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Estimates of solutions to nonlinear evolution equations
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Abstract

Consider the equation

u'(t) = A(t,u(t)), w0)=uy; u: du

== .

Under some assumptions on the nonlinear operator A(t, ) it is proved
that problem (1) has a unique global solution and this solution satisfies
the following estimate

lu@®)ll < p()™" Vvt e Ry =[0,00).

Here u(t) > 0, u € CY(R,), is a suitable function and the norm ||ul| is
the norm in a Banach space X with the property [|u(t)]|" < ||« (2)].
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1 Introduction

Let
/ / du
u'=Alt,ut), u(0) =uy uli=— (1)
where t € R, = [0,00), A(t,u) is a locally continuous map from Ry x X into
X, where X is a Banach space of functions with the norm || - ||, such that

|lu(@®)||" < ||/ (¢)] if u(t) is continuously differentiable with respect to t. If
u(t) € X is a function then |u(t)| and [|u(t)|| make sense. We assume that if
|u| < |v| then |Ju|| < ||v||. For the spaces of continuous functions and L? spaces
this assumption holds.

We assume that

[A(, u) = At 0)|| < Ellu =], (2)
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where k£ > 0 is a constant which may depend on R, ||u|| < R, ||v]| < R, and
onT, t € 0,T].

If A(t,u) is a function with values in R and [|A(t,u)| = |A(t,w)|, then
(1)) is a nonlinear ordinary differential equation and condition guarantees
local existence and uniqueness of its solution on an interval [0,7] where T is
a sufficiently small number. If 7" = oo then the solution u(t) is called global.

The map A(t,u) may be of the form

A(t,u):/o a(t,s,u(s))ds, (3)

where a(t, s,u) is a locally continuous function on R, x R, x X, locally Lips-
chitz with respect to u.

The following assumptions will be valid throughout this paper:

There exists a C'(R,) function p(t) > 0 such that

w 1y

A ta BN S Y ) 4
hatt i < (57 W

where ||w|| = 1, w € X is an arbitrary element,
[A(E w)l < [AG ) if  ful < o], (5)

and )

u(0)|] < —=. 6
[u(0)]] 10) (6)

Theorem 1. Under the above assumptions the solution to exists glob-
ally, is unique, and satisfies the following estimate:

\MW<ﬁTvm&. (7)

Remark 1. Some conditions on A(t,u) of the type ([{)- () are necessary
for the global existence of the solution.

Consider the following example: « = w?, w(0) = 1. This problem is
equivalent to the equation u =1+ fg u?(s)ds. The solution to this problem is
u(t) = (1 —¢)7!, so it tends to oo as t — 1. The solution is smooth on [0, \],
where 0 < A < 1 is arbitrary.

2 Proofs

The proof of Theorem 1 consists of several parts. We start with the part
dealing with the inequality

lu@I" < [lu'(E)]]- (8)



We assume throughout that u(t) is continuously differentiable with respect to
t.

2.1. Inequality holds if X = H, where H is a Hilbert space. The inner
product in H is denoted as usual (u,v). A simple proof of goes as follows.
Start with the inequality

Ju(t+ D) = )] _ -+ h) = ()
I R )

and let A — 0. The result is . Indeed, the limit of the right side does exist
and is equal to [|u/(¢)||. To calculate the limit of the left side in (9 consider
the identity

Rt (lu(t + W)= [lu@ D (lut + B+ [lu@)]]) =

R (u(t + h) —u(t), u(t + h)) + b~ (u(t), u(t + h) — u(t)).
Clearly, the limit of the right side exists and is equal to 2Re(u'(t), u(t)). One
has limy,o([|u(t + h)|| + [|[u(?)|]) = 2[|u(t)|. Assuming that ||u(t)|| > 0 one

concludes that
lu(@)])" = lim A7 ([Ju(t + 2)[| = lu()]]) = Re(w'(t), w(t))/[lu(®)]| < [/ (B)]-

If |u(t)|| = 0, then ||u(¢)| = limj_o A~ |u(t + h)||. One has ||u(t + h)||*> =
(u(t+h),u(t+h)) = P2/ (t)|1* + o(h?). Thus, Ju(t + k)| = [A][|e(t)]] + o(h).
Therefore ||u(t)|| = limy_0 h7HA|||u/(t)|| = sign k||« (t)]] < [Ju/(t)]. Formula
(8)) is proved for X = H. O

If X =R the proof of (8)) is left for the reader. One gets | |u(t)|" | < |u/(2)].

2.2. Let us study problem assuming that X = R, w = 1 in and
|lu(t)|| = |u(t)]. Assumption ([2) guarantees local existence and uniqueness of
the solution to . We want to prove that assumptions f@ guarantee the
global existence of the solution u(t) and estimate (7). If (6) holds, then, by
continuity, there exists a small § > 0 such that

1

ult) < —, 0<t<0é. 10
ult) < o (10)

This and imply

1
At u®)] < |AEt, —)], 0<t<6. 11
At u(0)] < AL 25| (1)
Take the absolute value of , use , and to get
1 1

Ol < A u0)] < A o5 < (W)) C0<i<s (12)



4
Integrating with respect to ¢t one gets
()] = [u(0)| € — — — 0<t<s (13)
u(t)] — |u ———, 0<t<
—op() p(0)
This and (6) imply (7)) for ¢ € [0,6]. Define T' as follows:
1
T =sup{d:|u(t) < —, 0<t <o}, 14
{0 Ju(?) o) ¥ (14)

Let us prove that T = oo.

Assuming the contrary, i.e., T < oo, one uses the local existence of the
solution to (/1)) taking as initial value u(T") and as the interval of the existence
of the solution [T,T + h|, where h > 0 is a sufficiently small number. Then
inequality holds for t € [0,7 + h|. This contradicts to the definition ({14))
of T'. So, one gets a contradiction which proves that 7' = oo and estimate
holds for all ¢ € R,. Theorem 1 is proved for X = R. a

2.3. Consider the nonlinear Volterra equation:

u(t) :/0 a(t, s,u(s))ds + f(t). (15)

Assume that a(t,s,u) and a, := % are continuous functions on Ry x Ry x R,

locally Lipschitz with respect to u. Differentiate with respect to t and get

u = a(t,t,u(t)) + /0 ar(t, s,u(s))ds + f'(t) := Ai(t,u(t)). (16)

Assume that A;(f,u) satisfies conditions ([{)—(6) with w = 1, and [Ju(t)| =
|u(t)].Then the argument used in scetion 2.2. proves Theorem 1 with A; (¢, u)
replacing A(t,u).

Example 1. The aim of this example is to derive sufficient conditions on
a(t, s,u) for the assumptions ([4)—(6) to hold. Let

lalt, 5,0)| + arlt, s, 0)| < ce™ (14 W), mo> 1,
FO+ 170 < ce ™,

where ¢, b > 0 are constants. We assume that a and a, are Lipschitz functions
with respect to u. Assume that

(17)

lat, ¢, [ul)| < a(t, ¢, [0 if  [ol = ul, (18)

|ac(t, ¢, [ul)] < fa:(t, ¢, [0 of o] > Jul. (19)

Let
w(t) =coe™ ™, a>0. (20)



/
Note that (=~ ) = acg'e®. If ([17)) holds, then the following two inequalities
u(t) 0

’f/(t)| + |a(t,t,061€at)’ S Cefbt +C€f2bt(1 +062me2mat) S

1\’ 21
0.5acy e = 0.5 (—> , (21)
p(t)
t t

/ |as(t, s, cyte™)|ds < / ce b (1 4 @mas [ 2m s <
0 0 (22)

ce (1 — e ) /b4 (1 — e~ =2malt) /2™ (b — 2ma))].

and conditions f hold provided that

c/b+1/[c2(b — 2ma)] < a/(2cy), b > 2ma, (23)

where b is sufficiently large and c is sufficiently small. If in addition @ holds,
i.e., cco < 1, then u(t) exists globally and the estimate |u(t)| < c;'e® Vt € R,
holds. O

2.4. Consider equation in X. Assume that conditions , — @ and
hold. Then there is a unique local solution to continuous with respect
to ¢ in X. It follows from (4)-(6) that

lu@I < [JAE u@®] < [JAEw/p@)] < /p@), 0<t<s (24)

Here § > 0 is sufficiently small so that ||u(t)|| < 1/u(t) for 0 < ¢ < 4. Integrate
on any interval [0, 7] on which the solution u(t) exists one gets ||u(t)| <
1/u(t) for t € [0,7]. As in section 2.3 we prove that T = oco. Therefore
problem has a unique global solution in X and estimate holds.
Theorem 1 is proved. O
The ideas close to the ones used in this paper were developed and used in

[1]-(3]-
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