 

scale. It also implies that, key of C can also be transposed to any diatonic scale of any key in the chromatic 

scale vis-à-vis 

10.5 FUGUE OF D MINOR IN THE WELL-TEMPERED CLAVIER  

BOOK 1 

Fugue music is one of the most classical western music compositions that mostly constitute transposition and 

inversion. Here we shall analyze Johann Sebastian Bach (1685-1750) fugue music composition of the well-

tempered Clavier Book 1, to show how transposition and inversion makes up classical piece of Bach 

composition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The number beneath each stave indicates various measures of the song.  

The subject in measure 1 (Treble clef) is read as: 

{D,E, F, G,E, F,D,C
#
, D, B

b
; G, A}= {2,4,5,7, 4, 5, 2,1,2,10,7,9} 

It lasts until the beginning of measure 3. Let it be P. 

1                                                  2                                    3                                         4

  6                                              7                                       8       

  9                                                                                    11                                      12       

  13                                  14                                                                            16       

17                                                                  18                            1 9

21                                         22                                      23                               24
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Looking at the subject P, we observed that it consists of twelve notes running into 

measure 3. In measure 3 of the same stave (Bass clef) another melody goes out. 

{A,B,C,D,B,C, A, G
#
, A, F, D, E}= {9,11,0,2,11,0,9,8,9,5,2,4} 

In measure 6 on the (Bass clef) which runs till beginning of measure 8, the subject returns in the exact same 

form as the introduction; just one octave lower. At measure 8 (Treble clef), a form of the subject run from 8 to 

the beginning of measure 10 and read as: 

{E, F, G, A, F,B
b
 G, F

#
, G, E

b
,C

# 
,D}= {4,5,7,9,5,10,7,6,7,3,1,2} 

This one does not entirely match though. The first five pitches 

are almost transposition of the first five pitches of P, but the next 5 pitches are transposition of the respective 

pitches of P. The last pitch is also transposition of the P, but the eleventh pitch doesn't match. At measure 13 

(Treble clef) running into the beginning of 16, we have: 

{A, B, C
#
, D, B, C

#
, A, C

#
, A, G

#
, F, D, E}= {9,11,1,2,11,1,9,8,9,5,2,4} 

This is likethe transposition in key of G as in measure 3, except for the highlighted 1's. Measures 17,18, and 21 

are respectively 

{A, B,C,D,B,C
#
, A, G

#
,A, F, D, E}= {9,11, 0,2,11,1,9,8,9,5,2,4} 

{A, B, C
#
, D, B, C, A, G

#
, A, F, D, E}= {9,11,1,2,11,0,9,8,9,5,2,4} 

{A, B, C
#
, D, B, C

#
, A, G

#
,A, F, D,E}= {9,11,1,2,11,1,9,8,9,5,2,4} 

These are also transposition in key of G except for the highlighted 1's. The interval 7 is very important in 

western music and is called the perfect fifth. Here we see that transposition by a perfect fifth occurs four times 

before the piece is even half over. In fact, many fugues have this property. So far we have seen that 

transposition plays a role in this piece.  

Looking at the inversion part of the fugue, consider measures 14 (Bass clef) running into the beginning of 

measure16 and measure 22 (Treble Clef) running into the beginning of measure 24. They are respectively: 

{E, D, C
#
, B, D, C, E, F, E, A, C, B

b
} = {4,2,1,11,2,1,4,5,4,9,0,10} 

{E, D, C
#
,B, D, C

#
, E, F, E, G, B

b
, A}= {4,2,1,11,2,1,4,5,4,7,10,9} 

They are nearly identical, except for the last three digits. Notice also that the first 

two elements E, Dare the same first two elements of P, just the order is switched. The last three notes of 22 are 

even the last three notes of P, just the order is switched. Calculating inversion 6gives 

{4,2,1,11,2,1,4,5,4,8,11,9} 

which is a near perfect fifth with measures 14 and 22! Just the last three notes are changed to make it sound 

better. So, we see that inversion does indeed play a rolein the piece.  

 



 

7998 
 

10.6 SONG TRANSPOSITION “EVERY VALLEY SHALL BE EXALTED – BY HANDEL GEORGE FRIDERICK 

(HANDEL MESSIAH) FROM KEY OF A TO KEY OF B AND KEY OF C. 

Analyzing this song to show its transposition, an extract of the song is attached. This shows the parts in the 

composition where transposition appears in the keys as it is played on. Below is the extract of the song: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We can see that from bar 13 to 26, the letter A appeared, meaning the song is played from key of A. The song 

is then transposed to key of B, beginning from the 54
th

 bar, as shown below. 

 

That is transposing from key of A to B. We show how this is made possible by application of the transposition 

formula. The diatonic scale of A is given as; 
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A = {A, B, C
#
, D, E F

#
, A

b
} = {d, r, m, f, s, l, t} 

Transposing to B, we have, given 𝑇𝑛 𝑥 = 𝑥 + 𝑛 = 𝑎 𝑚𝑜𝑑12. 

Let n = 2. 

x = {9, 1, 4, 8}, the d-chord of key of A; 

d-chord of B={11, 3, 6, 10}={d m s t}; 

for x = {11, 2, 6, 9}, the r-chord of key of A; 

r-chord of B ={1, 4, 8, 11}={r f l d}; 

for x = {1, 4, 8, 11}, the m-chord of key of A; 

m-chord of B={3, 6, 10, 1}={m s t r}; 

for x = {2, 6, 9, 1}, the f-chord of key of A; 

f-chord of B ={1, 10, 8, 11}= {f l d m}; 

for x = {4, 8, 11, 2 }, the s-chord of key of A; 

s-chord of B ={6, 10, 1, 4}={s t r f}; 

for x = {6, 9, 1, 4}, the l-chord of key of A; 

l-chord of B ={8, 11, 3, 6}={l d m s}; 

for x = {8, 11, 2, 6 }, the t-chord of key of A; 

t-chord of B ={10, 1, 4, 8}={t r f l}. 

We see also that from bar 110, it is transposed to key of C. 

 

Explaining the transposition to key of C, we have: 

C = {C, D, E, F, G, A, B} = {d, r, m, f, s, l, t} 

Given 𝑇𝑛 𝑥 = 𝑥 + 𝑛 = 𝑎 𝑚𝑜𝑑12  

Let n = 1 

x = {11, 3, 6, 10},  the d-chord of key of B; 
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d-chord of C={0, 4, 7, 11}={d m s t}; 

for x = {1, 4, 8, 11}, the r-chord of key of B; 

r-chord of A ={2, 5, 9, 0}={r f l d}; 

for x = {3, 6, 10, 1}, the m-chord of key of B; 

m-chord of C={4, 7, 11, 2}={m s t r}; 

for x = {4, 8, 11, 3}, the f-chord of key of B; 

f-chord of C ={5, 9, 0, 4}={f l d m}; 

for x = {6, 10, 1, 4}, the s-chord of key of B; 

s-chord of C ={7, 11, 2, 5}={s t r f}; 

for x = {8, 11, 3, 6}, the l-chord of key of B; 

l-chord of C ={9, 0, 4, 7}={l d m s}; 

for x = {10, 1, 4, 8}, the t-chord of key of B; 

t-chord of C ={11, 2, 5, 9}={t r f l}. 

Transposition of the form as in converting a song given in a key to another key is also applied in so many 

contemporary music, compose in scales major, while inversion is mostly seen in fugue music composition.   

11.  MAIN RESULT 

Single line representation using images of elements in symmetric group is applied in this work. 

11.1 SONG COMPOSITION ON SYMMETRIC GROUP  

Collection of permutation group is known as symmetric group. The songs below are composed from the 

symmetric group of orders 4 and 5. 

For clarity, we state therefore that, the solfa notes will be represented in their respective numbers, since we are 

dealing with just diatonic scale and not chromatic scale, the number for each note regardless the key is noted 

as follows; 

d r m f s l t 

1 2 3 4 5 6 7 

We shall see how effective this will be in the composition of song in order 4 permutation group. 

We have this song titled “Come Together” composed in Key of C major of order 4 permutation group. 
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Writing out the solfa note in the song from the first bar to last bar, it will be discovered that this shows its 

composition in order 4 permutation group. 

We have, using single line notation referring to the image: 

f m r d =  4 3 2 1 =   
1 2 3
4 3 2

4
1
 ,      m r d f =  3 2 1 4 =   

1 2 3
4 3 2

4
1
  

d r f m =  1 2 4 3 =   
1 2 3
1 2 4

4
3
 ,      d f m r =  1 4 3 2 =   

1 2 3
1 4 3

4
2
  

d r m f =  1 2 3 4 =   
1 2 3
1 2 3

4
4
 ,     d r f m =  1 2 4 3 =   

1 2 3
1 2 4

4
3
  

f m d r =  4 3 1 2 =   
1 2 3
4 3 1

4
2
 ,     m f r d =  3 4 2 1 =   

1 2 3
3 4 2

4
1
  

These are the members of elements used in the composition as seen in the script above. 

Here we have another song composed in permutation group of order 5. 

Come Together 
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Showing the solfa notation of the song and relating it with the permutation group order 5, starting from the 

first bar or measure, we have 

s f m d r =  5 4 3 2 1 =   
1 2 3
5 4 3

4 5
2 1

 , 

s m f r d = 5 3 4 2 1 =   
1 2 3
5 3 4

4 5
2 1

 , 

d r m s f =  1 2 3 5 4 =   
1 2 3
1 2 3

4 5
5 4

 ,  

m s f r d =  3 5 4 2 1 =   
1 2 3
3 5 4

4 5
2 1

  

d r m f s =  1 2 3 4 5 =   
1 2 3
1 2 3

4 5
4 5

 , 

f s m d r =  4 5 1 3 2 =   
1 2 3
4 5 1

4 5
3 2

  

s d r f m =  5 1 2 4 3 =   
1 2 3
4 3 1

4 5
2 1

 ,  

r f m d s =  2 4 3 1 5 =   
1 2 3
2 4 3

4 5
1 5
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All the elements used in the composition are picked at random for convenience from among the elements of 

permutation group of orders 4 and 5. 

Theorem 11.1 

A note of duration d followed by m dots has duration 

𝑑𝑚 =
2𝑚+!−1

2𝑛+𝑚 . 

Proof 

Since a note can be expressed as exponent, n of 2, then for the duration of m given dotted note, the 

numerator is known combinatorically as 

  
𝑛
𝑘
 𝑛

𝑘=1 , 𝑛 ≥ 1, which when compared is 2
m +1

 – 1 and m is noted to be an exponent. The duration is 
2𝑚+!−1

2𝑛+𝑚 -

ths of a beat 

Hence, this result is equivalent to the one obtained in [4] as in section 8. 

CONCLUSION 

There is no limit to applications of algebra in music and one of such, is the composition of songs using 

random picking of elements from Symmetric group of order 4 and 5. 
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