
MODEL HIGGS BUNDLES IN EXCEPTIONAL COMPONENTS OF THE

Sp(4,R)-CHARACTER VARIETY

GEORGIOS KYDONAKIS

Abstract. We establish a gluing construction for Higgs bundles over a connected sum of Rie-
mann surfaces in terms of solutions to the Sp(4,R)-Hitchin equations using the linearization
of a relevant elliptic operator. The construction can be used to provide model Higgs bundles
in all the 2g−3 exceptional components of the maximal Sp(4,R)-Higgs bundle moduli space,
which correspond to components solely consisted of Zariski dense representations. This also
allows a comparison between the invariants for maximal Higgs bundles and the topological
invariants for Anosov representations constructed by O. Guichard and A. Wienhard.

1. Introduction

Let Σ be a closed connected and oriented surface of genus g ≥ 2 and G be a connected
semisimple Lie group. The moduli space of reductive representations of π1 (Σ) into G modulo
conjugation

R (G) = Hom+ (π1 (Σ) , G) /G

has been an object of extensive study and interest. Fixing a complex structure J on the sur-
face Σ transforms this into a Riemann surface X = (Σ, J) and opens the way for holomorphic
techniques using the theory of Higgs bundles. The non-abelian Hodge theory correspondence
provides a real-analytic isomorphism between the character variety R (G) and the moduli
space M (G) of polystable G-Higgs bundles. The case when G = Sp(4,R) has received con-
siderable attention by many authors, who studied the geometry and topology of the moduli
space M (Sp(4,R)); see for instance [7], [10], [20]. The subspace of maximal Sp(4,R)-Higgs
bundles,Mmax, that is, the one containing Higgs bundles with extremal Toledo invariant, has
been shown to have 3 · 22g + 2g − 4 connected components [19].

Among the connected components of Mmax, there are 2g − 3 exceptional components
of this moduli space. These components are all smooth but topologically non-trivial, and
representations in these do not factor through any proper reductive subgroup of Sp (4,R),
thus have Zariski-dense image in Sp (4,R). On the other hand, for the remaining 3 · 22g − 1
components, model Higgs bundles can be obtained by embedding stable SL(2,R)-Higgs data
into Sp(4,R), using appropriate embeddings φ : SL(2,R) ↪→ Sp(4,R) (see [7]). The construction
of Sp(4,R)-Higgs bundles that lie in the 2g−3 exceptional components is the principal objective
in this article.

From the point of view of the character variety Rmax, model representations in a subfamily
of the 2g − 3 special components have been effectively constructed by O. Guichard and A.
Wienhard in [20] by amalgamating certain fundamental group representations defined over
topological surfaces with one boundary component.

The first step in establishing a gluing construction from the holomorphic point of view
is to describe holomorphic objects corresponding to Sp(4,R)-representations over a surface
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with boundary with fixed arbitrary holonomy around the boundary. These objects are Higgs
bundles defined over a Riemann surface with a divisor, together with a weighted flag on
the fibers over the points in the divisor, namely parabolic Sp(4,R)-Higgs bundles. As in the
non-parabolic case, a notion of maximality can still be defined for these objects.

It is important that a gluing construction of parabolic Higgs bundles over the complex
connected sum X# of two distinct compact Riemann surfaces X1 and X2 with a divisor of
s-many distinct points on each, is formulated so that the gluing of stable parabolic pairs is
providing a polystable Higgs bundle over X#. Moreover, in order to construct new models in
the components of M (X#, Sp(4,R)), the parabolic gluing data over X1 and X2 are chosen
to be coming from different embeddings of SL(2,R)-parabolic data into Sp(4,R), and so a
priori do not agree over disks around the points in the divisors. We choose to switch to the
language of solutions to Hitchin’s equations and make use of the analytic techniques of C.
Taubes for gluing instantons over 4-manifolds [37] in order to control the stability condition.
These techniques have been applied to establish similar gluing constructions for solutions to
gauge-theoretic equations, see for instance [13], [14], [21], [30].

The problem involves perturbing the initial data into model solutions which are identified
locally over the annuli around the points in the divisors, thus allowing the construction of a
pair over X# that combines initial data over X1 and X2. The existence of these perturbations
in terms of appropriate gauge transformations is provided for SL(2,R)-data, and then we use
the embeddings of SL(2,R) into Sp(4,R) to extend this deformation argument for our initial
pairs. This produces an approximate solution to the Sp(4,R)-Hitchin equations

(
AappR ,Φapp

R

)
over X#, with respect to a parameter R > 0 which describes the size of the neck region in
the construction of X#. The pair

(
AappR ,Φapp

R

)
coincides with the initial data over each hand

side Riemann surface and with the model solution over the neck region.
The next step is to correct this approximate solution to an exact solution of the Sp(4,R)-

Hitchin equations over the complex connected sum of Riemann surfaces. In other words, we
seek for a complex gauge transformation g such that g∗

(
AappR ,Φapp

R

)
is an exact solution of the

Sp(4,R)-Hitchin equations. The argument providing the existence of such a gauge is translated
into a Banach fixed point theorem argument and involves the study of the linearization of a
relevant elliptic operator. For Higgs bundles this was first studied by R. Mazzeo, J. Swoboda,
H. Weiss and F. Witt in [25], who described solutions to the SL(2,C)-Hitchin equations
near the ends of the moduli space. A crucial step in this argument is to show that the
linearization of the G-Hitchin operator at our approximate solution

(
AappR ,Φapp

R

)
is invertible;

this is obtained by showing that an appropriate self-adjoint Dirac-type operator has no small
eigenvalues. This method was also used by J. Swoboda in [36] to produce a family of smooth
solutions of the SL(2,C)-Hitchin equations, which may be viewed as desingularizing a solution
with logarithmic singularities over a noded Riemann surface. The analytic techniques from
[36], are extended to provide the main theorem from that article for solutions of the Sp(4,R)-
Hitchin equations as well, and moreover to obtain our main result:

Theorem 1.1. Let X1 be a closed Riemann surface of genus g1 and D1 = {p1, . . . , ps}
be a collection of s-many distinct points on X1. Consider respectively a closed Riemann
surface X2 of genus g2 and a collection of also s-many distinct points D2 = {q1, . . . , qs} on
X2. Let (E1,Φ1) → X1 and (E2,Φ2) → X2 be parabolic stable Sp(4,R)-Higgs bundles with
corresponding solutions to the Hitchin equations (A1,Φ1) and (A2,Φ2). Assume that these

solutions agree with model solutions
(
A mod

1,pi
,Φ mod

1,pi

)
and

(
A mod

2,qj
,Φ mod

2,qj

)
near the points pi ∈

D1 and qj ∈ D2, and that the model solutions satisfy
(
A mod

1,pi
,Φ mod

1,pi

)
= −

(
A mod

2,qj
,Φ mod

2,qj

)
,
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for s-many possible pairs of points (pi, qj). Then there is a polystable Sp(4,R)-Higgs bundle
(E#,Φ#) → X#, constructed over the connected sum of Riemann surfaces X# = X1#X2 of
genus g1 + g2 + s− 1, which agrees with the initial data over X#\X1 and X#\X2.

By analogy with the terminology introduced by O. Guichard and A. Wienhard in their
construction of hybrid representations, we call the polystable Higgs bundles corresponding to
such exact solutions hybrid. The construction can have a wider applicability for identifying
smooth points in moduli of Higgs bundles. As one application, we build Higgs bundles corre-
sponding to Zariski dense representations into Sp(4,R). For this purpose, we look at how the
Higgs bundle topological invariants behave under the complex connected sum operation. We
first show the following:

Proposition 1.2. Let X# = X1#X2 be the complex connected sum of two closed Riemann
surfaces X1 and X2 with divisors D1 and D2 of s-many distinct points on each surface, and
let V1, V2 be parabolic principal HC-bundles over X1 and X2 respectively. For a parabolic
subgroup P ⊂ HC, a holomorphic reduction σ of the structure group of E from HC to P and
an antidominant character χ of P , the following identity holds:

deg (V1#V2) (σ, χ) = pardegα1
(V1) (σ, χ) + pardegα2

(V2) (σ, χ) .

Note that an analogous additivity property for the Toledo invariant was established by
M. Burger, A. Iozzi and A. Wienhard in [8] from the point of view of fundamental group
representations. It implies in particular that the connected sum of maximal parabolic G-
Higgs bundles is again a maximal (non-parabolic) G-Higgs bundle.

We find model Higgs bundles in all exceptional components of the maximal Sp(4,R)-Higgs
bundle moduli space; these models are described by hybrid Higgs bundles. In the case when
G = Sp(4,R), considering all possible decompositions of a surface Σ along a simple, closed,
separating geodesic is sufficient in order to obtain representations in the desired components
ofMmax, which are fully distinguished by the calculation of the degree of a line bundle. This
degree equals the Euler class for a hybrid representation as defined by O. Guichard and A.
Wienhard, although these invariants live naturally in different cohomology groups.

Acknowledgments. This work was part of the author’s requirements for the Ph. D.
degree at the University of Illinois at Urbana-Champaign. I am particularly grateful to my
doctorate advisor, Professor Steven Bradlow, for his continuous support and guidance towards
the completion of this project, as well as to Indranil Biswas, Olivier Guichard, Jan Swoboda,
Nicolaus Treib, Hartmut Weiss and Richard Wentworth for shared insights. A very special
thanks to Rafe Mazzeo for a series of illuminating discussions and a wonderful hospitality
during a visit to Stanford University in April 2016. The author acknowledges support from
U.S. National Science Foundation grants DMS 1107452, 1107263, 1107367 “RNMS: GEometric
structures And Representation varieties” (the GEAR Network).

2. Sp(4,R)-Higgs bundles and surface group representations

2.1. Moduli spaces of G-Higgs bundles. Let X be a compact Riemann surface and let
G be a real reductive group. The latter involves considering Cartan data (G,H, θ,B), where
H ⊂ G is a maximal compact subgroup, θ : g → g is a Cartan involution and B is a
non-degenerate bilinear form on g, which is Ad (G)-invariant and θ-invariant. The Cartan
involution θ gives a decomposition (called the Cartan decomposition)

g = h⊕m
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into its ±1-eigenspaces, where h is the Lie algebra of H.
Let HC be the complexification of H and let gC = hC ⊕mC be the complexification of the

Cartan decomposition. The adjoint action of G on g restricts to give a representation (the
isotropy representation) ofH on m. This is independent of the choice of Cartan decomposition,
since any two Cartan decompositions of G are related by a conjugation, using also that
[h,m] ⊆ m, and the same is true for the complexified isotropy representation ι : HC → GL(mC).
This introduces the following definition:

Definition 2.1. Let K be the canonical line bundle over X. A G-Higgs bundle is a pair
(E,ϕ) where

• E is a principal holomorphic HC-bundle over X and
• ϕ is a holomorphic section of the vector bundle E

(
mC)⊗K =

(
E×ιmC)⊗K

The section ϕ is called the Higgs field.
Two G-Higgs bundles (E,ϕ) and (E′, ϕ′) are said to be isomoprhic if there is a vector

bundle isomorphism E ∼= E′ which takes the induced ϕ to ϕ′ under the induced isomorphism
E
(
mC) ∼= E′

(
mC).

To define a moduli space of G-Higgs bundles we need to consider a notion of semistability,
stability and polystability. These notions are defined in terms of an antidominant character
for a parabolic subgroup PA ⊆ HC and a holomorphic reduction σ of the structure group of
the bundle E from HC to PA (see [16] for the precise definitions).

When the group G is connected, principal HC-bundles E are topologically classified by a
characteristic class c (E) ∈ H2

(
X,π1

(
HC)) = π1

(
HC) = π1 (H) = π1 (G).

Definition 2.2. For a fixed class d ∈ π1 (G), the moduli space of polystable G-Higgs bundles
with respect to the group of complex gauge transformations is defined as the set of isomor-
phism classes of polystable G-Higgs bundles (E,ϕ) such that c (E) = d. We will denote this
set by Md (G) and when the group G is compact, the moduli space Md (G) coincides with
Md

(
GC).

Using the general GIT constructions of A. Schmitt for decorated principal bundles in the
case of a real form of a complex reductive algebraic Lie group it is shown that the moduli space
Md (G) is a complex analytic variety, which is algebraic when G is algebraic. The expected
dimension of the moduli space of G-Higgs bundles is (g − 1) dimGC, in the case when G is a
connected semisimple real Lie group; see [16], [31], [32] for details.

2.2. G-Hitchin equations. Let (E,ϕ) be a G-Higgs bundle over a compact Riemann surface
X. By a slight abuse of notation we shall denote the underlying smooth objects of E and ϕ
by the same symbols. The Higgs field can be thus viewed as a (1, 0)-form ϕ ∈ Ω1,0

(
E
(
mC)).

Given a reduction h of structure group to H in the smooth HC-bundle E, we denote by Fh the
curvature of the unique connection compatible with h and the holomorphic structure on E.
Let τh : Ω1,0

(
E
(
gC
))
→ Ω0,1

(
E
(
gC
))

be defined by the compact conjugation of gC which is
given fiberwise by the reduction h, combined with complex conjugation on complex 1-forms.
The next theorem was proved in [16] for an arbitrary reductive real Lie group G.

Theorem 2.3. There exists a reduction h of the structure group of E from HC to H satisfying
the Hitchin equation

Fh − [ϕ, τh (ϕ)] = 0

if and only if (E,ϕ) is polystable.
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From the point of view of moduli spaces it is convenient to fix a C∞ principal H-bundle EH

with fixed topological class d ∈ π1 (H) and study the moduli space of solutions to Hitchin’s
equations for a pair (A,ϕ) consisting of an H-connection A and ϕ ∈ Ω1,0

(
X,EH

(
mC)):

FA − [ϕ, τ (ϕ)] = 0 (2.1)

∂̄Aϕ = 0 (2.2)

where dA is the covariant derivative associated to A and ∂̄A is the (0, 1)-part of dA, defining
the holomorphic structure on EH . Also, τ is defined by the fixed reduction of structure group
EH ↪→ EH

(
HC). The gauge group GH of EH acts on the space of solutions by conjugation

and the moduli space of solutions is defined by

Mgauge
d (G) := {(A,ϕ) satisfying (2.1) and (2.2)}/GH

Now, Theorem 2.3 implies that there is a homeomorphism

Md (G) ∼=Mgauge
d (G)

Using the one-to-one correspondence between H-connections on EH and ∂̄-operators on
EHC , the homeomorphism in the above theorem can be interpreted by saying that in the
GCH -orbit of a polystable G-Higgs bundle

(
∂̄E0 , ϕ0

)
we can find another Higgs bundle

(
∂̄E , ϕ

)
whose corresponding pair (dA, ϕ) satisfies the equation FA− [ϕ, τ (ϕ)] = 0, and this is unique
up to H-gauge transformations.

2.3. Surface group representations. Let Σ be a closed oriented (topological) surface of
genus g. The fundamental group of Σ is described by the presentation

π1 (Σ) =
〈
a1, b1, . . . , ag, bg

∣∣∣∏ [ai, bi] = 1
〉

where [ai, bi] = aibia
−1
i b−1

i is the commutator. Define the moduli space of reductive represen-
tations of π1 (Σ) into G modulo conjugation to be the orbit space

R (G) = Homred (π1 (Σ) , G)/G

This space is a real analytic variety and so R (G) is usually called the character variety (see
[18]).

We can assign a topological invariant to a representation ρ ∈ R (G), by considering its

corresponding flat G-bundle on Σ, defined as Eρ = Σ̃×ρG. Here Σ̃→ Σ is the universal cover
and π1 (Σ) acts on G via ρ. A topological invariant is then given by the characteristic class
c (ρ) := c (Eρ) ∈ π1 (G) ' π1 (H), for H ⊆ G a maximal compact subgroup of G. For a fixed
d ∈ π1 (G) the moduli space of reductive representations with fixed topological invariant d is
now defined as the subvariety

Rd (G) := {[ρ] ∈ R (G) |c (ρ) = d}
Equipping the surface Σ with a complex structure J , there corresponds to a reductive fun-
damental group representation a polystable G-Higgs bundle over the Riemann surface X =
(Σ, J). This is seen using that any solution h to Hitchin’s equations defines a flat reductive
G-connection

D = Dh + ϕ− τ (ϕ) , (2.3)

where Dh is the unique H-connection on E compatible with its holomorphic structure. Con-
versely, given a flat reductive connection D in a G-bundle EG, there exists a harmonic met-
ric, i.e. a reduction of structure group to H ⊂ G corresponding to a harmonic section of
EG/H → X. This reduction produces a solution to Hitchin’s equations such that Equation
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(2.3) holds. In summary, we have the following seminal result, the non-abelian Hodge
correspondence; its proof is based on combined work by N. Hitchin [22], C. Simpson [33],
[35], S. Donaldson [12] and K. Corlette [11]:

Theorem 2.4. Let G be a connected semisimple real Lie group with maximal compact subgroup
H ⊆ G and let d ∈ π1 (G) ' π1 (H). Then there exists a homeomorphism

Rd (G) ∼=Md (G)

2.4. Sp(4,R)-Higgs bundles. In this article, we are particularly interested in the case when
the group G is the semisimple real subgroup of SL(4,R) that preserves a symplectic form on
R4:

Sp(4,R) =
{
A ∈ SL(4,R)

∣∣ATJA = J
}
,

where J =

(
0 I2

−I2 0

)
defines a symplectic form on R4, for I2 the 2× 2 identity matrix.

The Cartan involution θ : sp (4,C) → sp (4,C) with θ (X) = −XT determines a Cartan
decomposition for a choice of maximal compact subgroup H ' U (2) ⊂ Sp(4,R) as follows

sp (4,R) = u (2)⊕m

with complexification sp (4,C) = gl (2,C)⊕mC. It is shown in [15] that the general definition
for a G-Higgs bundle specializes to the following:

Definition 2.5. An Sp(4,R)-Higgs bundle over a compact Riemann surface X is defined by a
triple (V, β, γ), where V is a rank 2 holomorphic vector bundle over X and β, γ are symmetric
homomorphisms β : V ∗ → V ⊗K and γ : V → V ∗ ⊗K, where K is the canonical line bundle
over X.

2.5. Sp(4,R)-Hitchin equations. For the complexified Lie algebra sp (4,C), notice that the
involution σ : sp (4,C)→ sp (4,C), σ (X) = X̄ defines the split real form

sp (4,R) = {X ∈ sp (4,C) |σ (X) = X } ,
while the involution τ : sp (4,C)→ sp (4,C), τ (X) = −X∗ defines the compact real form

sp (2) = sp (4,C) ∩ u (4) = {X ∈ sp (4,C) |τ (X) = X } .
Since τ and the Cartan involution commute, we have τ

(
mC) ⊆ mC and then τ preserves

the Cartan decomposition sp (4,C) = gl (2,C) ⊕ mC. Thus, there is an induced real form on
E
(
mC) which we shall call τ as well for simplicity. Now, it makes sense to apply τ on a

section ϕ ∈ Ω1,0
(
E
(
mC)).

Moreover, for ϕ =

(
0 β
γ 0

)
notice that

− [ϕ, τ (ϕ)] = [ϕ,ϕ∗] =

(
ββ̄ − γ̄γ 0

0 γγ̄ − β̄β

)
The G-Hitchin equations for G = Sp(4,R) with maximal compact subgroup H ' U (2) ⊂

Sp(4,R) read

FA − [ϕ, τ (ϕ)] = 0

∂̄Aϕ = 0

where:

• A is a U (2)-connection on a fixed smooth principal U (2)-bundle EH → X
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• ϕ ∈ Ω1
(
X,EHC

(
mC))

• τ : Ω1
(
X,EHC

(
mC)) → Ω1

(
X,EHC

(
mC)) is the compact real structure considered

above.
• ∂̄A is the (0, 1)-part of the covariant derivative associated to A.

whereas GH = Aut (EH) = Ω0 (X,EH×AdH) is the gauge group of (EH , h) for H = U (2).

2.6. The Toledo invariant and Cayley partner. A basic topological invariant for an
Sp (4,R)-Higgs bundle (V, β, γ) is given by the degree of the underlying bundle

d = deg (V )

This invariant, called the Toledo invariant labels only partially the connected components
of the moduli space M (Sp(4,R)). We use the notation Md = Md (Sp(4,R)) to denote the
moduli space parameterizing isomorphism classes of polystable Sp (4,R)-Higgs bundles with
deg (V ) = d. The sharp bound below for the Toledo invariant when G = Sp (4,R) was first
given by V. Turaev [38]:

Proposition 2.6. (Milnor-Wood inequality) Let (V, β, γ) be a semistable Sp (4,R)-Higgs bun-
dle. Then |d| ≤ 2g − 2.

Definition 2.7. We shall call Sp (4,R)-Higgs bundles with Toledo invariant d = 2g − 2
maximal and denote the components ofM (Sp(4,R)) with maximal positive Toledo invariant
by Mmax 'M2g−2.

The proof of Proposition 2.6 given by P. Gothen in [19] in the language of Higgs bundles
opens the way to considering new topological invariants for our Higgs bundles in order to
count the exact number of components of Mmax. Namely, one sees from that proof that
for a maximal semistable Sp (4,R)-Higgs bundle (V, β, γ), the map γ : V → V ∗ ⊗ K is an
isomorphism.

For a fixed square root of the canonical bundleK, that is, a line bundle L0 such that L2
0 = K,

the isomorphism γ can be used to construct an O (2,C)-holomorphic bundle (W, qW ), with

W := V ∗⊗L0 and qW := γ⊗IL−1
0

: W ∗
'−→W . The Stiefel-Whitney classes of this orthogonal

bundle (W, qW ), which is called the Cayley partner of the Sp (4,R)-Higgs bundle (V, β, γ), are
now appropriate topological invariants to study the topology of the moduli space Mmax; see
[15] for more details.

2.7. The components of Mmax (X,Sp(4,R)). Let wi (W, qW ) ∈ H i (X,Z/2 ), for i = 1, 2
be the Stiefel-Whitney classes introduced in the previous subsection. The classification of
O (2,C)-holomorphic bundles by D. Mumford [26] provides that for a rank 2 orthogonal bundle
(W, qW ) with w1 (W, qW ) = 0, then W = L ⊕ L−1, where L → X is a line bundle, and

qW =

(
0 1
1 0

)
. The induced Higgs field on W is a map

θ : W →W ⊗K2

L⊕ L−1 →
(
L⊕ L−1

)
⊗K2

and one can see that this θ induces a non-zero holomorphic map L→ L−1K2, otherwise the
subbundle L ⊂ W would violate stability for θ. Thus, global sections of the bundle L−2K2

exist, that means, deg
(
L−2K2

)
≥ 0 and so

0 ≤ deg (L) ≤ 2g − 2



8 GEORGIOS KYDONAKIS

The degree deg (L) introduces an extra invariant for the study of components of the moduli
spaceMmax. In fact, when deg (L) = 2g− 2 the connected components are parameterized by
spin structures on the surface Σ. Using Morse theory techniques and a careful study of the
closed subvarieties corresponding to all possible values of the invariants w1, w2 and deg(L), it
was shown in [19] that the total number of connected components of the moduli spaceMmax

is 3 · 22g + 2g − 4, for g the genus of the Riemann surface X.

2.8. Maximal fundamental group representations into Sp (4,R). From an alternative
point of view, the non-abelian Hodge theorem provides a homeomorphism of Mmax to a
moduli space of representations Rmax, which we briefly introduce next:

Let G be a Hermitian Lie group of non-compact type, that is, the symmetric space associ-
ated to G is an irreducible Hermitian symmetric space of non-compact type. Using the iden-
tification H2 (π1 (Σ) ,R) ' H2 (Σ,R), the Toledo invariant of a representation ρ : π1 (Σ)→ G
is defined as the integer

Tρ := 〈ρ∗ (κG) , [Σ]〉 ,
where ρ∗ (κG) is the pullback of the Kähler class κG ∈ H2

c (G,R) of G and [Σ] ∈ H2 (Σ,R) is
the orientation class. It is bounded in absolute value, |Tρ| ≤ −C (G)χ (Σ), where C (G) is an
explicit constant depending only on G; we refer the reader to [8] for more details.

Definition 2.8. A representation ρ : π1 (Σ) → G is called maximal whenever the Toledo
invariant Tρ = −C (G)χ (Σ).

Theorem 2.9 (S. Bradlow, O. Garćıa-Prada, P. Gothen [7]). There are 2g−3 connected com-
ponents of Mmax ' Rmax, in which the corresponding representations do not factor through
any proper reductive subgroup of Sp (4,R), thus they have Zariski-dense image in Sp (4,R).

In [20], O. Guichard and A. Wienhard describe model maximal fundamental group repre-
sentations ρ : π1 (Σ)→ Sp(4,R) in the components of Rmax. These models are distinguished
into two subcategories, standard representations and hybrid representations.

We review the construction of these model representations in further detail with particular
notice towards the construction of these hybrid representations. Fix a discrete embedding
i : π1 (Σ)→ SL (2,R).

i) Irreducible Fuchsian representations
Choose the symplectic identification (R3 [X,Y ] ,−ω2) ∼=

(
R4, ω

)
given by X3 = e1, X

2Y =

−e2, Y
3 = −e3, XY

2 = −e4√
3

, where ω is the symplectic form given by the antisymmetric

matrix J =

(
0 Idn
−Idn 0

)
. With respect to this identification the irreducible representation

φirr : SL (2,R)→ Sp (4,R) is given by

φirr

(
a b
c d

)
=


a3 −

√
3a2b −b3 −

√
3ab2

−
√

3a2c 2abc+ a2d
√

3b2d 2abd+ b2c

−c3
√

3c2d d3
√

3cd2

−
√

3ac2 2acd+ bc2
√

3bd2 2bcd+ ad2

 (2.4)

Precomposition with i : π1 (Σ)→ SL (2,R) gives rise to an irreducible Fuchsian representation

ρirr : π1 (Σ)
i−→ SL (2,R)

φirr−−→ Sp (4,R).
ii) Diagonal Fuchsian representations
Let R4 = W1 ⊕W2, with Wi = span (ei, e2+i) be a symplectic splitting of R4 with respect

to the symplectic basis (ei)i=1,...,4. This splitting gives rise to an embedding ψ : SL(2,R)2 →
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Sp (W1)× Sp (W2) ⊂ Sp (4,R) given by

ψ

((
a b
c d

)
,

(
α β
γ δ

))
=


a 0 b 0
0 α 0 β
c 0 d 0
0 γ 0 δ

 (2.5)

Precomposition with the diagonal embedding of SL (2,R)→ SL(2,R)2 gives rise to the diag-
onal embedding φ∆ : SL (2,R) → Sp (4,R), and precomposition with i : π1 (Σ) → SL (2,R)

gives now rise to a diagonal Fuchsian representation ρ∆ : π1 (Σ)
i−→ SL (2,R)

φ∆−−→ Sp (4,R).
iii) Twisted diagonal representations
For any maximal representation ρ : π1 (Σ) → Sp (4,R) the centralizer ρ (π1 (Σ)) is a sub-

group of O (2). Considering now a representation Θ : π1 (Σ)→ O (2), set

ρΘ = i⊗Θ : π1 (Σ)→ Sp (4,R)

γ 7→ φ∆ (i (γ) ,Θ (γ))

Such a representation will be called twisted diagonal representation.

Remark 2.10. The representations in the families (i)-(iii) above are the so-called standard
representations.

iv) Hybrid representations
The definition of hybrid representations involves a gluing construction for fundamental

group representations over a connected sum of surfaces. Let Σ = Σl∪γΣr be a decomposition
of the surface Σ along a simple, closed, oriented, separating geodesic γ into two subsurfaces Σl

and Σr. Pick ρirr : π1 (Σ) → SL (2,R)
φirr−−→ Sp (4,R) an irreducible Fuchsian representation

and ρ∆ : π1 (Σ) → SL (2,R)
∆−→ SL(2,R)2 → Sp (4,R) a diagonal Fuchsian representation.

One could amalgamate the restriction of the irreducible Fuchsian representation ρirr to Σl

with the restriction of the diagonal Fuchsian representation ρ∆ to Σr, however the holonomies
of those along γ a priori do not agree. A deformation of ρ∆ on π1 (Σ) can be considered, such
that the holonomies would agree along γ, thus allowing the amalgamation operation. This
introduces new representations by gluing:

Definition 2.11. A hybrid representation is defined as the amalgamated representation

ρ := ρl
∣∣
π1(Σl) ∗ ρr

∣∣
π1(Σr) : π1 (Σ) ' π1 (Σl) ∗〈γ〉π1 (Σr)→ Sp (4,R)

If χ (Σl) = k, then we call ρ a k-hybrid representation.

The following important result was established in [20]:

Theorem 2.12 (O. Guichard, A. Wienhard [20]). Every maximal representation ρ : π1 (Σ)→
Sp (4,R) can be deformed to a standard representation or a hybrid representation.

The subsurfaces Σl and Σr that we are considering here are surfaces with boundary. A
notion of Toledo invariant can be also defined for representations over such surfaces and it
thus makes sense to talk about maximal representations over surfaces with boundary as well;
see [8] for a detailed definition. Moreover, the authors in [8] have established an additivity
property for the Toledo invariant over a connected sum of surfaces. In particular:
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Proposition 2.13 ([8] Proposition 3.2). If Σ = Σ1∪CΣ2 is the connected sum of two subsur-
faces Σi along a separating loop C, then

Tκ (Σ, ρ) = Tκ (Σ1, ρ1) +Tκ (Σ2, ρ2)

where ρi = ρ
∣∣
π1(Σi) , i = 1, 2.

Note that this property implies that the amalgamated product of two maximal representa-
tions is again a maximal representation defined over the compact surface Σ.

3. Parabolic Sp(4,R)-Higgs bundles

In this section we include the main definitions for parabolic G-Higgs bundles that we are
going to be needing later on. We are primarily interested in the case G = Sp(4,R) and in
describing the moduli space of maximal parabolic Sp(4,R)-Higgs bundles. For the latter, a
Milnor-Wood bound for an appropriate notion of Toledo invariant is necessary. A Hitchin-
Kobayashi correspondence provided in [3] for parabolic G-Higgs bundles points out that such
holomorphic objects should correspond to representations of the fundamental group of a
surface with boundary, with fixed monodromy around the boundary components. For a more
detailed study of moduli of parabolic Sp(2n,R)-Higgs bundles, see [24].

3.1. Parabolic GL (n,C)-Higgs bundles. For further reference on the material covered in
this section see [4], [6], or [17].

Definition 3.1. Let X be a closed, connected, smooth Riemann surface of genus g ≥ 2 and
D = {x1, . . . , xs} a divisor of s-many distinct points on X; denote this pair by (X,D). A
parabolic vector bundle E over (X,D) is a holomorphic vector bundle E → X with parabolic
structure at each x ∈ D (weighted flag on each fiber Ex):

Ex = Ex,1 ⊃ Ex,2 ⊃ . . . ⊃ Ex,r(x)+1 = {0}
0 ≤ α1 (x) < . . . < αr(x) (x) < 1

We usually write (E,α) to denote a vector bundle equipped with a parabolic structure
determined by a system of weights α (x) = (α1 (x) , . . . , αn (x)) at each x ∈ D. Moreover,
set ki (x) = dim (Ex,i/Ex,i+1 ) be the multiplicity of the weight αi (x). We can also write the
weights repeated according to their multiplicity as

0 ≤ α̃1 (x) ≤ . . . ≤ α̃n (x) < 1

where now n = rkE. A weighted flag shall be called full, if ki (x) = 1 for every i and x ∈ D.
Given a pair of parabolic vector bundles the basic constructions for a parabolic subbundle,

direct sum, dual and tensor product have been described in [4] and [17]; we will be making
frequent use of these constructions.

Definition 3.2. A holomorphic map f : E → E′ of parabolic vector bundles (E,α) , (E′, α′)
is called parabolic if αi (x) > α′j (x) implies f (Ex,i) ⊂ E′x,j+1, for every x ∈ D.
Furthermore, we call such map strongly parabolic if αi (x) ≥ α′j (x) implies f (Ex,i) ⊂ E′x,j+1

for every x ∈ D.

Definition 3.3. A notion of parabolic degree and parabolic slope of a vector bundle equipped
with a parabolic structure can be defined as follows

par deg (E) = degE +
∑
x∈D

r(x)∑
i=1

ki (x)αi (x)



MODEL HIGGS BUNDLES IN EXCEPTIONAL COMPONENTS 11

parµ (E) =
pardeg (E)

rk (E)

Definition 3.4. A parabolic vector bundle will be called stable (resp. semistable), if for every
non-trivial proper parabolic subbundle F ≤ E, it is parµ (F ) < parµ (E), (resp. ≤).

Definition 3.5. Let K be the canonical bundle over X and E a parabolic vector bundle.
The bundle morphism Φ : E → E⊗K (D) will be called a parabolic Higgs field, if it preserves
the parabolic structure at each point x ∈ D:

Φ |x (Ex,i) ⊂ Ex,i ⊗K (D) |x
In particular, we call Φ strongly parabolic, if

Φ |x (Ex,i) ⊂ Ex,i+1 ⊗K (D) |x
in other words, Φ is a meromorphic endomorphism valued 1-form with simple poles along the
divisor D, whose residue at x ∈ D is nilpotent with respect to the filtration. Note that the
divisor D is always considered to be a reduced divisor.

After these considerations we define parabolic Higgs bundles as follows:

Definition 3.6. Let K be the canonical bundle over X and E be a parabolic vector bundle
over X. A parabolic Higgs bundle over (X,D) is given by a pair (E,Φ), where Φ : E →
E ⊗K (D) is a strongly parabolic Higgs field.

Analogously to the non-parabolic case, we may define stability as follows:

Definition 3.7. A parabolic Higgs bundle will be called stable (resp. semistable), if for every
Φ-invariant parabolic subbundle F ≤ E it is parµ (F ) < parµ (E) (resp. ≤). Furthermore, it
will be called polystable, if it is the direct sum of stable parabolic Higgs bundles of the same
parabolic slope.

In [34], C. Simpson established a non-abelian Hodge correspondence for non-compact sur-
faces. A parabolic Higgs bundle is defined as a filtered regular Higgs bundle and for the
construction of the correspondence in this case, it is necessary that the harmonic metric on
the bundle has at most polynomial growth at the punctures in order to extend the holomorphic
Higgs bundles across those points; these notions were introduced in [34] and the necessary
growth condition of the hermitian metric, called tameness, is related to the algebraic stability
of the filtered regular Higgs bundle. The topological objects that correspond to algebraically
stable filtered regular Higgs bundles were called filtered local systems and the theorem of C.
Simpson also provides a relation between the parabolic weights of a stable parabolic Higgs
bundle and the holonomy of the associated flat connection around each puncture (cf. [34] for
more information).

3.2. Parabolic G-Higgs bundles. In [3] the authors introduce parabolic G-Higgs bundles
over a punctured Riemann surface for a non-compact real reductive Lie group G. This def-
inition involves a choice for each puncture of an element in the Weyl alcove of a maximal
compact subgroup H ⊂ G, handling both cases as if this element lies in the interior of the
alcove or if it lies in a ‘bad’ wall of the alcove. Below we summarize the basic steps towards
this definition.

Let X be a compact, connected Riemann surface and let {x1, . . . , xs} be a finite set of
different points on X with D = x1 + . . . xs be the corresponding effective divisor. Let now
HC be a reductive, complex Lie group. Fix a maximal compact subgroup H ⊂ HC, and a
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maximal torus T ⊂ H with Lie algebra t. Denote E
(
HC) = E×HCHC → X, the HC-fibration

associated to E via the adjoint representation of HC on itself. Then

E
(
HC
)
x

=
{
φ : Ex → HC ∣∣φ (eh) = h−1φ (e)h , ∀e ∈ Ex, h ∈ HC

}
i.e. the fiber can be identified with the set of antiequivariant maps φ.

Fix an alcove A ⊂ t of H containing 0 ∈ t and for αi ∈
√
−1Ā let Pαi ⊂ HC be the

parabolic subgroup defined by the αi.

Definition 3.8. We define a parabolic structure of weight αi on E over a point xi as the choice
of a subgroup Qi ⊂ E

(
HC)

xi
with the property that there exists a trivialization e ∈ Exi for

which Pαi = {φ (e) |φ ∈ Qi }.

Given this, we now set the following:

Definition 3.9. Let α = (α1, . . . , αn) be a collection of elements in
√
−1Ā. A parabolic

bundle over (X,D) of weight α is a holomorphic principal bundle with a choice for any i of a
parabolic structure of weight αi over xi.

Consider that the parabolic bundle E comes equipped with a holomorphic structure ∂̄ and
consider a metric h ∈ Γ (X\D;E/H) defined away from the divisor D.

Definition 3.10. The metric h is called an α-adapted metric if for any parabolic point xi
the following holds: Let ei ∈ Exi be an element belonging to the Pαi orbit specified by the
parabolic structure. Choose local holomorphic coordinate z and extend the trivialization ei
into a holomorphic trivialization of E near xi. Then we can write near xi

h =
(
|z|−αiec

)2
with Ad

(
|z|−αi

)
c = o (log |z|), Ad

(
|z|−αi

)
dc ∈ L2 and Ad

(
|z|−αi

)
Fh ∈ L1.

For a real reductive Lie group G with a maximal compact subgroup H, let g = h⊕ m the
Cartan decomposition of its Lie algebra into its ±1-eigenspaces, where h = Lie (H) and let
E
(
mC) be the bundle associated to E via the isotropy representation. Choose a trivialization

e ∈ E near the point xi, such that near xi the parabolic weight lies in αi ∈
√
−1Ā. In the

trivialization e, we can decompose the bundle E
(
mC) under the eigenvalues of ad (αi) acting

on mC as

E
(
mC
)

= ⊕
µ
mC
µ

Decompose accordingly a section ϕ of E
(
mC) as ϕ =

∑
ϕµ. After these preliminaries we set

the following:

Definition 3.11. The sheaf PE
(
mC) of parabolic sections (resp. the sheaf NE

(
mC) of

strictly parabolic sections) of E
(
mC) is consisted of meromorphic sections ϕ of the bundle

E
(
mC) with singularities at the points xi, with ϕµ having order

v (ϕµ) ≥ −b−µc (resp. v (ϕµ) > −b−µc )

This means that if a− 1 < µ ≤ a (resp. a− 1 ≤ µ < a) for some integer a, then ϕµ = O (za).

We finally have the definition of a parabolic G-Higgs bundle as follows:

Definition 3.12. We define a parabolic G-Higgs bundle over a Riemann surface with a divisor
(X,D) to be a pair (E,ϕ), where:
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(1) E is a parabolic principal HC-bundle over (X,D), and
(2) ϕ is a holomorphic section of PE

(
mC)⊗K (D).

The pair (E,ϕ) will be called a strictly parabolic G-Higgs bundle if in addition the Higgs field
ϕ is a section of NE

(
mC)⊗K (D).

For a parabolic principal bundle E over (X,D) with weights α, a notion of parabolic degree
was defined in [3] as the sum of two terms, one global and independent of the parabolic
structure, and one local and depending on the parabolic structure. Before we state this
definition, recall that the degree of a (non-parabolic) bundle can be defined using Chern-Weil
theory as follows:

Fix a standard parabolic subgroup P ⊂ HC, an antidominant character χ : p → C and a
holomorphic reduction σ of the structure group of E from HC to P , with Eσ denoting the
P -principal bundle corresponding to this reduction σ. Then, the degree of E is given by

deg (E) (σ, χ) :=

√
−1

2π

∫
X

χ∗ (FA)

where FA is the curvature of any P -connection A on Eσ.
Now, let Qi ⊂ E

(
HC)

xi
the parabolic subgroups in the definition of the parabolic struc-

ture. At each point in the divisor D, there are two parabolic subgroups equipped with an
antidominant character, one coming from the parabolic structure (Qi, αi) and one coming
from the reduction

(
Eσ(P )xi , χ

)
. A relative degree for such a pair of parabolic subgroups

(Q,P) is then defined:

deg ((Q, σ) , (P, s)) = cos∠T its (η (σ) , η (s))

where ∠T its is the Tits distance on ∂∞X for X = H\G a symmetric space of non-compact
type, and η (s) = lim

t→∞
∗ ets ∈ ∂∞Σ for s in an H-orbit OH ⊂ m. The parabolic degree is now

given by the sum of the two terms described previously:

pardegα (E) (σ, χ) := deg (E) (σ, χ)−
∑
i

deg
(
(Qi, αi) ,

(
Eσ(P )xi , χ

))
The definition of polystability is next given with respect to an element c ∈

√
−1l for

l = Lie (Z (H)):

Definition 3.13. Let (E,Φ) be a parabolic G-Higgs bundle over (X,D). Then (E,Φ) will
be called polystable if for every s ∈

√
−1h and any holomorphic reduction σ of the structure

group of E to Ps, such that Φ
∣∣
X\D ∈ H0 (X\D,Eσ (ms)⊗K) it is

par deg (E) (σ, χs)− 〈c, s〉 ≥ 0

The following theorem proven in [3] establishes a Hitchin-Kobayashi correspondence for
parabolic G-Higgs bundles.

Theorem 3.14 (O. Biquard, O. Garćıa-Prada, I. Mundet i Riera [3]). Let (E,Φ) be a parabolic
G-Higgs bundle equipped with an adapted initial metric h0. Suppose that par deg (E) = χ (c)
for all characters of g. Then (E,Φ) admits an Hermite-Einstein metric h, quasi-isometric to
h0, if and only if (E,Φ) is polystable.
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3.3. Parabolic Sp(4,R)-Higgs bundles. The general parabolic G-Higgs bundle definitions
of §3.2 can be now restricted to the case when the group G = Sp(4,R) to the following (see
[24] for a more detailed exposition):

Definition 3.15. Let X be a compact Riemann surface of genus g and let the divisor D :=
{x1, . . . , xs} of s-many distinct points on X, assuming that 2g − 2 + s > 0. Fix a line bundle
ι = OX (D) over the divisor D. A parabolic Sp(4,R)-Higgs bundle is defined as a triple
(V, β, γ), where:

• V is a rank 2 bundle on X, equipped with a parabolic structure given by a flag
Vx ⊃ Lx ⊃ 0 and weights 0 ≤ α1 (x) < α2 (x) < 1 for every x ∈ D, and
• β : V ∨ → V ⊗ K ⊗ ι and γ : V → V ∨ ⊗ K ⊗ ι are strongly parabolic symmetric

homomorphisms,

and where V ∨ := (V ⊗ ι)∗ denotes the parabolic dual of the parabolic bundle V .

A notion of parabolic Toledo invariant can still be considered:

Definition 3.16. The parabolic Toledo invariant of a parabolic Sp (4,R)-Higgs bundle is
defined as the rational number

τ = par deg (V )

Moreover, we get a Milnor-Wood type inequality for this topological invariant:

Proposition 3.17. Let (E,Φ) be a semistable parabolic Sp (4,R)-Higgs bundle. Then

|τ | ≤ 2g − 2 + s

where s is the number of punctures on the surface X.

Proof. Adaptation in the parabolic case of the proof of Proposition 3.1 from [19]. �

Definition 3.18. The parabolic Sp (4,R)-Higgs bundles with parabolic Toledo invariant τ =
2g − 2 + s will be called maximal and we will denote the components containing such triples
by

Mmax
par :=M2g−2+s

par

4. Producing approximate solutions by gluing

In this section we develop a gluing construction for solutions to the Sp(4,R)-Hitchin equa-
tions over a connected sum of Riemann surfaces to produce an approximate solution of the
equations. The necessary condition in order to combine the initial parabolic data over the
connected sum operation is that this data is identified over annuli around the points in the
divisors of the Riemann surfaces. Aiming to provide new model Higgs bundles in the excep-
tional components of Mmax, we consider parabolic data which around the punctures are a
priori not identified, but we will rather seek for deformations of those into model solutions of
the Hitchin equations which will allow us to combine data over the complex connected sum.
This deformation argument is coming from deformations of SL(2,R)-solutions to the Hitchin
equations over a punctured surface and subsequently we extend this for Sp(4,R)-pairs using
appropriate embeddings φ : SL(2,R) ↪→ Sp(4,R). Therefore, our gluing construction involves
parabolic Sp(4,R)-pairs which arise from SL(2,R)-pairs via extensions by such embeddings.
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4.1. The local model. We describe the local SL(2,R)-model solutions to the Hitchin equa-
tions which are going to serve as a guide for the gluing construction of the parabolic stable
Sp(4,R)-Higgs bundles. The description of these models is obtained by studying the behavior
of the harmonic map between a surface X with a given complex structure and the surface X
with the corresponding Riemannian metric of constant curvature -4, under degeneration of
the domain Riemann surface X to a noded surface; cf. [36], [39] for further details.

Let C =
(
S1
)
x
× [1,∞)y denote the half-infinite cylinder, endowed with the complex coor-

dinate z = x + iy and flat Riemannian metric gC = |dz|2 = dx2 + dy2. For parameter s > 0
let

Ns =
[
s−1csc−1

(
s−1
)
,
π

s
− s−1csc−1

(
s−1
)]
u
×
(
S1
)
v

be the finite cylinder with complex coordinate w = u+ iv, and carrying the hyperbolic metric

gs = s2csc2 (su) |dw|2. It is shown in [39] that the one parameter family ws :
(
C, |dz|2

)
→

(Ns, gs) with ws = us + ivs and where vs (x, y) = x, us (x, y) = 1
s sin−1

(
1−Bs(y)
1+Bs(y)

)
, for Bs (y) =

1−s
1+se

2s(1−y), serves as a model for harmonic maps with domain a noded Riemann surface and
target a smooth Riemann surface containing a long hyperbolic neck with central geodesic of
length 2πs.

For a stable SL(2,R)-Higgs bundle (E,Φ) onX with E = L⊕L−1 for L a holomorphic square
root of the canonical line bundle over X, endowed with an auxiliary hermitian metric h0, and

Φ =

(
0 q
1 0

)
∈ H0 (X, sl (E)) for q a holomorphic quadratic differential, there is an induced

hermitian metric H0 = h0⊕h−1
0 on E and A = AL⊕A−1

L the associated Chern connection with
respect to h. The stability condition implies that there exists a complex gauge transformation
g unique up to unitary gauge transformations, such that (A1,s,Φ1,s) := g∗ (A,Φ) is a solution
to the Hitchin equations. Choosing a local holomorphic trivialization on E and assuming that
with respect to it the auxiliary hermitian metric h0 is the standard hermitian metric on C2,
the corresponding hermitian metric for this solution on the bundle E = L ⊕ L−1 is globally
well-defined with respect to the holomorphic splitting of E into line bundles. Calculations

worked out in [36] imply that in particular H1,s =

(
h1,s 0
0 h−1

1,s

)
, for

h1,s =
2

s

(
1−B1/2

s

1 +B
1/2
s

)

the hermitian metric on L and gs with g2
s = H−1

1,s is the complex gauge transformation giving

rise to an exact solution (A1,s,Φ1,s) of the self-duality equations.
Moreover, after the change in coordinates

ζ = eiz, idz =
dζ

ζ

which describes the conformal mapping of the cylinder C to the punctured unit disk, one sees
that

A1,s = O (|ζ|s)
(

1 0
0 −1

)(
dζ

ζ
− dζ̄

ζ̄

)
, Φ1,s = (1 +O (|ζ|s))

(
0 s

2
s
2 0

)
dζ

iζ
.
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Therefore, after a unitary change of frame, the Higgs field Φ1,s is asymptotic to the model

Higgs field Φ mod
s =

(
s
2 0
0 − s

2

)
dζ
iζ , while the connection A1,s is asymptotic to the trivial flat

connection.
In conclusion, the model solution to the SL(2,R)-Hitchin equations we will be considering

is described by

A mod = 0, Φ mod =

(
C 0
0 −C

)
dz

z

over a punctured disk with z-coordinates around the puncture with the condition that C ∈ R
with C 6= 0, and that the meromorphic quadratic differential q := det Φ mod has at least one
simple zero. That this is indeed the generic case, is discussed in [25].

4.2. Weighted Sobolev spaces. In order to develop the necessary analytic arguments for
the gluing construction later on, we need to define Sobolev spaces. Let X be a compact Rie-
mann surface and D := {p1, . . . , ps} be a collection of s-many distinct points on X. Moreover,
let (E, h) be a hermitian vector bundle on E. Choose an initial pair

(
A mod ,Φ mod

)
on E,

such that in some unitary trivialization of E around each point p ∈ D, the pair coincides
with the local model from §4.1. Of course, on the interior of each region X\ {p} the pair(
A mod ,Φ mod

)
need not satisfy the Hitchin equations.

For fixed local coordinates z around each point p ∈ D, such that z (p) = 0, define r to be
a positive function which coincides with |z| around the puncture. Using the singular measure
r−1drdθ and a fixed weight δ > 0 define weighted L2-Sobolev spaces:

L2
δ =

{
f ∈ L2 (rdrdθ)

∣∣∣∣ f

rδ+1
∈ L2

}
and

Hk
δ =

{
u,∇ju ∈ L2

δ (rdr) , 0 ≤ j ≤ k
}
.

The Sobolev space with k-derivatives in L2 is defined as:

Lk,2δ =

{
f,
∇jf
rk−j

∈ L2
δ (rdrdθ) , 0 ≤ j ≤ k

}
where ∇ is the covariant derivative associated to a fixed background unitary connection on
E. We are interested in deformations of A and Φ such that the curvature of the connection
D = A+Φ+Φ∗ remains O

(
r−2+δ

)
, that is, slightly better than L1. We can then define global

Sobolev spaces on X as the spaces of admissible deformations of the model unitary connection
and the model Higgs field

(
A mod ,Φ mod

)
as:

A =
{
A mod + α

∣∣∣α ∈ H1,2
−2+δ

(
Ω1 ⊗ su (E)

)}
and

B =
{

Φ mod + ϕ
∣∣∣ϕ ∈ H1,2

−2+δ

(
Ω1,0 ⊗ End (E)

)}
The space of unitary gauge transformations

G =
{
g ∈ U (E) , g−1dg ∈ L1,2

−2+δ

}
acts on A and B as follows

g∗ (A,Φ) =
(
g−1Ag + g−1dg, g−1Φg

)
for a pair (A,Φ) ∈ A× B.
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These considerations allow us to introduce the moduli space of solutions which are close to
the model solution over a punctured Riemann surface X× := X−D for some fixed parameter
C ∈ R:

M
(
X×
)

=
{(A,Φ) ∈ A× B |(A,Φ) satisfies the Hitchin equations}

G
This moduli space was explicitly constructed by H. Konno in [23] as a hyperkähler quotient.

4.3. Approximate solutions of the SL(2,R)-Hitchin equations. In §4.2 we saw that
a point in the moduli space M (X×) differs from a model pair

(
A mod ,Φ mod

)
by some

element in H1
−2+δ. The following result by O. Biquard and P. Boalch shows that (A,Φ) is

asymptotically close to the model in a much stronger sense:

Lemma 4.1. Lemma 5.3 in [2]. For each point p ∈ D let
(
A mod
p ,Φ mod

p

)
be a model pair as

was defined in §4.1. If (A,Φ) ∈ M (X×), then there exists a unitary gauge transformation
g ∈ G such that in a neighborhood of each point p ∈ D it is

g∗ (A,Φ) =
(
A mod
p ,Φ mod

p

)
+O

(
r−1+δ

)
for a positive constant δ.

The decay described in this lemma can be further improved by showing that in a suitable
complex gauge transformation the point (A,Φ) coincides precisely with the model near each
puncture in D. With respect to the singular measure r−1drdϑ on C, we first introduce the
Hilbert spaces

L2
−1+δ

(
r−1drdϑ

)
=
{
u ∈ L2 (D)

∣∣∣r−δu ∈ L2
(
r−1drdϑ

)}
Hk
−1+δ

(
r−1drdϑ

)
=
{
u ∈ L2 (D)

∣∣∣(r∂r)j∂lϑu ∈ L2
−1+δ

(
r−1drdϑ

)
, 0 ≤ j + l ≤ k

}
for D = {z ∈ C |0 < |z| < 1} the punctured unit disk. We then have the following result by
J. Swoboda:

Lemma 4.2. Lemma 3.2 in [36]. Let (A,Φ) ∈ M (X×) and let δ be the constant provided
by Lemma 4.1. Fix another constant 0 < δ′ < min

{
1
2 , δ
}

. Then there is a complex gauge

transformation g = exp (γ) ∈ Gc with γ ∈ H2
−1+δ′

(
r−1drdϑ

)
, such that g∗ (A,Φ) coincides

with
(
A mod
p ,Φ mod

p

)
in a sufficiently small neighborhood of the point p, for each p ∈ D.

We shall now use this complex gauge transformation as well as a smooth cut-off function
to obtain an approximate solution to the SL(2,R)-Hitchin equations. For the fixed local
coordinates z around each puncture p and the positive function r coinciding with |z| around the
puncture, fix a constant 0 < R < 1 and choose a smooth cut-off function χR : [0,∞)→ [0, 1]
with suppχ ⊆ [0, R] and χR (r) = 1 for r ≤ 3R

4 . We impose the further requirement on the
growth rate of this cut-off function:

|r∂rχR|+
∣∣∣(r∂r)2χR

∣∣∣ ≤ C (4.1)

for some constant C not depending on R.
The map x 7→ χR (r (x)) : X× → R gives rise to a smooth cut-off function on the punctured

surface X× which by a slight abuse of notation we shall still denote by χR. We may use this
function χR to glue the two pairs (A,Φ) and

(
A mod
p ,Φ mod

p

)
into an approximate solution(

AappR ,Φapp
R

)
:= exp (χRγ)∗ (A,Φ) .



18 GEORGIOS KYDONAKIS

The pair
(
AappR ,Φapp

R

)
is a smooth pair and is by construction an exact solution of the Hitchin

equations away from each punctured neighborhood Up, while it coincides with the model pair(
A mod
p ,Φ mod

p

)
near each puncture. More precisely, we have:

(
AappR ,Φapp

R

)
=

 (A,Φ) , over X\
⋃
p∈D

{
z ∈ Up

∣∣3R
4 ≤ |z| ≤ R

}
(
A mod
p ,Φ mod

p

)
, over

{
z ∈ Up

∣∣0 < |z| ≤ 3R
4

}
, for each p ∈ D

Figure 1. Constructing an approximate solution over the punctured surface X×.

Since
(
AappR ,Φapp

R

)
is complex gauge equivalent to an exact solution (A,Φ) of the Hitchin

equations, it does still satisfy the second equation, in other words, it holds that ∂̄Aapp
R

Φapp
R = 0.

Indeed, for g̃ := exp (χRγ), we defined
(
AappR ,Φapp

R

)
= g̃∗ (A,Φ) =

(
g̃−1Ag̃ + g̃−1dg̃, g̃−1Φg̃

)
and (A,Φ) is an exact solution, thus in particular

0 = ∂̄AΦ = ∂̄Φ +
[
A0,1 ∧ Φ

]
We may now check

∂̄Aapp
R

Φapp
R = ∂̄Φapp

R +
[(
AappR

)0,1 ∧ Φapp
R

]
= ∂̄

(
g̃−1Φg̃

)
+
[(
g̃−1A0,1g̃ + g̃−1∂̄g̃

)
∧ g̃−1Φg̃

]
= ∂̄

(
g̃−1Φg̃

)
+ g̃−1

[
A0,1 ∧ Φ

]
g̃ + g̃−1

(
∂̄g̃
)
g̃−1Φg̃ − g̃−1Φ∂̄g̃

= ∂̄
(
g̃−1Φg̃

)
+ g̃−1

(
−∂̄Φ

)
g̃ + g̃−1

(
∂̄g̃
)
g̃−1Φg̃ − g̃−1Φ∂̄g̃

= ∂̄
(
g̃−1
)

Φg̃ + g̃−1
(
∂̄g̃
)
g̃−1Φg̃ = 0,

using the identity
(
∂̄g̃
)
g̃−1 + g̃∂̄

(
g̃−1
)

= 0.
Moreover, Lemma 4.2 as well as the Assumption (4.1) we made on the growth rate of the

bump function χR provide us with a good estimate of the error up to which
(
AappR ,Φapp

R

)
satisfies the first equation:

Lemma 4.3. Let δ′ > 0 be as in Lemma 4.2 and fix some further constant 0 < δ′′ < δ′. The
approximate solution

(
AappR ,Φapp

R

)
to the parameter 0 < R < 1 satisfies∥∥∥∗F⊥Aapp

R
+ ∗

[
Φapp
R ∧

(
Φapp
R

)∗]∥∥∥
C0(X×)

≤ CRδ′′
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for some constant C = C (δ′, δ′′) which does not depend on R.

Proof. See [36] Lemma 3.5. �

4.4. Extending SL(2,C)-pairs into Sp(4,C). We will now use the approximate solutions
from §4.3 in order to obtain an approximate solution by gluing parabolic Higgs bundles. Let
X1 be a closed Riemann surface of genus g1 and D1 = {p1, . . . , ps} a collection of distinct
points on X1. Let (E1,Φ1) → X1 be a parabolic stable SL(2,R)-Higgs bundle. Then there
exists an adapted Hermitian metric h1, such that (Dh1 ,Φ1) is a solution to the equations,
with Dh1 = ∇

(
∂̄1, h1

)
the associated Chern connection.

Let g1 = exp (γ1) be the complex gauge transformation from §4.3, such that g∗1 (Dh1 ,Φ1) is
asymptotically close to a model solution

(
A mod

1,p ,Φ mod
1,p

)
near the puncture p, for each p ∈ D1.

Choose a trivialization τ over a neighborhood Up ⊂ X1 so that (Dh1)τ denotes the connection
matrix and let χ1 be a smooth bump function on Up with the assumptions made in §4.3, so
that we may define g̃1 = exp (χ1γ1) and take the approximate solution over X1

(Aapp1 ,Φapp
1 ) = g̃∗1 (Dh1 ,Φ1) =

{
(Dh1 ,Φ1) , away from the points in the divisor D1(
A mod

1,p ,Φ mod
1,p

)
, near the point p, for each p ∈ D1

The connection Aapp1 is given, in that same trivialization, by the connection matrix χ1(Dh1)τ .
The fact that g̃1 is a complex gauge transformation may cause the holonomy over the bump
region not to be real, so a priori we are considering this pair as SL(2,C)-data.

We wish to obtain an approximate Sp(4,C)-pair by extending the SL(2,C)-data via an
embedding

φ : SL(2,R) ↪→ Sp(4,R)

and its extension φ : SL(2,C) ↪→ Sp(4,C). For the Cartan decompositions

sl (2,R) = so (2)⊕m (SL(2,R))

sp (4,R) = u (2)⊕m (Sp(4,R))

their complexifications respectively read

sl (2,C) = so (2,C)⊕mC (SL(2,R))

sp (4,C) = gl (2,C)⊕mC (Sp(4,R))

Assume now that copies of a maximal compact subgroup of SL(2,R) are mapped via φ into

copies of a maximal compact subgroup of Sp(4,R). Then, since SO(2)C = SO(2,C) and

U(2)C = GL (2,C), the embedding φ describes an embedding SO(2,C) ↪→ GL (2,C) and so
we may use its infinitesimal deformation φ∗ : sl(2,C) → sp(4,C) to extend SL(2,C)-data to
Sp(4,C)-data (see [29], §5.4, 5.5 for details).

We shall denote the Sp(4,C)-pair obtained by extension through φ by (Al,Φl), with the
curvature of the connection denoted by

FAl
∈ Ω2

(
R2; ad

(
QGL(2,C)

))
and with the Higgs field Φl given by

Φl = φ∗

∣∣∣mC(SL(2,C)) (Φapp
1 )

Assume, moreover, that the norm of the infinitesimal deformation φ∗ satisfies a Lipschitz
condition, in other words it holds that

‖φ∗ (M)‖sp(4,C) ≤ C‖M‖sl(2,C)
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for M ∈ sl (2,C). In fact, the norms considered above are equivalent to the C0-norm. Re-
stricting these norms to so (2,C) and mC (SL(2,R)) respectively, we may deduce that the error
in curvature is still described by the inequality∥∥∥∗F⊥Aapp

l
+ ∗

[
Φapp
l ∧

(
Φapp
l

)∗]∥∥∥
C0
≤ klRδ

′′

for a (different) real constant kl, which still does not depend on the parameter R > 0.
In summary, using an embedding φ : SL(2,R) ↪→ Sp(4,R) with the properties described

above, we may extend the approximate solution (Aapp1 ,Φapp
1 ) to take an approximate Sp(4,C)-

pair (Al,Φl) over X1, which agrees with a model solution
(
A mod
l,p ,Φ mod

l,p

)
over an annulus

Ωp
1 around each puncture p ∈ D1; the model solution

(
A mod
l,p ,Φ mod

l,p

)
is the extension via φ

of the model
(
A mod

1,p ,Φ mod
1,p

)
in SL(2,R). The pair (Al,Φl) lives in the holomorphic principal

GL(2,C)-bundle obtained by extension of structure group via φ, which we shall keep denoting
as
(
E1 =

(
E1, ∂̄1

)
, h1

)
to ease notation.

Repeating the above considerations for another closed Riemann surface X2 of genus g2 and
D2 = {q1, . . . , qs} a collection of s-many distinct points of X2, we obtain an approximate
Sp(4,C)-pair (Ar,Φr) over X2, which agrees with a model solution

(
A mod
r,q ,Φ mod

r,q

)
over an

annulus Ωq
2 around each puncture q ∈ D2. This pair lives on the holomorphic principal

GL(2,C)-bundle obtained by extension of structure group via another appropriate embedding
SL(2,R) ↪→ Sp(4,R); let this hermitian bundle be denoted by

(
E2 =

(
E2, ∂̄2

)
, h2

)
.

4.5. Gluing of the Riemann surfaces. We begin with a classical result from complex
analysis and conformal geometry:

Theorem 4.4 (Schottky’s Theorem on Conformal Mappings between Annuli). An annulus
A1 = {z ∈ C |r1 < |z| < R1 } on the complex plane can be mapped conformally onto the annulus

A2 = {z ∈ C |r2 < |z| < R2 } if and only if R1
r1

= R2
r2

. Moreover, every conformal map f :

A1 → A2 takes the form f (z) = λz or f (z) = λ
z , where λ ∈ C with |λ| = r2

r1
or |λ| = r2R1

respectively.

Proof. See p. 35 in [1]. �

Let us consider the Möbius transformation fλ : A1 → A2 with fλ (z) = λ
z , where λ ∈ C

with |λ| = r2R1 = r1R2. This is a conformal biholomorphism (equivalently bijective, angle-
preserving and orientation-preserving) between the two annuli and the continuous extension of
the function z 7→ |fλ (z)| to the closure of A1 reverses the order of the boundary components.
Indeed

• for |z| = r1: |fλ (z)| = |λ|
|z| = r2R1

r1
= r1R2

r1
= R2.

• for |z| = R1: |fλ (z)| = |λ|
|z| = r2R1

R1
= r2.

Let two compact Riemann surfaces X1, X2 of respective genera g1, g2. Choose points p ∈
X1, q ∈ X2 and local charts around these points ψi : Ui → ∆ (0, εi) on Xi, for i = 1, 2. Now
fix positive real numbers ri < Ri < εi such that the following two conditions are satisfied:

• ψ−1
i

(
∆ (0, Ri)

)
∩ Uj 6= ∅, for every Uj 6= Ui from the complex atlas of Xi. In other

words, we are considering an annulus around each of the p and q contained entirely
in the neighborhood of a single chart.
• R2

r2
= R1

r1
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Now set

X∗i = Xi\ψ−1
i

(
∆ (0, ri)

)
Finally, choose the biholomorphism fλ : A1 → A2 described in the previous subsection. This

biholomorphism is used to glue the two Riemann surfaces X1, X2 along the inverse image of
the annuli A1,A2 on the surfaces, using the biholomorphism

gλ : Ω1 = ψ−1
1 (A1)→ Ω2 = ψ−1

2 (A2)

with gλ = ψ−1
2 ◦ fλ ◦ ψ1.

Define Xλ = X1#λX2 = X∗1
∐
X∗2/ ∼, where the gluing of Ω1 and Ω2 is performed through

the equivalence relation which identifies y ∈ Ω1 with w ∈ Ω2 iff w = gλ (y). For collections of
s-many distinct points D1 on X1 and D2 on X2, this procedure is assumed to be taking place
for annuli around each pair of points (p, q) for p ∈ D1 and q ∈ D2.

The manifoldXλ is endowed with a complex structure inherited from the complex structures
of X1 and X2: Indeed, if A1,A2 are complex atlases for X1, X2, then A1

∣∣
X∗1

⋃
A2

∣∣
X∗2

is an
atlas for Xλ, since we have chosen the gluing region not to overlap between two different
charts on each side. On the glued region Ω, there are two charts (Ω1, ψ1 |Ω1 ) , (Ω2, ψ2 |Ω2 ),
whereas ϕ12 = ψ1 ◦ ψ−1

2 : ψ2 (Ω1 ∩ Ω2)→ ψ1 (Ω1 ∩ Ω2) is actually ϕ12 ≡ fλ : A1 → A2.
If X1, X2 are orientable and orientations are chosen for both, since fλ is orientation pre-

serving we obtain a natural orientation on the connected sum X1#X2 which coincides with
the given ones on X∗1 and X∗2 .

Therefore, X# = X1#X2 is a Riemann surface of genus g1+g2+s−1, the complex connected
sum, where gi is the genus of the Xi and s is the number of points in D1 and D2. Its complex
structure however is heavily dependent on the parameters pi, qi, λ.

4.6. Gluing of the bundles. For the Riemann surfaces X1, X2 as considered in §4.4, their
connected sum X# = X1#X2 is constructed by gluing annuli around the points pi of D1,
with annuli around the points qi of D2, as described in §4.5. Moreover, for the pairs (Al,Φl)
and (Ar,Φr) defined in §4.4 we make the following important assumption:

Assumption 4.5. The model solutions satisfy
(
A mod
l,p ,Φ mod

l,p

)
= −

(
A mod
r,q ,Φ mod

r,q

)
for each

pair of points (p, q).

Given this assumption, now notice that for the smooth bundles (E1,∇l := Al + Φl + Φ∗l )
and (E2,∇r := Ar + Φr + Φ∗r), the model flat connections will coincide. Let ∇ := ∇l = −∇r
denote this flat connection over the annuli; we can then fix an identification of these flat
bundles over the annuli to get a new bundle E# as follows:

Let Ω1 be the annulus on X1 for any point p ∈ D1 and pick coordinates z around p with
z (p) = 0. Let V1∪V2 an open covering of Ω1, with V1∩V2 having two connected components,
say (V1 ∩ V2)+ and (V1 ∩ V2)−. For a loop γ in Ω1 around p take transition functions

gz1 (x) =

{
1, z ∈ (V1 ∩ V2)−

hol (γ,∇l) , z ∈ (V1 ∩ V2)+

Similarly, let Ω2 be the annulus on X2 for any point q ∈ D2 and pick coordinates w around
q with w (q) = 0. For a loop δ in Ω2 around q take transition functions

gw2 (x) =

{
hol(δ,∇r), w ∈ (V1 ∩ V2)−

1, w ∈ (V1 ∩ V2)+
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Using an orientation reversing isometry to glue the annuli Ω1 and Ω2 in constructing the
connected sum, the region (V1 ∩ V2)+ of Ω1 is glued together with the region (V1 ∩ V2)− of
Ω2. The gluing of the Riemann surfaces is realized along the curve zw = λ, thus we have

dz

z
= −dw

w
on the annuli. Now from Assumption 4.5, ∇l = −∇r, and so there is defined a 1-cocycle on
Ω := Ω1 ∼ Ω2 by g (s) := g1 (z) = g2

(
λ
z

)
, since w = λ

z for a point s ∈ Ω. This is repeated for
each pair of points (p, q). We may use this identification of the cocycles to define a bundle

isomorphism E1 |Ω1

'−→ E2 |Ω2 and use this isomorphism to glue the bundles over Ω for every
pair (p, q) to define the connected sum bundle E1#E2.

Remark 4.6. We can alternatively glue the bundles by picking a globally trivial frame on each
side, flat with respect to the unitary connection A but not for ∇. Indeed for such a frame
for Al and Ar glue

(
Ω1 × C2

)∐(
Ω2 × C2

)
under the identification map (z, u) 7→ (w, v) with

w = λ
z and u = v.

4.7. Gluing the connections and hermitian metrics. The pairs (Al,Φl) , (Ar,Φr) agree
over neighborhoods around the points in the divisors D1 and D2, with Al = Ar = 0
and with Φl (z) = −Φr (w), thus there is a suitable frame for ∇ over which the hermit-
ian metrics are both described by the identity matrix and so they are constant in partic-

ular. Set
(
A mod
p,q ,Φ mod

p,q

)
:=
(
A mod
l,p ,Φ mod

l,p

)
= −

(
A mod
r,q ,Φ mod

r,q

)
. We can glue the pairs

(Al,Φl) , (Ar,Φr) together to get an approximate solution of the Sp(4,R)-Hitchin equations:

(
AappR ,Φapp

R

)
:=


(Al,Φl) , over X1\X2(

A mod
p,q ,Φ mod

p,q

)
, over Ω around each pair of points (p, q)

(Ar,Φr) over X2\X1

,

considered on the bundle (E1#E2, h#) over the complex connected sum X# := X1#X2.

Figure 2. Constructing approximate solutions over X×
1 and X×

2 .
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Figure 3. (Aapp
R ,Φapp

R ) over the complex connected sum X#.

By construction,
(
AappR ,Φapp

R

)
is a smooth pair on X#, complex gauge equivalent to an exact

solution of the Hitchin equations by a smooth gauge transformation defined over all of X#.
It satisfies the second equation, while the first equation is satisfied up to an error which we
have good control of:

Lemma 4.7. The approximate solution
(
AappR ,Φapp

R

)
to the parameter 0 < R < 1 satisfies∥∥∥∗FAapp

R
+ ∗

[
Φapp
R ,−τ

(
Φapp
R

)]∥∥∥
C0(X×)

≤ CRδ′′

for some constants δ′′ > 0 and C = C (δ′′), which do not depend on R.

Proof. Follows from Lemma 4.3; take C := max {Cl, Cr}, for Cl, Cr the constants appearing
in the bound of the error for the approximate solutions constructed over each of the Riemann
surfaces X1 and X2. �

4.8. The representations φirr and ψ. In this subsection, we see that the Assumption 4.5 we
made for the model pairs can be achieved by taking particular representations from SL(2,R)
into Sp(4,R).

The irreducible representation φirr : SL(2,R) ↪→ Sp(4,R). Let (Aapp1 ,Φapp
1 ) over X1 be the

approximate SL(2,C)-pair in parameter R > 0, as was considered in §4.4, which agrees with
the model pair

A mod
1 = 0, Φ mod

1 =

(
C 0
0 −C

)
dz

z

for C ∈ R, over an annulus in z-coordinates around a point p ∈ D1.
The embedding φirr defined by (2.4) extends to give an embedding φirr : SL(2,C) ↪→

Sp(4,C). For the Lie algebra of SL(2,C), sl (2,C) =

{(
a b
c −a

)
| a, b, c ∈ C

}
, we may use a

Cartan basis for the Lie algebra to determine the infinitesimal deformation, φirr∗ : sl (2,C)→
sp (4,C) with

φirr∗

((
a b
c −a

))
=


3a −

√
3b 0 0

−
√

3c a 0 2b

0 0 −3a
√

3c

0 2c
√

3b −a


We now notice that φirr (SO(2)) lies in a copy of U(2) ↪→ Sp(4,R), that is

U(2) ∼=
{(

A B
−B A

) ∣∣ATA+BTB = I2, A
TB −BTA = 0

}
.
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In other words, copies of a maximal compact subgroup of SL(2,R) are mapped into copies of
a maximal compact subgroup of Sp(4,R). Furthermore, one can check that for A ∈ sl (2,C):

‖φirr∗ (A)‖sp(4,C) = 10‖A‖sl(2,C)

As was described in §4.4, φirr can be now used to extend SL(2,C)-data to Sp(4,C)-data
(Al,Φl), where in this case, it is Al = 0 and

Φl = φirr∗

∣∣∣mC(SL(2,C)) (Φapp
1 ) =


3C 0 0 0
0 C 0 0
0 0 −3C 0
0 0 0 −C

 dz

z

over the annulus on X1 in z-coordinates around the point p.

The representation ψ : SL(2,R) × SL(2,R) ↪→ Sp(4,R). Let
(
Aapp2,1 ,Φ

app
2,1

)
,
(
Aapp2,2 ,Φ

app
2,2

)
over

X2 be two approximate SL(2,C)-pairs in parameter R > 0, which agree respectively with the
model pairs

A mod
2,1 = 0, Φ mod

2,1 =

(
−3C 0

0 3C

)
dz

z
and A mod

2,2 = 0, Φ mod
2,2 =

(
−C 0
0 C

)
dz

z

for the same real parameter C ∈ R considered in defining the pair (Aapp1 ,Φapp
1 ) over X1 above,

over an annulus in w-coordinates around a point q ∈ D2.
We extend SL(2,C) × SL(2,C)-data into Sp(4,C) using the homomorphism ψ defined by

(2.5). Take the extension of the embedding ψ into SL(2,C)×SL(2,C), and now the infinitesimal
deformation of this homomorphism is given by ψ∗ : sl (2,C)× sl (2,C) ↪→ sp (4,C) with

ψ∗

((
a b
c −a

)
,

(
e f
g −e

))
=


a 0 b 0
0 e 0 f
c 0 −a 0
0 g 0 −e


We may still check that ψ (SO(2)× SO(2)) is a copy of U(2). On the other hand, a norm on
the space sl (2,C)× sl (2,C) is given by

ψ (A,B) = ‖A‖+ ‖B‖

and we check that

‖ψ∗ (A,B)‖sp(4,C) = ‖(A,B)‖sl(2,C)×sl(2,C) = ‖A‖sl(2,C) + ‖B‖sl(2,C)

and so the map ψ∗ at the level of Lie algebras is an isometry. Therefore, ψ extends to give
an embedding ψ : SO(2,C) × SO(2,C) ↪→ GL (2,C), and so we may use the infinitesimal

deformation ψ∗ to extend the SL(2,C) × SL(2,C)-data
((
Aapp2,1 ,Φ

app
2,1

)
,
(
Aapp2,2 ,Φ

app
2,2

))
to an

Sp(4,C)-pair (Ar,Φr), with Ar = 0 and Higgs field Φr given by

Φr = ψ∗

∣∣∣mC(SL(2,R))×mC(SL(2,R))

(
Φapp

2,1 ,Φ
app
2,2

)
=


−3C 0 0 0

0 −C 0 0
0 0 3C 0
0 0 0 C

 dz

z

over the annulus on X2 in w-coordinates around the point q.
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5. Correcting an approximate solution to an exact solution

5.1. The contraction mapping argument. A standard strategy , due largely to C. Taubes
[37], for correcting an approximate solution to an exact solution of gauge-theoretic equations
involves studying the linearization of a relevant elliptic operator. In the Higgs bundle setting,
the linearization of the Hitchin operator was described in [25] and furthermore in [36] for
solutions to the SL(2,C)-self-duality equations over a noded surface. We are going to use this
analytic machinery to correct our approximate solution to an exact solution over the complex
connected sum of Riemann surfaces. We next summarize the strategy to be followed in the
forthcoming sections:

For the complex connected sum X# consider the nonlinear G-Hitchin operator at a pair

(A,Φ) ∈ Ω1
(
X#, EH

(
hC
))
⊕ Ω1,0

(
X#, EH

(
gC
))

:

H (A,Φ) =
(
F (A)− [Φ, τ (Φ)] , ∂̄AΦ

)
Moreover, consider the orbit map

γ 7→ O(A,Φ) (γ) = g∗ (A,Φ) =
(
g∗A, g−1Φg

)
for g = exp (γ) and γ ∈ Ω0 (X#, EH (h)), where H ⊂ G is a maximal compact subgroup.

Therefore, correcting the approximate solution
(
AappR ,Φapp

R

)
to an exact solution of the G-

Hitchin equations accounts to finding a point γ in the complex gauge orbit of
(
AappR ,Φapp

R

)
,

for which H
(
g∗
(
AappR ,Φapp

R

))
= 0. However, since we have seen that the second equation

is satisfied by the pair
(
AappR ,Φapp

R

)
and since the condition ∂̄AΦ = 0 is preserved under the

action of GH , we actually seek for a solution γ to the following equation

FR (γ) := pr1 ◦ H ◦ O(Aapp
R ,Φapp

R ) (exp(γ)) = 0

For a Taylor series expansion of this operator

FR (γ) = pr1H
(
AappR ,Φapp

R

)
+ L(Aapp

R ,Φapp
R ) (γ) +QR (γ)

where QR includes the quadratic and higher order terms in γ, we can then see that FR (γ) = 0
if and only if γ is a fixed point of the map:

T : H2
B (X#)→ H2

B (X#)

γ 7→ −GR
(
H
(
AappR ,Φapp

R

)
+QR(γ)

)
where we denoted GR := L−1

(Aapp
R ,Φapp

R )
.

The problem then reduces to showing that the mapping T is a contraction of the open ball
BρR of radius ρR in H2

R (X#), since then from Banach’s fixed point theorem there will exist
a unique γ such that T (γ) = γ, i.e. such that FR (γ) = 0. In particular, one needs to show
that:

(1) T is a contraction defined on BρR for some ρR, and
(2) T maps BρR to BρR

In order to perform the above described contraction mapping argument, we need to show
the following:

i: The linearized operator at the approximate solution L(Aapp
R ,Φapp

R ) is invertible.

ii: There is an upper bound for the inverse operator GR = L−1

(Aapp
R ,Φapp

R )
as an operator

L2
(
r−1drdθ

)
→ L2

(
r−1drdθ

)
.
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iii: There is an upper bound for the inverse operator GR = L−1

(Aapp
R ,Φapp

R )
also when viewed

as an operator L2
(
r−1drdθ

)
→ H2

B

(
X#, r

−1drdθ
)
.

iv: We can control a Lipschitz constant for QR, i.e. there exists a constant C > 0 such
that

‖QR (γ1)−QR (γ0)‖L2 ≤ Cρ‖γ1 − γ0‖H2
B

for all 0 < ρ ≤ 1 and γ0, γ1 ∈ Bρ, the closed ball of radius ρ around 0 in H2
B (X#).

5.2. The Linearization operator L(A,Φ). We first need to characterize the linearization op-

erator L(A,Φ) in general, before considering this for the particular approximate pair
(
AappR ,Φapp

R

)
that we have constructed. The differential of the G-Hitchin operator at a pair (A,Φ) ∈
Ω1
(
X#, EH

(
hC
))
⊕ Ω1,0

(
X#, EH

(
gC
))

is described by

DH
(
Ȧ

Φ̇

)
=

(
dA [Φ,−τ (·)] + [·,−τ (Φ)]

[·,Φ] ∂̄A

)(
Ȧ

Φ̇

)
Moreover, the differential at g = Id of the orbit map O(A,Φ) is

Λ(A,Φ)γ =
(
∂̄Aγ − ∂Aγ∗, [Φ, γ]

)
and so when γ ∈ Ω0 (X#, EH (h)):

Λ(A,Φ)γ =
(
∂̄Aγ − ∂Aγ, [Φ, γ]

)
Therefore,(

DH ◦ Λ(A,Φ)

)
(γ) =

((
∂A∂̄A − ∂̄A∂A

)
γ + [Φ,−τ ([Φ, γ]) + [[Φ, γ] ,−τ (Φ)]][

∂̄Aγ − ∂Aγ,Φ
]

+ ∂̄A [Φ, γ]

)
Now, take

DF (γ) : = D
(
pr1 ◦ H ◦ O(A,Φ)

)
(γ) = DH ◦ Λ(A,Φ) (γ)

=
(
∂A∂̄A − ∂̄A∂A

)
γ + [Φ,−τ ([Φ, γ]) + [[Φ, γ] ,−τ (Φ)]]

and consider the operator MΦ : Ω0 (X#, EH (h))→ Ω0 (X#, EH (h)) defined by

MΦγ := − [Φ, [τ (Φ) , γ]] + [τ (Φ) , [Φ, γ]]

for Φ ∈ Ω1
(
X#, EHC

(
mC)). Then from the identities

2∂̄A∂A = F (A)− i ∗∆A

2∂A∂̄A = F (A) + i ∗∆A

[Φ, τ ([Φ, γ])] = − [Φ, [τ (Φ) , γ]]

we may deduce that (i ∗∆A +MΦ) (γ) = DF (γ). (For the first two identities see Propositions
1.421, 1.422 in [27]; the third identity is derived by direct calculations). Now define

L(A,Φ) := ∆A − i ∗MΦ : Ω0 (X#, iEH (h))→ Ω0 (X#, iEH (h))

The following lemma first observed by C. Simpson in [33] provides that the linearization
operator L(A,Φ) is nonnegative. The proof given here is a modification of the proof of the
analogous statement for the case of SL(2,C) given in [25].

Lemma 5.1. For γ ∈ Ω0 (X#, EH (h))

〈−i ∗MΦγ, γ〉 = 4|[Φ, γ]|2 ≥ 0
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Proof. Fixing a local holomorphic coordinate z, write Φ = ϕdz and τ (Φ) = −ϕ∗dz̄. Then
[τ (Φ) , [Φ, γ]] = [ϕ∗, [ϕ, γ]] dz ∧ dz̄ and − [Φ, [τ (Φ) , γ]] = [ϕ, [ϕ∗, γ]] dz ∧ dz̄. Altogether, we
may write

MΦγ = ([ϕ∗, [ϕ, γ]] + [ϕ, [ϕ∗, γ]]) dz ∧ dz̄
The compact real form τ : gC → gC induces an ad-invariant inner product on gC, thus we
get 〈[ϕ∗, [ϕ, γ]] , γ〉 = |[ϕ, γ]|2 as well as 〈[ϕ, [ϕ∗, γ]] , γ〉 = |[ϕ∗, γ]|2 = |[ϕ, γ]|2. Finally, since

2i ∗ 1 = −dz ∧ dz̄, we get 〈MΦγ, i ∗ γ〉 = |[ϕ, γ]|2|dz ∧ dz̄|2 = 4|[ϕ, γ]|2. �

The following corollary is now immediate:

Corollary 5.2. If γ ∈ Ω0 (X#, EH (h)), then〈
L(A,Φ)γ, γ

〉
L2 = ‖dAγ‖2L2 + 4 ‖[Φ, γ]‖2L2 ≥ 0

In particular, L(A,Φ)γ = 0 if and only if dAγ = [Φ, γ] = 0.

5.3. Cylindrical Dirac-type operators and the Cappell-Lee-Miller gluing theorem.
A very useful method when dealing with surgery problems in gauge theory over manifolds
with very long necks involves the study of the space of eigenfunctions corresponding to small
eigenvalues (low eigensolutions) of a self-adjoint Dirac type operator on such a manifold (see
[9], [28], [40]). For our purposes we will make use of the Cappell-Lee-Miller gluing theorem
from [9] and its generalization to small perturbations of constant coefficient operators due
to L. Nicolaescu in [28]. In the latter article, a family of manifolds MT for T0 ≤ T ≤ ∞ is
considered, each containing a long cylindrical neck of length ∼ T = |logR|, obtained by gluing
of two disjoint manifolds M±T along the boundaries of a pair of cylindrical ends. A self-adjoint
first-order Dirac-type operator DT is then considered on a hermitian vector bundle over each
manifold MT .

The Cappell-Lee-Miller gluing theorem asserts that under suitable assumptions, the op-
erator DT admits two types of eigenvalues, namely those of order of decay O

(
T−1

)
(large

eigenvalues) and those of order of decay o
(
T−1

)
(small eigenvalues). For T → ∞, the sub-

space of L2 spanned by the eigenvectors to small eigenvalues is “parameterized” by the kernel
of the limiting operator D∞. This way, the Dirac operator DT has no small eigenvalues, if
the limiting operator D∞ is invertible. This is the set-up also considered in [36].

We define the family of differential operators we will be considering; precise definitions on
Z2-graded Dirac-type operators on cylindrical vector bundles can be found in [28]:

Definition 5.3. Let Ê → N̂ be a Z2-graded cylindrical hermitian vector bundle. A first

order partial differential operator D : C∞
(
Ê
)
→ C∞

(
Ê
)

is called a Z2-graded cylindrical

Dirac-type operator if with respect to the Z2-grading of Ê, it takes the form

D =

(
0 D∗
D 0

)
such that along the cylindrical end D = G (dτ −D) for a self-adjoint Dirac-type operator
D : C∞ (E+)→ C∞ (E+).

Recall that the Dirac-type condition asserts that the square D2 has the same principal
symbols as a Laplacian. D is independent of the longitudinal coordinate τ along the necks.

For our purposes, we will need to use the perturbed operator D+B =

(
0 D +B

D∗ +B∗ 0

)
,

where B is an exponentially decaying operator of order 0; that means there exists a pair of
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constants C, λ > 0 for which

sup {|B (x)| |x ∈ [τ, τ + 1]×N } ≤ Ce−λ|τ |

for all τ ∈ R+.
We can then use the orientation preserving diffeomorphism ϕ to obtain for each T > 0 the

manifold NT by attaching the region N̂1\ (T + 1,∞)×N1 to the region N̂2\ (−∞,−T − 1)×N2

using the orientation preserving identification

[T + 1, T + 2]×N1 → [−T − 2,−T − 1]×N2

(τ, x) 7→ (τ − 2T − 3, ϕ (x))

The Z2-graded cylindrical hermitian vector bundles Êi can be similarly glued together pro-
viding a Z2-graded hermitian vector bundle ET = E+

T ⊕E
−
T over the manifold NT . Moreover,

the cylindrical operators Di combine to give a Z2-graded Dirac-type operator DT on the bun-
dle ET . For a pair of perturbed operators, we can also obtain a perturbed Dirac-type operator
defined on the bundle ET ; let us still denote this by DT and write such an operator as

DT =

(
0 D∗T
DT 0

)
Consider also Di,∞ := Di + Bi for i = 1, 2 and write

Di,∞ =

(
0 D∗i,∞
Di,∞ 0

)
We are going to need one last piece of notation to introduce:

Definition 5.4. Let Ê a cylindrical vector bundle over the cylindrical manifold N̂ . We define

the extended L2 space L2
ext

(
N̂ , Ê

)
as the space of all sections û of Ê, such that there exists

an L2 section u∞ of E satisfying

û− π∗u∞ ∈ L2 (N,E)

The section u∞ is uniquely determined by û, thus the so-called asymptotic trace map is well-
defined

∂∞ : L2
ext

(
N̂ , Ê

)
→ L2 (N,E)

û 7→ u∞

The following theorem is the version of the Cappell-Lee-Miller gluing theorem, which we
are going to apply. For a proof see [28], §5.B:

Theorem 5.5 (S. Cappell-R. Lee-E. Miller, L. Nicolaescu). Let Di,∞ be a pair of Z2-graded

Dirac-type operators on the cylindrical vector bundles Êi → N̂i for i = 1, 2 as was defined

above. Suppose that the kernel K+
i ⊆ L2

ext

(
N̂i, Êi

)
of the operator Di,∞ is trivial for i = 1, 2.

Then there exist a T0 > 0 and a constant C > 0 such that the operator D∗TDT is bijective for

all T > T0 and admits a bounded inverse (D∗TDT )−1 : L2
(
NT , E

+
T

)
→ L2

(
NT , E

+
T

)
with∥∥∥(D∗TDT )−1

∥∥∥
L(L2,L2)

≤ CT 2.
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6. The linearization operator for an approximate solution

6.1. The elliptic complex over the complex connected sum. Into our setting, note that
a punctured neighborhood on a Riemann surface can be also thought of, using a cylindrical
coordinate transformation, as a half cylinder attached to the surface, and also an annulus
in the real parameter R can be thought of as a finite tube of length ∼ T = |logR|. Thus,
the gluing of two punctured Riemann surfaces as we described it in §4.5 can be thought of
as the gluing of two Riemann surfaces with cylindrical ends to get a smooth surface with
a finite number of long Euclidean cylinders of length 2 |logR|, one for each p ∈ p. For our
approximate solution

(
AappR ,Φapp

R

)
constructed over X# with 0 < R < 1 and T = − logR,

consider the elliptic complex:

0 −→ Ω0
(
X#, EH

(
hC
))

L1,T−−−→ Ω1
(
X#, EH

(
hC
))
⊕ Ω1,0

(
X#, EH

(
gC
))

L2,T−−−→ Ω2
(
X#, EH

(
hC
))
⊕ Ω2

(
X#, EH

(
gC
))
−→ 0

where

L1,Tγ =
(
dAapp

R
γ,
[
Φapp
R , γ

])
is the linearization of the complex gauge group action and

L2,T (α,ϕ) = DH (α,ϕ) =

(
dAapp

R
α+

[
Φapp
R ,−τ (ϕ)

]
+
[
ϕ,−τ

(
Φapp
R

)]
∂̄Aapp

R
ϕ+

[
ϕ,Φapp

R

] )
is the differential of the Hitchin operator considered in §5.2.

Note that in general it does not hold that L2,TL1,T =
[
FAapp

R
, γ
]

+
[[

Φapp
R ,−τ

(
Φapp
R

)]
, γ
]

=

0, since
(
AappR ,Φapp

R

)
need not be an exact solution. Decomposing Ω∗

(
X#, EH

(
gC
))

into
forms of even, respectively odd total degree, we may introduce the Z2-graded Dirac-type
operator

DT :=

(
0 L∗1,T + L2,T

L1,T + L∗2,T 0

)
on the closed surface X#.

As R ↘ 0, the curve X# degenerates to a noded surface X×# (equivalently the cylindrical

neck of X# extends infinitely). For the cut-off functions χR that we considered in obtaining
the approximate pair

(
AappR ,Φapp

R

)
, their support will tend to be empty as R ↘ 0, i.e. the

“error regions” disappear along with the neck N , thus
(
AappR ,Φapp

R

)
→ (A0,Φ0) uniformly on

compact subsets with

(Aapp0 ,Φapp
0 ) =

{
(Al,Φl) , Xl\N
(Ar,Φr) , Xr\N

an exact solution with the holonomy of the associated flat connection in G.
For T =∞ the elliptic complex for the exact solution (Aapp0 ,Φapp

0 ) gives rise to the Dirac-
type operator

D∞ =

(
0 L∗1 + L2

L1 + L∗2 0

)
We now describe the map L1 + L∗2 more closely. Using the Hodge ∗-operator we can identify

Ω2
(
X×#, EH

(
hC
))
∼= Ω0

(
X×#, EH

(
hC
))

and Ω2
(
X×#, EH

(
gC
))
∼= Ω0

(
X×#, EH

(
gC
))
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as well as Ω1
(
X×#, EH

(
hC
)) ∼= Ω0,1

(
X#, EH

(
gC
))

via the projection A 7→ π0,1A. We further

identify

(γ1, γ2) ∈ Ω0
(
X×#, EH

(
hC
))
⊕ Ω0

(
X×#, EH

(
hC
))

with ψ1 = γ1 + iγ2 ∈ Ω0
(
X×#, EH

(
gC
))

. The operator L1 + L∗2 can be now expressed as the

map L1 + L∗2 :

Ω0
(
X×#, EH

(
gC
))
⊕ Ω0

(
X×#, EH

(
gC
))
→ Ω0,1

(
X×#, EH

(
gC
))
⊕ Ω1,0

(
X×#, EH

(
gC
))

(ψ1, ψ2) 7→
(
∂̄Aapp

0
ψ1 + [ψ2,−τ (Φapp

0 )]

∂Aapp
0 ψ2

+ [ψ1,Φ
app
0 ]

)
6.2. D∞ is an exponentially small perturbation of a cylindrical operator. Consider

the operator D̂∞ :=

(
0 L̂∗1 + L̂2

L̂1 + L̂∗2 0

)
arising similarly from the elliptic complex for some

model solution
(
A mod ,Φ mod

)
replacing (Aapp0 ,Φapp

0 ), and for which(
A mod ,Φ mod

)
=

(
0, ϕ

dz

z

)
along each cylindrical neck. The operator D̂∞ is in fact cylindrical. Indeed, introducing the
complex coordinate ζ = τ + iθ, we have the identities dτ = −dr

r , dθ = −dθ, dz
z = −dζ, and

dz̄
z̄ = −dζ̄. Hence the operator L̂1 + L̂∗2 (as well as the operator L̂∗1 + L̂2 similarly) can be

written as a cylindrical differential operator L̂1 + L̂∗2 :
√

2
2 G (∂τ −D) with

(ψ1, ψ2) 7→ 1

2

(
∂τψ1dζ̄
∂τψ2dζ

)
−
((

i
2∂θψ1 + [ψ2, τ (ϕ)]

)
dζ̄(

− i
2∂θψ2 − [ψ2, ϕ]

)
dζ

)
where

D (ψ1, ψ2) := 2

(
i
2∂θψ1 + [ψ2, τ (ϕ)]
− i

2∂θψ2 − [ψ2, ϕ]

)
(6.1)

and G = (ψ1, ψ2) =
√

2
2

(
ψ1dζ̄, ψ2dζ

)
denotes Clifford multiplication by dτ .

By construction of the approximate solution
(
AappR ,Φapp

R

)
and the decay described in Lemma

4.1, one sees that the operator D∞ is an exponentially small perturbation of D̂∞.

6.3. The space ker (L1 + L∗2) ∩ L2
ext

(
X×#

)
is trivial. We now restrict to the case G =

Sp(4,R) in order to study the space ker (L1 + L∗2) ∩ L2
ext

(
X×#

)
for the operator D∞ more

closely. We are also taking here into consideration the particular model Higgs field we picked
for the G = Sp(4,R)-Hitchin equations coming from the particular embeddings φirr and ψ
from (2.4) and (2.5). In other words, we fix

ϕ ≡ ϕ mod =


3C 0 0 0
0 C 0 0
0 0 −3C 0
0 0 0 −C


Moreover, the compact real form on ϕ in this case is τ (ϕ) = −ϕ∗. We have the following:
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Proposition 6.1. Let (ψ1, ψ2) ∈ ker (L1 + L∗2) ∩ L2
ext

(
X×#

)
. Then its asymptotic trace is

described by

∂∞ (ψ1, ψ2) =



a1 0 0 0
0 d1 0 0
0 0 −a1 0
0 0 0 −d1

 ,


a2 0 0 0
0 d2 0 0
0 0 −a2 0
0 0 0 −d2




for constants ai, di ∈ C, for i = 1, 2.

Proof. By [28], p. 169, the space of asymptotic traces of ker (L1 + L∗2) is a subspace of kerD
with D as defined in (6.1). We will check that the elements of the latter have the asserted

form. Consider the Fourier decomposition (ψ1, ψ2) =
(∑

j∈Z ψ1,je
ijϑ,
∑

j∈Z ψ2,je
ijϑ
)

where

ψi,j ∈ sp (4,C) =

{(
A B
C −AT

) ∣∣A,B,C ∈M2×2 (C) ; BT = B,CT = C

}
,

Then the equation D (ψ1, ψ2) = 0 is equivalent to the system of linear equations(
− j

2ψ1,j − [ϕ∗, ψ2,j ]
j
2ψ2,j − [ϕ,ψ1,j ]

)
= 0 (6.2)

for j ∈ Z. Since the Higgs field ϕ is diagonal, the operator D acts invariantly on diagonal,
respectively off-diagonal endomorphisms. It therefore suffices to consider these two cases sep-
arately.

Case 1. Let (ψ1,j , ψ2,j) =



a1,j 0 0 0
0 d1,j 0 0
0 0 −a1,j 0
0 0 0 −d1,j

 ,


a2,j 0 0 0
0 d2,j 0 0
0 0 −a2,j 0
0 0 0 −d2,j


, with

ai,j , di,j ∈ C for i = 1, 2. Then Equation (6.2) is equivalent to the pair of equations

j

2


a1,j 0 0 0
0 d1,j 0 0
0 0 −a1,j 0
0 0 0 −d1,j

 = O, for i = 1, 2

thus the system has a non-trivial solution if and only if j = 0. In other words, ψ1 = ψ1,0 and
ψ2 = ψ2,0 are of the asserted form.

Case 2. Let now (ψ1,j , ψ2,j) =




0 b1,j e1,j f1,j

c1,j 0 f1,j g1,j

k1,j l1,j 0 −c1,j

l1,j m1,j −b1,j 0

 ,


0 b2,j e2,j f2,j

c2,j 0 f2,j g2,j

k2,j l2,j 0 −c2,j

l2,j m2,j −b2,j 0




with all entries in C. Then Equation (6.2) reads as the pair of equations

j

2


0 b1,j e1,j f1,j

c1,j 0 f1,j g1,j

k1,j l1,j 0 −c1,j

l1,j m1,j −b1,j 0

 =


0 −2b2,jC̄ −6e2,jC̄ −4f2,jC̄

2c2,jC̄ 0 −4f2,jC̄ −2g2,jC̄
6k2,jC̄ 4l2,jC̄ 0 −2c2,jC̄
4l2,jC̄ 2m2,jC̄ 2b2,jC̄ 0


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and

− j
2


0 b2,j e2,j f2,j

c2,j 0 f2,j g2,j

k2,j l2,j 0 −c2,j

l2,j m2,j −b2,j 0

 =


0 −2b1,jC −6e1,jC −4f1,jC

2c1,jC 0 −4f1,jC −2g1,jC
6k1,jC 4l1,jC 0 −2c1,jC
4l1,jC 2m1,jC 2b1,jC 0


This pair of equations is then equivalent to the equation( j

2 2C̄

−2C j
2

)(
b1,j
b2,j

)
=

(
0
0

)
(6.3)

and seven more similar equations for the ci,j , ei,j , fi,j , gi,j , ki,j , li,j ,mi,j , i = 1, 2. Since C 6= 0,

we have that the determinant of the 2× 2 matrix in Equation (6.3) is
(
j
2

)2
+ 4CC̄ > 0, and

so this system has no non-trivial solution for (b1,j , b2,j); the same is true for the rest seven
equations. Therefore, there are no non-trivial off-diagonal elements in kerD and so the only
non-trivial elements are of the asserted form in the proposition. �

Lemma 6.2. Suppose (ψ1, ψ2) ∈ ker (L1 + L∗2) ∩ L2
ext

(
X×#

)
. Then

dAapp
0
ψi = [ψi,Φ

app
0 ] =

[
ψi, (Φ

app
0 )

∗]
= 0

for i = 1, 2.

Proof. See J. Swoboda [36], Lemma 3.11, Step 1. �

Proposition 6.3. The operator L1+L∗2 considered as a densely defined operator on L2
ext

(
X×#

)
has trivial kernel.

Proof. Let (ψ1, ψ2) ∈ ker (L1 + L∗2) ∩ L2
ext

(
X×#

)
. From Lemma 6.2 we have:

dAapp
0
ψi = [ψi,Φ

app
0 ] =

[
ψi, (Φ

app
0 )

∗]
= 0

for i = 1, 2. We show that ψ1 = 0 by showing that γ := ψ1 + ψ∗1 ∈ Ω0
(
X×#, u (2)

)
and

δ := i (ψ1 − ψ∗1) ∈ Ω0
(
X×#, u (2)

)
both vanish. Choosing a holomorphic coordinate z centered

at the node of X×#, the Higgs field Φapp
0 in our exact solution is written

Φapp
0 = ϕ

dz

z

with ϕ ∈ mC (Sp(4,R)) =

{(
A B
B −A

) ∣∣A,B ∈M2 (C) with AT = A, BT = B

}
. We get

that d|γ|2 = 2
〈
dAapp

0
γ, γ

〉
= 0, i.e. |γ| is constant on X×#, as well as that γ (x) ∈ kerMϕ(x)

for all x ∈ X×#, since it is in general MΦγ = [Φ, τ ([Φ, γ])] + [τ (Φ) , [Φ, γ]].

Now, this γ (x) ∈ u (2) is hermitian. It has orthogonal eigenvectors for distinct eigenvalues,
but even if there are degenerate eigenvalues, it is still possible to find an orthonormal basis of
C4 consisting of four eigenvectors of γ (x), thus C4 = Eλ1⊕ . . .⊕Eλ4 , where λi the eigenvalues
of γ (x). Assuming that γ (x) is non-zero, since [ϕ (x) , γ (x)] = 0 it follows that ϕ (x) preserves
the eigenspaces of γ (x) for all x ∈ X×# and so 〈ϕ (x) v, ϕ (x)w〉 = 〈v, w〉 for v, w ∈ C4. In

other words, ϕ (x) ought to be an isometry with respect to the usual norm in C4. Equivalently,
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ϕ (x) is unitary for all x ∈ X×#. However, for a zero x0 of det Φ = det ϕ̃ (x0) dz
2

z2 chosen on the

left hand side surface Xl of X×# we see that

ϕ (x0) = φirr∗

(
0 1
z 0

)
=


0 −

√
3 0 0

−
√

3z 0 0 2

0 0 0
√

3z

0 2z
√

3 0


which is not unitary. Therefore, γ = 0.
That δ vanishes, as well as ψ2 = 0, is proven similarly. �

6.4. Upper bound for L(Aapp
R ,Φapp

R ) in H2
(
X×#

)
. Define the operator

DT := L1,T + L∗2,T

The following proposition is an immediate consequence of the Cappell-Lee-Miller theorem
(Theorem 5.5) for this operator DT using the fact that the kernel of the limiting operator

L1 + L∗2 is trivial on L2
ext

(
X×#

)
.

Proposition 6.4. There exist constants T0 > 0 and C > 0 such that the operator D∗TDT is

bijective for all T > T0 and its inverse (D∗TDT )−1 : L2 (X#)→ L2 (X#) satisfies∥∥∥(D∗TDT )−1
∥∥∥
L(L2,L2)

≤ CT 2.

We are finally in position to imply the existence of the inverse operator GR = L−1

(Aapp
R ,Φapp

R )
:

L2 (X#) → L2 (X#) and provide an upper bound for its norm, by adapting the analogous
proof from [36] into our case. We first need the following:

Corollary 6.5. There exist constants T0 > 0 and C > 0 such that for all T > T0 and
γ ∈ Ω0 (X#, EH (h)) it holds that∥∥L∗1,TL1,Tγ

∥∥
L2(X#)

≥ CT−2‖γ‖L2(X#)

Proof. The previous proposition provides the existence of constants T0 > 0 and C > 0 such
that for all T > T0 and γ ∈ Ω0 (X#, EH (h)):∥∥∥(D∗TDT )−1γ

∥∥∥
L2(X#)

≤ CT 2‖γ‖L2(X#)

and thus
‖D∗TDTγ‖L2(X#) ≥ CT

−2‖γ‖L2(X#)

According to the definition of DT we have

D∗TDT =
(
L1,T + L∗2,T

)∗ (
L1,T + L∗2,T

)
= L∗1,TL1,T + L2,TL1,T + L∗1,TL

∗
2,T + L2,TL

∗
2,T

as well as L2,TL1,Tγ =
[
FAapp

R
, γ
]

+
[[

Φapp
R ,−τ

(
Φapp
R

)]
, γ
]
, for sections γ ∈ Ω0 (X#, EH (h)).

For parameter T = − logR, Lemma 4.7 provides the estimate

‖L2,TL1,Tγ‖L2(X#) ≤ C1R
δ′′‖γ‖L2(X#)

= C1e
−δ′′T ‖γ‖L2(X#)
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for T -independent constants C1, δ
′′ > 0.

Remember that the operator D∗TDT acts on forms of even total degree. Now, decomposing
forms of even total degree into forms of degree zero and degree two, for a 0-form γ we may
write γ = γ + 0 and thus is

L∗1,TL1,Tγ = D∗TDTγ − L2,TL1,Tγ

The triangle inequality now provides that∥∥L∗1,TL1,Tγ
∥∥
L2(X#)

≥ ‖D∗TDTγ‖L2(X#) − ‖L2,TL1,Tγ‖L2(X#)

≥ CT−2‖γ‖L2(X#) − C1e
−δ′′T ‖γ‖L2(X#),

which in turn for sufficiently large T implies the desired inequality. �

Proposition 6.6. There exist constants R0 > 0 and C > 0, such that for all sufficiently
small 0 < R < R0 the operator L(Aapp

R ,Φapp
R ) is invertible and satisfies the estimate

‖GRγ‖L2(X#) ≤ C|logR|2‖γ‖L2(X#)

Proof. It suffices to show the statement for the unitarily equivalent operator (which we shall
still denote by L(Aapp

R ,Φapp
R )) acting on the space Ω0 (X#, EH (h)) defined after conjugation by

the map γ 7→ iγ. From Corollary 5.2 it follows for all γ ∈ Ω0 (X#, EH (h)) that〈(
L(Aapp

R ,Φapp
R ) − L

∗
1,TL1,T

)
γ, γ

〉
= 3
∥∥[Φapp

R , γ
]∥∥2 ≥ 0

Consequently, L(Aapp
R ,Φapp

R )−L
∗
1,TL1,T is a nonnegative operator. Furthermore, from Corollary

6.5 we obtain the estimate:∥∥∥L(Aapp
R ,Φapp

R )γ
∥∥∥
L2(X#)

≥
∥∥L∗1,TL1,Tγ

∥∥
L2(X#)

≥ CT−2‖γ‖L2(X#)

Therefore, the operator L(Aapp
R ,Φapp

R ) is strictly positive, and so invertible, and the norm of

its inverse is bounded above by the inverse of the smallest eigenvalue of L(Aapp
R ,Φapp

R ), thus

providing the statement of the proposition. �

This upper bound for the inverse operator GR is valid also when GR is viewed as an operator
L2
(
X#, r

−1drdθ
)
→ H2

B

(
X#, r

−1drdθ
)
, where H2

B (X#) is the Banach space defined by:

H2
B (X#) :=

{
γ ∈ L2 (X#)

∣∣∇Bγ,∇2
Bγ ∈ L2 (X#)

}
The proof of this statement readily adapts from the proof of Proposition 3.14 and Corollary
3.15 in [36]; we refer the interested reader to this article for the details.

6.5. Lipschitz constants for QR. The orbit map for any Higgs pair (A,Φ) and any g =
exp (γ) with γ ∈ Ω0

(
X#, EH

(
hC
))

is given by

O(A,Φ) (γ) = g∗ (A,Φ) =
(
A+ g−1

(
∂̄Ag

)
− (∂Ag) g−1, g−1Φg

)
thus

exp (γ)∗A = A+
(
∂̄A − ∂A

)
γ +RA (γ)

exp (−γ) Φ exp (γ) = Φ + [Φ, γ] +RΦ (γ)

where these reminder terms are

RA (γ) = exp (−γ)
(
∂̄A exp (γ)

)
− (∂A exp (γ)) exp (−γ)−

(
∂̄A − ∂A

)
γ
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RΦ (γ) = exp (−γ) Φ exp (γ)− [Φ, γ]− Φ

The Taylor series expansion of the operator FR is then

FR (exp (γ)) = pr1 (HR (A,Φ)) + LRγ +QRγ

with

QR (γ) := dA (RA (γ)) + [Φ∗, RΦ (γ)] + [Φ, RΦ(γ)∗]

+
1

2

[((
∂̄A − ∂A

)
γ +RA (γ)

)
,
((
∂̄A − ∂A

)
γ +RA (γ)

)]
+ [([Φ, γ] +RΦ (γ)) , ([Φ, γ] +RΦ (γ))∗]

Lemma 6.7. In the above, let (A,Φ) ≡
(
AappR ,Φapp

R

)
. Then there exists a constant C > 0

such that
‖QR (γ1)−QR (γ0)‖L2(X#) ≤ Cr‖γ1 − γ0‖H2

B(X#)

for all 0 < r ≤ 1 and γ0, γ1 ∈ Br, the closed ball of radius r around 0 in H2
B (X#).

Proof. see [36], Lemma 4.1. �

7. Gluing theorems

The necessary prerequisites are now in place in order to apply the contraction mapping
argument described in §5.1 and correct the approximate solution constructed into an exact
solution of the Sp(4,R)-Hitchin equations.

Theorem 7.1. There exists a constant 0 < R0 < 1, and for every 0 < R < R0 there exist a
constant σR > 0 and a unique section γ ∈ H2

B (X#, u (2)) satisfying ‖γ‖H2
B(X#) ≤ σR, so that

for g = exp (γ):
(A#,Φ#) = g∗

(
AappR ,Φapp

R

)
is an exact solution of the Sp(4,R)-Hitchin equations over the closed surface X#.

Proof. We show that for σR > 0 sufficiently small, the operator T from §5.1 defined by
T (γ) = −GR

(
H
((
AappR ,Φapp

R

))
+QR (γ)

)
is a contraction of BσR , the open ball of radius σR.

From Proposition 6.6 and Lemma 6.7 we get

‖T (γ1 − γ0)‖H2
B(X#) = ‖GR (QR (γ1)−QR (γ0))‖H2

B(X#)

≤ C(logR)2‖QR (γ1)−QR (γ0)‖L2(X#)

≤ C(logR)2σR‖γ1 − γ0‖H2
B(X#)

Let ε > 0 and set σR := C−1|logR|−2−ε. Then for all 0 < R < e−1 it follows that

C(logR)2σR < 1 and therefore T is a contraction on the ball of radius σR.
Furthermore, since QR (0) = 0, using again Proposition 6.6 and Lemma 6.7 we have

‖T (0)‖H2
B(X#) =

∥∥GR (pr1

(
HR

(
AappR ,Φapp

R

)))∥∥
H2

B(X#)

≤ C(logR)2
∥∥pr1

(
HR

(
AappR ,Φapp

R

))∥∥
L2(X#)

≤ C(logR)2Rδ
′′

Thus, when R0 is chosen to be sufficiently small, then ‖T (0)‖H2
B(X#) <

1
10σR, for all 0 < R <

R0 and for the above choice of σR; thus the ball BσR is mapped to itself by T . �
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Remark 7.2. The analytic arguments developed in the preceding sections provide also that
the Main Theorem 1.1 in [36] also holds for solutions to the Sp(4,R)-Hitchin equations. In
particular, we have the following:

Corollary 7.3. Let (Σ, J0) be a Riemann surface with nodes at a finite collection of points p ⊂
Σ. Let (A0,Φ0) be a solution to the Sp(4,R)-Hitchin equations with logarithmic singularities
at p, which is obtained from a solution to the SL(2,R)-Hitchin equations via an embedding
ρ : SL(2,R) ↪→ Sp(4,R) that maps a copy of a maximal compact subgroup of SL(2,R) into
a maximal compact subgroup of Sp(4,R). Suppose that there is a model solution near those
nodes which is of the form described in §4.1. Let (Σ, Ji) be a sequence of smooth Riemann
surfaces converging uniformly to (Σ, J0). Then, for every sufficiently large i ∈ N, there exists
a smooth solution (Ai,Φi) on (Σ, Ji), such that (Ai,Φi) → (A0,Φ0) as i → ∞, uniformly on
compact subsets of Σ\p.

Theorem 7.1 now implies that for ∂̄ := A0,1
# , the Higgs bundle

(
E# :=

(
E#, ∂̄

)
,Φ#

)
is a

polystable Sp(4,R)-Higgs bundle over the complex connected sum X#. Collecting the steps
from the last three sections 4,5,6 we now have our main result:

Theorem 7.4. Let X1 be a closed Riemann surface of genus g1 and D1 = {p1, . . . , ps}
be a collection of s-many distinct points on X1. Consider respectively a closed Riemann
surface X2 of genus g2 and a collection of also s-many distinct points D2 = {q1, . . . , qs} on
X2. Let (E1,Φ1) → X1 and (E2,Φ2) → X2 be parabolic stable Sp(4,R)-Higgs bundles with
corresponding solutions to the Hitchin equations (A1,Φ1) and (A2,Φ2). Assume that these

solutions agree with model solutions
(
A mod

1,pi
,Φ mod

1,pi

)
and

(
A mod

2,qj
,Φ mod

2,qj

)
near the points pi ∈

D1 and qj ∈ D2, and that the model solutions satisfy
(
A mod

1,pi
,Φ mod

1,pi

)
= −

(
A mod

2,qj
,Φ mod

2,qj

)
,

for s-many possible pairs of points (pi, qj). Then there is a polystable Sp(4,R)-Higgs bundle
(E#,Φ#) → X#, constructed over the complex connected sum of Riemann surfaces X# =
X1#X2, which agrees with the initial data over X#\X1 and X#\X2.

Remark 7.5. In §4.8 we checked that for the particular parabolic Sp(4,R)-Higgs bundles arising
from the representations φirr and ψ, the main assumption in the theorem does apply.

Definition 7.6. We call an Sp(4,R)-Higgs bundle constructed by the procedure developed in
§4-7 a hybrid Sp(4,R)-Higgs bundle.

8. Topological invariants

In this final section, we identify the connected component of the moduli space Mmax a
hybrid Higgs bundle lies, given a choice of stable parabolic ingredients to glue. For this,
we need to look at how do the Higgs bundle topological invariants behave under the complex
connected sum operation. As an application, we see that under the right initial choices for the
gluing data, we can find model Higgs bundles in the exceptional components of the maximal
Sp(4,R)-Higgs bundle moduli space; these models are described by the hybrid Higgs bundles
of §7.

8.1. Degree of a connected sum bundle. Let X1 and X2 be closed Riemann surfaces
with divisors D1 and D2 of s-many distinct points on each, and let V1, V2 be two parabolic
principal HC-bundles over X1, X2 respectively. Assume that the underlying smooth bundles
V1,V2 come equipped with adapted hermitian metrics h1, h2. Let (V1#V2, h#) be the smooth
hermitian bundle over the complex connected sum X# of X1 and X2. The hermitian metric



MODEL HIGGS BUNDLES IN EXCEPTIONAL COMPONENTS 37

h# coincides with h1 and h2 in a neighborhood of X1\Ω and X2\Ω respectively, where Ω is
the neck region in the connected sum construction. We have the following:

Proposition 8.1. Let X# = X1#X2 be the complex connected sum of two closed Riemann
surfaces X1 and X2 with divisors D1 and D2 of s-many distinct points on each surface, and
let V1, V2 be parabolic principal HC-bundles over X1 and X2 respectively. For a parabolic
subgroup P ⊂ HC, a holomorphic reduction σ of the structure group of E from HC to P and
an antidominant character χ of P , the following identity holds:

deg (V1#V2) (σ, χ) = pardegα1
(V1) (σ, χ) + pardegα2

(V2) (σ, χ)

Proof. Consider smooth metrics ~1, ~2 on the principal HC-bundles V1, V2 defined over X1

and X2, which coincide with the adapted metrics h1, h2 on X1\D1, X2\D2 respectively.
For v > 0, let Xi,v := {x ∈ Xi |d (x,D) ≥ e−v } and Bi,v := Xi\Xi,v, for i = 1, 2. For a
holomorphic reduction σ and an antidominant character χ, the metrics ~i, hi induce metrics
~i,L, hi,L on (Vi)σ,L with curvature Fhi,L and F~i,L respectively. Similarly, the smooth metric

h# on V1#V2 induces a metric h#,L on (V1#V2)σ,L with curvature Fh#,L. We now have:

deg (V1#V2) (σ, χ) =

√
−1

2π

∫
X#

〈
Fh#,L, sσ

〉
=

√
−1

2π

∫
X1,v

〈Fh1,L, sσ〉+

√
−1

2π

∫
X2,v

〈Fh2,L, sσ〉+

√
−1

2π

∫
X#\(X1,v∪X2,v)

〈
Fh#,L, sσ

〉
Now notice: √

−1

2π

∫
X1,v

〈Fh1,L, sσ〉 =

√
−1

2π

∫
X1

〈F~1,L, sσ〉 −
√
−1

2π

∫
B1,v

〈Fh1,L, sσ〉

and √
−1

2π

∫
X1

〈F~1,L, sσ〉 = deg (V1) (σ, χ) ;

similarly for the integral over X2,v. Therefore, for every v > 0:

deg (V1#V2) (σ, χ) = deg (V1) (σ, χ)−
√
−1

2π

∫
B1,v

〈Fh1,L, sσ〉+ deg (V2) (σ, χ)

−
√
−1

2π

∫
B2,v

〈Fh2,L, sσ〉+

√
−1

2π

∫
X#\(X1,v∪X2,v)

〈
Fh#,L, sσ

〉
Passing to the limit as v → +∞, the last integral vanishes, while each integral over Bi,v for
i = 1, 2 converges to the local term measuring the contribution of the parabolic structure
in the definition of the parabolic degree (see Lemma 2.10 in [3]). The desired identity now
follows. �

Proposition 8.1 implies in particular that the complex connected sum of maximal para-
bolic Sp(4,R)-Higgs bundles is a maximal (non-parabolic) Sp(4,R)-Higgs bundle. This is the
analogue in the language of Higgs bundles of the additivity property for the Toledo invariant
from the point of view of fundamental group representations (Proposition 2.13).
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8.2. Model maximal parabolic Sp (4,R)-Higgs bundles. Let X be a compact Riemann
surface of genus g and let the divisor D := {x1, . . . , xs} of s-many distinct points on X,
assuming that 2g − 2 + 2s > 0. Fix a square root of the canonical bundle, that is, a line
bundle L→ X, such that L2 = K and consider

E = (L⊗ ι)∗ ⊕ L
where ι = OX (D) is the line bundle over the divisor D. Assign a parabolic structure on
E given by a trivial flag Exi ⊃ {0} and weight 1

2 for every xi ∈ D. Moreover, for any

q ∈ H0
(
X,K2 ⊗ ι

)
, let

θ (q) =

(
0 1
q 0

)
∈ H0 (X,End (E)⊗K ⊗ ι)

be the parabolic Higgs field on the parabolic bundle E. The authors in [5] show that the pair
(E, θ (q)) is a parabolic stable Higgs bundle of parabolic degree zero. Under the non-abelian
Hodge correspondence for non-compact curves, there is a tame harmonic metric on the bundle
E. Moreover, it is shown in [5] that parabolic Higgs bundles of the type (E, θ (q)) defined
above, are in 1-1 correspondence with Fuchsian representations of n-punctured Riemann sur-
faces. This also implies that the holonomy of the flat connection on X corresponding to
(E, θ (q)) is contained (after conjugation) in SL(2,R).

As was done in the non-parabolic case [7], we shall use embeddings of SL(2,R) into Sp(4,R),
in order to obtain model parabolic Sp(4,R)-Higgs bundles:

Example 8.2. Consider the parabolic Sp(4,R)-Higgs bundle (V1, β1, γ1) which is induced by
the embedding through φirr from §2.8 of the model parabolic SL(2,R)-Higgs bundle (E, θ (q)).
Under the preceding terminology, the bundle V1 → X1 is then described as:

V1 =
(
L3 ⊗ ι

)
⊕ (L⊗ ι)∗

and it comes equipped with a parabolic structure defined by a trivial flag (V1)xi ⊃ {0} and

weight 1
2 for every xi ∈ D.

Moreover, V1 can be expressed as V1 = N1 ⊕N∗1K. Indeed, for N1 = L3 ⊗ ι we see that:

N∗1K =
(
L3 ⊗ ι

)∗ ⊗K = L−3 ⊗ ξ ⊗ L2 = (L⊗ ι)∗

It can be checked that this is a parabolic stable Sp(4,R)-Higgs bundle. Also notice that

par deg V1 = par deg
(
L3 ⊗ ι

)
+ par deg (L⊗ ι)∗

= 3g − 3 + s+
s

2
+ 1− g − s+

s

2
= 2g − 2 + s.

Therefore, (V1, β1, γ1) ∈Mmax
par (X,Sp(4,R)) is a model maximal parabolic Sp(4,R)-Higgs bun-

dle.

Example 8.3. Consider the parabolic Sp(4,R)-Higgs bundle (V2, β2, γ2) which is induced by
the embedding through φ∆ from §2.8 of the model parabolic SL(2,R)-Higgs bundle (E, θ (q)).
Under the preceding terminology, the bundle V2 → X is then described as:

V2 = L⊕ L
and it comes equipped with a parabolic structure defined by a trivial flag (V2)xi ⊃ {0} and

weight 1
2 for every xi ∈ D.

Moreover, V2 can be expressed as V2 = N2 ⊕N∗2K. Indeed, for N2 = L we see that:

N∗2K = L−1 ⊗K = L



MODEL HIGGS BUNDLES IN EXCEPTIONAL COMPONENTS 39

It can be checked that this is a parabolic stable Sp(4,R)-Higgs bundle. Also notice that

par deg V2 = 2par degL = 2
(
g − 1 +

s

2

)
= 2g − 2 + s

Therefore, (V2, β2, γ2) ∈Mmax
par (X,Sp(4,R)) is a model maximal parabolic Sp(4,R)-Higgs bun-

dle.

In light of Proposition 8.1 we now derive that the polystable hybrid Sp(4,R)-Higgs bundle
constructed,

(
V#,Φ#, h#, ∂̄

)
, is maximal :

Proposition 8.4. The hybrid Higgs bundle
(
V#,Φ#, h#, ∂̄

)
constructed by gluing the maximal

parabolic Higgs bundles (V1, β1, γ1) and (V2, β2, γ2) described above is maximal, i.e. deg (V#) =
2 (g1 + g2 + s− 1)−2 = 2g−2, where g is the genus of the Riemann surface X#, the connected
sum of the s-punctured Riemann surfaces X1 and X2.

8.3. Model Higgs bundles in the exceptional components of Mmax. Let X1 =
{
φ1
ij

}
(resp. X2 =

{
φ2
ij

}
) the holomorphic transition functions defining the Riemann surface X1

(resp. X2), with respect to an atlas A1 (resp. A2). Then
(
φ1
ij

)′
is nowhere zero. Set

t1ij :=
(
φ1
ij

)′ ◦ φ1
i

∣∣
Ui∩Uj

and now these define the tangent bundle TX1 =
{
t1ij

}
. Since 1

t1ij
is well-defined, we now get:

KX1 = T ∗X1
=
{
l1ij :=

(
t1ij
)−1
}

and similarly for the Riemann surface X2

KX2 = T ∗X2
=
{
l2ij :=

(
t2ij
)−1
}

The transition functions φ1
ij , φ

2
ij from the atlas A = A1

∣∣
X∗1
∪ A2

∣∣
X∗2

of X# must agree on

the gluing region, the annulus Ω. Thus, l1ij (x) = l2ij (x) over x ∈ Ω. Considering a cover

V1∪V2 of Ω, we can define a line bundle isomorphism l̃ : V1∩V2 → C∗ and now the 1-cocycles
l1ij , l

2
ij , l̃ define the connected sum canonical bundle

KX#
:= KX1#KX2

Now, take the maximal parabolic model (V1, β1, γ1) described in the previous section. Fix
another square root M1 of the canonical line bundle KX1 . Now, define:

W1 = V ∗1 ⊗M1 =
[(
L3

1 ⊗ ι
)
⊕ (L1 ⊗ ι)∗

]∗ ⊗M1

=
[
(L1 ⊗ ι)⊕

(
L−3

1 ⊗ ξ
)]
⊗M1 = (KX1 ⊗ ι)⊕

(
K∗X1

⊗ ξ
)

i.e. W1 is of the form L ⊕ L∗ for L := KX1 ⊗ ι and also the map γ1 ⊗ IM∗1 : W ∗1 → W1 is an
isomorphism, which comes from the fact that γ1 is, as follows of the proof of the Milnor-Wood
inequality in the parabolic case.

Therefore, the bundle W1 → X1 is determined by an O (2)-cocycle
{
w1
αβ

}
with

det
{
w1
αβ

}
= 1.

Similarly, for the maximal parabolic model (V2, β2, γ2) we fix another square root M2 of
the canonical line bundle KX2 and define:

W2 = V ∗2 ⊗M2 = (L2 ⊕ L2)∗ ⊗M2 = L∗2M2 ⊕ L∗2M2
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i.e. W2 is of the form L ⊕ L∗ for L := O.

Therefore, the bundle W2 → X2 is determined by an O (2)-cocycle
{
w2
αβ

}
with

det
{
w2
αβ

}
= 1.

Consider 1-cocycles around each puncture xi ∈ D for the bundles W1,W2 over the annulus
Ω ≡ Ω1 ∼ Ω2

wi : U1 ∩ U2 → GL (4,C)

x 7→ g−1
i (x) ·mi (x)

while {mi (x)} = Mi. At this point, we are using the 1-cocycles that define the connected
sum canonical bundle KX#

.
For an induced hermitian metric on W1, using the Gram-Schmidt process one can obtain an

orthonormal local frame over Ω1, such that the associated 1-cocycle w̃1 is SO (2)-valued. We

may use the isomorphism W1 |Ω1

'−→ W2 |Ω2 induced by the two isomorphisms between the
Vi and Mi described before, to glue the bundles over Ω subordinate to the covering U1 ∪ U2.
For the 1-cocycle over the connected sum bundle W1#W2 we also have:

det
{
w#
αβ

}
= 1

Thus, the first Stiefel-Whitney class w1 (W#) vanishes, and so V# = N# ⊕ N∗#KX#
with

N# = N1#N2. Moreover, this provides that the Cayley partner W# of V# decomposes as

W# = L# ⊕ L−1
# for some line bundle L#. We thus have established the following:

Proposition 8.5. The hybrid Higgs bundle (V#,Φ#) constructed by gluing the maximal para-
bolic Higgs bundles (V1, β1, γ1) and (V2, β2, γ2) of §8.2 is maximal with a corresponding Cayley
partner W# for which w1 (W#) = 0 and W# = L#⊕L−1

# , for some line bundle L# over X#.

Remark 8.6. Compare this result to Proposition 5.9 in [20], where an analogous property for
the Stiefel-Whitney classes of a hybrid representation was established.

The degree of this line bundle L# fully determines the connected component a hybrid Higgs
bundle will lie:

Proposition 8.7. For the line bundle L# appearing in the decomposition W# = L# ⊕ L−1
#

of the Cayley partner, it is

deg (L#) = par degKX1 ⊗ ι1

where ι1 = OX1 (D1).

Proof. The identity of Proposition 8.1 now applies to provide the computation of the degree
for the bundle N# appearing in the decomposition V# = N# ⊕N∗#KX#

:

deg (N#) = par deg
(
L3

1 ⊗ ι1
)

+ par deg (L2)

= 3 (g1 − 1) + s+
s

2
+ g2 − 1 +

s

2
= g + 2g1 − 3 + s
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where g := g1 + g2 + s− 1 is the genus of X#.

Considering N# ⊗ L
− 1

2
0 for some L0 = K

1
2
# now gives

deg

(
N# ⊗ L

− 1
2

0

)
= g + 2g1 − 3 + s+ 1− g

= 2g1 + s− 2

= −χ (Σ1) = par degKX1 ⊗ ι1
where ι1 = OX1 (D1). �

Therefore, we have constructed a holomorphic vector bundle V# → X# with deg (V#) =

2g − 2 and V# = N# ⊕ N∗#KX#
with deg

(
N# ⊗ L

− 1
2

0

)
= 2g1 − 2 + s, which is odd (resp.

even) whenever s is odd (resp. even). The contraction mapping argument developed in §5-7
will provide a holomorphic structure ∂̄ with respect to which

(
V#, ∂̄

)
is a polystable Sp(4,R)-

Higgs bundle. The numerical information we already have for the topological invariants of
V# is preserved and it identifies the connected component of the maximal moduli space the
tuple

(
V#,Φ, h#, ∂̄

)
will lie.

Remarks 8.8. (1) The component a hybrid Higgs bundle lies depends on the genera and
the number of points in the divisors of the initial Riemann surfaces X1 and X2 in
the construction; there are no extra parameters arising from the deformation of stable
parabolic data to model data near these points, or the perturbation argument to
correct the approximate solution to an exact solution.

(2) The gluing of two parabolic Higgs bundles of the same type as the model (V1, β1, γ1)
from Example 8.2 implies that deg (N#) = 3g − 3. On the other hand, the gluing of
two parabolic Higgs bundles of the same type as (V2, β2, γ2) from Example 8.3 implies
that deg (N#) = g − 1, as expected.

(3) For a hybrid representation ρ : π1 (Σ) → Sp(4,R), O. Guichard and A. Wienhard
in [20] defined an Euler class taking values e = −χ (Σl) [Σ] ∈ H2

(
T 1Σ,Z

)
, where

T 1Σ is the unit tangent bundle of the surface Σ = Σl∪γΣr and Σl is considered to
be a surface of genus 1 ≤ gl ≤ g − 1 and one boundary component, thus its Euler
characteristic χ (Σl) = 2 − 2gl − 1 = 1 − 2gl is an odd integer within −2g + 3 and
−1. In addition to Proposition 19 of [20], which describes a relation between the
Stiefel-Whitney classes for maximal Sp(4,R)-Higgs bundles and the Stiefel-Whitney
classes for Sp(4,R)-representations, we deduce that in the case of Riemann surfaces
with s = 1 point in the divisors, the degree deg (L#) of the underlying bundle L# in

the decomposition of the Cayley partner W# = L# ⊕ L−1
# of a hybrid Sp(4,R)-Higgs

bundle equals the Euler class e for the hybrid representation, although these invariants
live naturally in different cohomology groups.

Since 1 ≤ g1 ≤ g1 + g2 − 1, it follows that

s ≤ deg

(
N# ⊗ L

− 1
2

0

)
≤ 2g − s− 2

with s an integer between 1 and g − 1. Therefore, the hybrid Higgs bundles constructed
are modeling all exceptional 2g − 3 connected components of Mmax (X,Sp(4,R)). These
components are fully distinguished by the degree of the line bundle L# for the hybrid Higgs
bundle constructed by gluing.
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