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Abstract

Consider the equation

u′(t) = A(t, u(t)), u(0) = u0; u′ :=
du

dt
(1).

Under some assumptions on the nonlinear operator A(t, u) it is proved
that problem (1) has a unique global solution and this solution satisfies
the following estimate

‖u(t)‖ < µ(t)−1 ∀t ∈ R+ = [0,∞).

Here µ(t) > 0, µ ∈ C1(R+), is a suitable function and the norm ‖u‖ is
the norm in a Banach space X with the property ‖u(t)‖′ ≤ ‖u′(t)‖.
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1 Introduction

Let

u′ = A(t, u(t)), u(0) = u0; u′ :=
du

dt
, (1)

where t ∈ R+ = [0,∞), A(t, u) is a locally continuous map from R+ ×X into
X, where X is a Banach space of functions with the norm ‖ · ‖, such that
‖u(t)‖′ ≤ ‖u′(t)‖ if u(t) is continuously differentiable with respect to t. If
u(t) ∈ X is a function then |u(t)| and ‖u(t)‖ make sense. We assume that if
|u| ≤ |v| then ‖u‖ ≤ ‖v‖. For the spaces of continuous functions and Lp spaces
this assumption holds.

We assume that

‖A(t, u)− A(t, v)‖ ≤ k‖u− v‖, (2)
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where k > 0 is a constant which may depend on R, ‖u‖ ≤ R, ‖v‖ ≤ R, and
on T , t ∈ [0, T ].

If A(t, u) is a function with values in R and ‖A(t, u)‖ = |A(t, u)|, then
(1) is a nonlinear ordinary differential equation and condition (2) guarantees
local existence and uniqueness of its solution on an interval [0, T ] where T is
a sufficiently small number. If T =∞ then the solution u(t) is called global.

The map A(t, u) may be of the form

A(t, u) =

∫ t

0

a(t, s, u(s))ds, (3)

where a(t, s, u) is a locally continuous function on R+×R+×X, locally Lips-
chitz with respect to u.

The following assumptions will be valid throughout this paper:
There exists a C1(R+) function µ(t) > 0 such that

‖A(t,
w

µ(t)
)‖ ≤

(
1

µ(t)

)′
, (4)

where ‖w‖ = 1, w ∈ X is an arbitrary element,

‖A(t, u)‖ ≤ ‖A(t, v)‖ if |u| ≤ |v|, (5)

and

‖u(0)‖ < 1

µ(0)
. (6)

Theorem 1. Under the above assumptions the solution to (1) exists glob-
ally, is unique, and satisfies the following estimate:

‖u(t)‖ < 1

µ(t)
, ∀t ∈ R+. (7)

Remark 1. Some conditions on A(t, u) of the type (4)- (6) are necessary
for the global existence of the solution.

Consider the following example: u′ = u2, u(0) = 1. This problem is
equivalent to the equation u = 1 +

∫ t
0
u2(s)ds. The solution to this problem is

u(t) = (1− t)−1, so it tends to ∞ as t → 1. The solution is smooth on [0, λ],
where 0 < λ < 1 is arbitrary.

2 Proofs

The proof of Theorem 1 consists of several parts. We start with the part
dealing with the inequality

‖u(t)‖′ ≤ ‖u′(t)‖. (8)
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We assume throughout that u(t) is continuously differentiable with respect to
t.

2.1. Inequality (8) holds if X = H, where H is a Hilbert space. The inner
product in H is denoted as usual (u, v). A simple proof of (8) goes as follows.
Start with the inequality

‖u(t+ h)‖ − ‖u(t)‖
h

≤ ‖u(t+ h)− u(t)

h
‖ (9)

and let h→ 0. The result is (8). Indeed, the limit of the right side does exist
and is equal to ‖u′(t)‖. To calculate the limit of the left side in (9) consider
the identity

h−1(‖u(t+ h)‖ − ‖u(t)‖)(‖u(t+ h)‖+ ‖u(t)‖) =

h−1(u(t+ h)− u(t), u(t+ h)) + h−1(u(t), u(t+ h)− u(t)).

Clearly, the limit of the right side exists and is equal to 2Re(u′(t), u(t)). One
has limh→0(‖u(t + h)‖ + ‖u(t)‖) = 2‖u(t)‖. Assuming that ‖u(t)‖ > 0 one
concludes that

‖u(t)‖′ = lim
h→0

h−1(‖u(t+ h)‖ − ‖u(t)‖) = Re(u′(t), u(t))/‖u(t)‖ ≤ ‖u′(t)‖.

If ‖u(t)‖ = 0, then ‖u(t)‖′ = limh→0 h
−1‖u(t+ h)‖. One has ‖u(t+ h)‖2 =

(u(t+ h), u(t+ h)) = h2‖u′(t)‖2 + o(h2). Thus, ‖u(t+ h)‖ = |h|‖u′(t)‖+ o(h).
Therefore ‖u(t)‖′ = limh→0 h

−1|h|‖u′(t)‖ = signh‖u′(t)‖ ≤ ‖u′(t)‖. Formula
(8) is proved for X = H. 2

If X = R the proof of (8) is left for the reader. One gets | |u(t)|′ | ≤ |u′(t)|.
2.2. Let us study problem (1) assuming that X = R, w = 1 in (4) and

‖u(t)‖ = |u(t)|. Assumption (2) guarantees local existence and uniqueness of
the solution to (1). We want to prove that assumptions (4)–(6) guarantee the
global existence of the solution u(t) and estimate (7). If (6) holds, then, by
continuity, there exists a small δ > 0 such that

|u(t) <
1

µ(t)
, 0 ≤ t ≤ δ. (10)

This and (5) imply

|A(t, u(t))| ≤ |A(t,
1

µ(t)
)|, 0 ≤ t ≤ δ. (11)

Take the absolute value of (1), use (7), (11) and (4) to get

|u(t)|′ ≤ |A(t, u(t))| ≤ |A(t,
1

µ(t)
)| ≤

(
1

µ(t)

)′
, 0 ≤ t ≤ δ. (12)
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Integrating (12) with respect to t one gets

|u(t)| − |u(0)| ≤ 1

µ(t)
− 1

µ(0)
, 0 ≤ t ≤ δ. (13)

This and (6) imply (7) for t ∈ [0, δ]. Define T as follows:

T = sup{δ : |u(t) <
1

µ(t)
, 0 ≤ t ≤ δ}. (14)

Let us prove that T =∞.
Assuming the contrary, i.e., T < ∞, one uses the local existence of the

solution to (1) taking as initial value u(T ) and as the interval of the existence
of the solution [T, T + h], where h > 0 is a sufficiently small number. Then
inequality (7) holds for t ∈ [0, T + h]. This contradicts to the definition (14)
of T . So, one gets a contradiction which proves that T =∞ and estimate (7)
holds for all t ∈ R+. Theorem 1 is proved for X = R. 2

2.3. Consider the nonlinear Volterra equation:

u(t) =

∫ t

0

a(t, s, u(s))ds+ f(t). (15)

Assume that a(t, s, u) and at := ∂a
∂t

are continuous functions on R+ ×R+ ×R,
locally Lipschitz with respect to u. Differentiate (15) with respect to t and get

u′ = a(t, t, u(t)) +

∫ t

0

at(t, s, u(s))ds+ f ′(t) := A1(t, u(t)). (16)

Assume that A1(t, u) satisfies conditions (4)–(6) with w = 1, and ‖u(t)‖ =
|u(t)|.Then the argument used in scetion 2.2. proves Theorem 1 with A1(t, u)
replacing A(t, u).

Example 1. The aim of this example is to derive sufficient conditions on
a(t, s, u) for the assumptions (4)–(6) to hold. Let

|a(t, s, u)|+ |at(t, s, u)| ≤ ce−b(t+s)(1 + |u|2m), m > 1,

|f(t)|+ |f ′(t)| ≤ ce−bt,
(17)

where c, b > 0 are constants. We assume that a and at are Lipschitz functions
with respect to u. Assume that

|a(t, t, |u|)| ≤ |a(t, t, |v|)| if |v| ≥ |u|, (18)

|at(t, t, |u|)| ≤ |at(t, t, |v|)| if |v| ≥ |u|. (19)

Let
µ(t) = c0e

−at, a > 0. (20)



5

Note that
(

1
µ(t)

)′
= ac−10 eat. If (17) holds, then the following two inequalities

|f ′(t)|+ |a(t, t, c−10 eat)| ≤ ce−bt + ce−2bt(1 + c−2m0 e2mat) ≤

0.5ac−10 eat = 0.5

(
1

µ(t)

)′
,

(21)

∫ t

0

|at(t, s, c−10 eas)|ds ≤
∫ t

0

ce−b(t+s)(1 + e2mas/c2m0 )ds ≤

ce−bt[(1− e−bt)/b+ (1− e−(b−2ma)t)/[c2m0 (b− 2ma)].

(22)

and conditions (4)–(5) hold provided that

c/b+ 1/[c2m0 (b− 2ma)] ≤ a/(2c0), b > 2ma, (23)

where b is sufficiently large and c is sufficiently small. If in addition (6) holds,
i.e., cc0 < 1, then u(t) exists globally and the estimate |u(t)| < c−10 eat ∀t ∈ R+

holds. 2

2.4. Consider equation (1) in X. Assume that conditions (2), (4)– (6) and
(8) hold. Then there is a unique local solution to (1) continuous with respect
to t in X. It follows from (4)-(6) that

‖u(t)‖′ ≤ ‖A(t, u(t)‖ ≤ ‖A(t, w/µ(t))‖ < (1/µ(t))′, 0 ≤ t ≤ δ. (24)

Here δ > 0 is sufficiently small so that ‖u(t)‖ < 1/µ(t) for 0 ≤ t ≤ δ. Integrate
(22) on any interval [0, T ] on which the solution u(t) exists one gets ‖u(t)‖ <
1/µ(t) for t ∈ [0, T ]. As in section 2.3 we prove that T = ∞. Therefore
problem (1) has a unique global solution in X and estimate (7) holds.

Theorem 1 is proved. 2

The ideas close to the ones used in this paper were developed and used in
[1]–[3].
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